New Classes and Applications of Hash Functions

Mark N. Wegman and J. Lawrence Carter *

[IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Abstract: In this paper we exhibit several new classes of
hash functions with certain desirable properties, and
introduce two novel applications for hashing which
make use of these functions.

One class of functions is small, yet is almost
universal,. If the functions hash n-bit long names into
m-bit indices, then specifying a member of the class
requires only O((m + log,log,(n)) log,(n)) bits as com-
pared to O(n) bits for earlier techniques. For long
names, this is about a factor of m larger than the lower
bound of m+log,n-log,m bits. An application of this
class is a provably secure authentication techniques for
sending messages over insecure lines.

A second class of functions satisfies a much strong-
er property than universal,. We present the application
of testing sets for equality.

The authentication technique allows the receiver to
be certain that a message is genuine. An ‘enemy’ -
even one with infinite computer resources - cannot
forge or modify a message without detection.

The set equality technique allows the the operations
‘add member to set’, ‘delete member from set’ and ‘test
two sets for equality’ to be performed in expected con-
stant time and with less than a specified probability of
error.

0. Introduction:

A hash function may be viewed as a means of
While hash func-

tions are primarily used to implement associative mem-

assigning an abbreviation to a name.

ories, in this paper we explore some other uses for ab-

breviations. These new applications have motivated

finding classes of hash functions with certain properties.

* J. L. Carter's current address: Depart-
ment of Computer Science, Penn State Uni-
versity, University Park, PA 16802.

k7 b

Use of a universal, class (or set) of hash functions
has the advantage that good expected performance is
assured for any input [CW]. In section 1 we strengthen
the notion of a universal, set of hash functions to

strongly universal, and strongly universal .

Known universal classes of hash functions are fairly
large. If the functions in one of these classes can hash
n-bit names, then the class typically contains 20(" func-
tions. Thus, O(n) bits are required to specify a ran-
domly chosen function. In Section 3, we present a set
of functions which is ‘almost’ strongly universal, and is
much smaller - only log(n) bits are required. This im-
provement can make some applications of hashing prac-
tical, for instance the authentication technique de-
scribed below. Also, if used in conjunction with the
extendible hashing scheme of [FNPS], one can make a
fast, practical and completely general associative memo-

ry subroutine package.

A possibly important use of these functions, de-
scribed in section 2, is a provably secure authentication
system. This system allows the receiver of a message to
be sure of the authenticity of a message - that the mes-
sage was not forged or modified by an unauthorized
‘enemy’. It is necessary for the sender and the receiver
to share a secret key whose length is on the order of
the log of the length of the message. But unlike digital
signatures based on public key cryptosystems, it can be
proven that this system is secure even against an enemy
with infinite computing power. Also, there are no mes-

sages which just happen to be easy to forge.

CH1471-2/79/0000-0175%00.75 © 1979 IEEE

Section 4 gives a refinement of the authentication
system which allows many messages to be sent using
the same secret key, with each message requiring an
additional but shorter key. The total length of the keys
required for sending multiple messages asymptotically

achieves the lower bound.

The application which motivated defining strongly
universal classes of functions - a set equality tester - is
given in Section 5. Assuming that sets are constructed
using certain operations, we give a technique which has
an input independent and small chance of error for
determining that sets are equal. The expected running
time of the algorithm is input independent and is linear
in the number of construction operations and equality
tests. (This is the only algorithm we have seen with the
dubious distinction of requiring probabilistic analyses of
both kinds - it can both make a mistake and take a long
time doing so. Using a theorem of Gill, one can always
make the running time constant at the expense of a
larger probability of error.) Finally, in Section 6, we
show how to construct a strongly universal, set of func-

tions. The functions in this set can be evaluated rapid-

ly.

1. Strongly Universal Sets of Hash Functions

To be universal,, a set of functions from A to B
must only satisfy a requirement on the probability that
a randomly chosen function will map two points of A to
the same value. For a set of functions to be universal,,
a randomly chosen function must, with equal probabili-
ty, map any n distinct points of A to any n values in B;
in other words, any n points must be distributed ran-

domly throughout B by the functions. More formally,

Def: Suppose H is a set of hash functions, each element
of H being a function from A to B. H is strongly
universal if given any n distinct elements a,...,a;, of A
and any n elements b,,...,b, of B, then |H|/(|B|")
functions take a, to b, a, to-b,, etc. (|X| means the
number of elements in the set X.) A set of hash func-
tions is strongly universal if it is strongly universal for

all values of n.

176

Carter & Wegman [CW] suggest several classes of

hash functions which turn out to be strongly universal,,
here we generalize one of these classes. Strongly
universal sets of functions can be created using polyn-
omials over finite fields. In particular, let A and B both
be the same finite field. Let H be the class of polyno-
mials of degree less than n. H is strongly universal,
since given any n distinct elements of A and corre-
sponding elements of B, there is exactly one polynomial
of degree less than n which "interpolates” through the
designated pairs. (The standard linear algebra proof
using the invertibility of the Vandermonde matrix also

works with finite fields.)

It may seem peculiar to define a set of hash func-
tions with A and B being the same size. However it is
easy to make B smaller by, for instance, just choosing
the last bits of the hashed value. If the size of the field
is a power of two, the result will still be a strongly
universal_ class of functions; otherwise, it will still be

‘close’.

In the last section, we will exhibit a strongly

universal , set of functions.

2. Digital Signatures and Authentication Tags

It is often desirable to be able to send a message
over an insecure line and yet allow the receiver to be
certain of the identity of the sender. The post office
may be viewed as an insecure line; the classical solution
is to add a handwritten signature. The hope is that this
written signature can be compared by the receiver to
what he knows is a proper signature. Moreover, some-
one who intercepts the message cannot cut off the sig-
nature and paste it to a different document without
detection. We seek to gain these advantages in the case

of digital messages.

A written signature serves a number of functions:
1) It assures the receiver that the message was sent by
an authorized person,
2) it can be used by the receiver to prove that the sen-

der or someone authorized by him sent the message,

f

1T

S]

s1

t1

S S R 0SSP ARSa Riovs i S

iy

ge
be
e
lon
' his
to
ne-
;18-
out

asc

Cn-

1g€e,

and

3) it identifies the sender to be the actual person indi-
cated, not merely someone 'aluthnrized by the person.
Digital signatures as discussed by Diffie and Hellman
[Diffie] serve the first two functions, while the authen-
tication tags discussed here serve unly"the first. How-
ever, we will see that if there is a unf#:rersally trusted
person then authentication tags can also serve the sec-
ond function. Neither authentication tags nor digital
signature can serve the third function since the device
which does the signing can be duplicated or given to a

third party.

A digital signature consists of a string of bits which
is concatenated with a message. This signature is a
function of the message, but from the message and the
signature it should be difficult if not impossible to de-
termine the function. A checking function is published
and available to all. This checking function allows
anyone to test whether a signature is a valid signature
for the particular message. Moreover, without the sign-
ing function (but even with the checking function) it is
difficult to determine the correct signature to any alter-

nate message. For all messages there exists a valid

signature.

Diffie & Hellman [Diffie], and Rivest, Shamir, &

[Rivest] have presented ‘public key

cryptosystems’ which allow the above (in addition to

Adleman

allowing an interesting type of encryption.) However,

Theorem: No public key cryptosystem is unbreakable.
That is, an enemy with unbounded computing resources
can forge messages.

Proof: An enemy with enough time can guess all possi-
ble signatures for a particular message and when a valid

signature is found use it.

Thus, all such signature schemes can be cracked in NP

time, and in fact none have so far been shown NP-

Complete. In fact, Adleman[Adleman] and

Brassard[Brassard] have presented evidence that no

public key cryptosystem can be NP-complete.

77

An authentication system works as follows: There is
a set M of possible messages to be sent, and a set T of
authentication tags. For instance, M might be the set
of all character strings of length 10,000 or less, and T
might be the set of bit strings of length 100. There is
also a (publicly known) set of functions F, where each
function in F maps M into T. To use the system, the
sender and receiver secretly agree upon a ’key’ which

specifies one of the functions f in F. When the sender
transmits a message m in M, he also sends the authenti-

cation tag f(m). The receiver checks that f applied to
the message he received is indeed the tag he received.

If so, he has some assurance the received message 1is

not a forgery.

Since a forger may intercept a message and its valid
tag, it must be impossible to find the function from the
message and tag. Otherwise the forger might prevent
the message from being sent and replace it with one of
his own. In fact, knowing the value of f on one mes-
sage must give no information about the value of f on
any other messag@% W.e will show a little later how this

can be accomplished.

An authentication tag differs from a signature in
that the potential receiver of a message can also create
the authentication tag and thus a proper message.
Thus, the receiver cannot demonstrate to a third party
that the message was actually transmitted and received,
since the third party may think the receiver created the
message. However, if there is a universally trusted
agency, then authentication tags can be used to estab-
lish the authorship of messages. This works as follows:
Each individual person X shares his secret function f,
only with the agency. To send a message to person Q,
person -P sends his message (tagged by his function) to
the agency. The message must contain the name of the
sender and receiver. The agency first verifies that the
message it receives has the correct tag for the sender
named in the message. Then it stores a copy, appends
the tag via fQ to the message, and forwards it on to Q.
When Q verifies that the tag is correct, he accepts the

message. Q can now prove to anyone who trusts the

ittt ———

agency that P sent him the message by simply asking

the agency to check its records.

A second possible disadvantage of authentication
tags is that only a finite number of messages can be
sent using a particular function. We will prove that any
unbreakable scheme can only be used a finite number
of times, with that number dependent on the size of the
key and the desired probability of guessing the correct
tag. We will also show that our scheme approaches the
theoretical bound on the minimum key size needed to

send a given number of messages with a desired level of

security.

To compensate for these disadvantage, we can con-
struct an authentication scheme which is provably un-
breakable. That is to say no resources other than
knowledge of the key allow an enemy to find the cor-
rect tag for a forged message. As the length of the tag
grows the likelihood of a correct tag being appended to
a message by an enemy, without knowledge of the key,

becomes more and more remote.

To make this more precise, we will say that an
authentication system is unbreakable with certainty p if
after a function f is randomly chosen and after the
forger is given any message m and the corresponding
tag f(m), the forger cannot find a different message m’
for which he has better than a probability of p of guess-
ing the correct tag. Note that this definition must hold

for any m, even one chosen by the forger.

To create an authentication system which 1s un-
breakable with certainty p, we can simply choose T to
have at least 1/p elements, and let F be a strongly
universal, class of hash functions from M to T. If we
let H' be the subset of H which maps m to f(m), we see
that the only information that the forger has available
to him is that the secret function is one of the functions
in H'. However, the definition of strongly universal,
implies that for any m’ distinct from m, the proportion
of functions in H' which map m’ to any particular tag t'

is 1/|T]. Since !T| > 1/p, any choice the forger

makes has no more than a probability of p of being

correct.

[GMS] have found rather complicated strongly
universal, sets of functions for exactly this purpose.
The difficulty with their set and with other previously
known strongly universal, sets is that the set of func-
tions is so large that specifying a function in the class
requires a key at least as long as the original message.
[t is desirable to use a key considerably shorter than the
message. A second problem is that only one message
per key can be sent, since knowledge of two message-
tag pairs may give some information about the value of

the function on some third message. We will solve

these problems separately.

3. A Small, Almost Strongly Universal, Class

We wish to construct a set of hash functions
from some large space A’ to a space B'. In the above,
A’ is the set of messages and B’ is the set of possible
tags. Let a’ and b’ be the length of the messages and
tags, respectively. Let s = b'+lngilﬂg2(3'). Let H be
some strongly universal, class of functions which map
bit strings of length 2s to ones of length s. The multi-
plicative scheme of [CW] is fine for this purpose. Each
member of H' will be constructed from a sequence of
length log,a’-log,b’ of members of H. Suppose f;, f,,...
is some such sequence. We will specify how to apply
the associated member, f of H to a message. The
message is broken into substrings of length 2s. If nec-
essary, the last substring should be padded with blanks.
Thus, if the message has n bits it will be broken into

/
r 2 7 substrings. f, is applied to all the substrings and

th%sresulting substrings are concatenated. By concaten-
ating the resulting substrings, we have obtained a string
whose length is roughly half the originals string’s
length. This process is repeated using f,, f,,... until
only one substring of length s is left. The tag (i.e. the
result of the hash function f') is the low-order b’ bits of
this substring. The key needed to specify f' is the con-

catenation of the keys needed to specify f,, f5,... . The

multiplicative scheme suggested in [CW] has a key

roughly twice the size of the input. If this class is used
for H, the size of the key for H' will be 4 s log,(a’).
Thus, the key is roughly 4 times the length of the tags
times the log of the length of the message. By compari-
son, the multiplicative scheme by itself would have a

key whose length was twice that of the message.

Observe that assuming the functions in H can be
evaluated in time proportional to s, the functions in H’

also can be evaluated in time proportional to the length

of the message.

The sense in which H' is ’almost’ strongly universal,

is given in the following theorem.

Theorem: Given any two distinct messages m; and m,

and any two tag values t, and t,, the number of func-

tions which take m, to t; is 1/|B’| times the total
However, less than 2/|B'| of

number of functions.
these functions will also take m, to t,.

Proof sketch: Each time we halve the length of the
messages, there is a small (1/(2s5)) chance that the two
resulting strings are now identical. Since we iterate the
halving process log,a’-log,b’ times, the chance that the
two strings are identical at the next to last step is less
than log,a’/(2s), which is equal to 1/(2%). Now the
fact that function that does the last reduction is chosen
from a strongly universal, class can be used to show
that m; will be taken into any tag with equal probabili-
ty, and as long as the penultimate strings were differ-
ent, m, will also be taken into any string with probabili-
ty equal to 1/|B|. Thus, if t; # t,, then less than
1/|B'| of the functions will take m, to t,, and other-

wise, less than 2/ | B’ | will.

The above theorem can be contrasted with the defi-
nition of strongly universal,, which says that 1/|B’| of
the functions must take m, to t,, and that 1/|B’| of
these functions will also take m, to t,. In terms of the
authentication scheme, the theorem states after the
enemy knows one message-tag pair, he can do no better
than to find another message-tag pair which has proba-

bility 2/|B’'| of being correct. Thus, the scheme is

179

unbreakable with certainty 2/|B’'|, and this certainty

can be made smaller than any predetermined value.

4. Authenticating Multiple Messages

The above method does not allow us to tag more
than one message using the same function, since once
the enemy knows two message-tag pairs, he may be
able to determine more such pairs. One way around

this problem might be to use a universal function,
which would allow us to send n-1 messages, but a bet-
ter method is as follows: There is a strongly universal,
set F of functions from M to B, where B is the set of
bit strings of length k. Each message in M must con-
tain a message number between 1 and n. The secret
key shared by the sender and receiver now consists of
two parts. The first part specifies a function f in F.
The second part of the key is a sequence (b, ...,b.) of
elements of B. The sender must be certain never to
send two messages with the same message number. To
create the authentication tag t; for the message m; (a
message with message number i) the sender first calcu-
lates f(m;) and then exclusive-or’s this result with b.
Since each message contains a message number, the
receiver can duplicate this process to verify the tag is
correct. (If a message is unnumbered, it is automatical-
ly rejected as a forgery.) We wish to show that this

scheme is unbreakable with certainty 1/(2k).

Theorem: Suppose some key (f,(b,,...,b.)) has been
chosen randomly from the set of keys. Let m,,...,m_ be
any n messages, with the restriction that the message
numbers must all be different (we assume that m, has

number i.) Suppose a forger knows only the set F and

—_——
—

the set of messages and their corresponding tags t,
f(ml) ® bi‘
operation.) Then there is no new message (with any

(We use ® to denote the exclusive-or

meésagﬂ number) for which the forger has a better than
1/(2k) chance of correctly guessing the tag.

Proof: Suppose the forger wishes to guess the tag to
the new message m. Without loss of generality, we
assume m has the message number 1. For each t in B,
define

S; = {(g,b) | geF, beB, g(m;) ®b=t, and g(m) ®b=t}.

In other words, S, is the set of.partial keys (partial

————*

-F-;_ﬂ_:

since only the first of n elements of b are specified)
which are consistent with the fact that m, has tag t,,
and which give the bogus message m the tag t. It isn’t
hard to show that since F is strongly universal,, each of
the S.’s have the same size. Further, there is. exactly
one way to extend each partial key in S, to a complete
key which also assigns tag t; to message m; for i=2,...,n
(namely let b, = g(m,) ®t;.) Thus, of all the keys which
are consistent with the information which the forger has
available, as many will assign to m any one tag as any
other tag. Thus, the forger’s probability of guessing the

correct tag for m is 1/(2%).

A similar theorem holds when you use an almost

strongly universal, class.

We now summarize a proof that the number of bits
required for the key by this scheme asymptotically ap-
proaches the optimal. A similar theorem has also been
proved by V. Fak [Fak].

attention to schemes in which the messages must have a

Rather than restricting our

message number, we sketch a slightly more general
scenario than in the previous theorem. Suppose a func-
tion has been selected from a set F. The forger choos-
es a message m, and tries to guess the correct tag. He
is then told the correct tag t,. Now the forger selects a
second message m,, trys to guess the tag, and then is
told the correct tag t,. This process is repeated n
times. If we wish, we may require the forger to choose
each message from a restricted subset of the set of all
messages, or we may even have a fixed sequence of

messages - these variations don’t affect the following

theorem.
Theorem: In the above scenario, if the forger’s proba-

bility of success on his i-th guess is < p;, then F must
contain at least 1/(p,p,...p,) functions.

Let F, = F and F, = {feF | f(m)=t; for
i=1,....k}. The forger might use the following strategy

Proof:

in his guessing: After choosing the i-th message, he

enumerates the set F. ;, randomly chooses a member of

it, and guesses the tag f(m;). Since this has < p;
chance of success, it must be the case that | {feF;, s.t.

f(m)=t}| < p;| Fy, | . The set on the left hand side is

180

F;, so we have |F;-1| > (1/p;) | F;l. This is true for
each i, so we have |F,| > (1/p,)...(1/py) |F,|. The

theorem follows since Fy=F and |F | >1.

n
Corollary: It requires at least $-log,(p;) bits of

1=

information to specify a randomly chosen member of F.

5. Testing Set Equality

In this section we present a linear algorithm for
testing many sets for equality. More formally, suppose
we have a sequence of requests which may name an
arbitrary number of sets and an arbitrary number of
elements. Each request can be one of the following
three commands: add element x to set S, delete element

x from set S, and test sets S,, S, for equality. We can
process a sequence of requests in expected time linear
in the number of requests but with error probability e
times the number of requests. In addition to the above
three, requests of one (but not more than one) of the
three following forms may be included in the sequence:
assign set S, to be the symmetric difference of S, and
S,, assign set S; to be the multi-set union of S, and Sj,

or test element x for membership in set S.

The technique we will use is a modification of a
known heuristic (see Schwartz). Some of the time,
when two sets are unequal, Schwartz’s heuristic will
rapidly determine that they are unequal. (The rest of
the time, it will be unable to decide if they are equal or
not.) We improve the scheme so that given any two
unequal sets, there is a high probability that the algor-
ithm will determine they are unequal. The probability
may be made so high that the lack of showing they are

unequal is a good indication that they are equal.

We view this algorithm as a tool to be used for
other applications, rather than because we are directly
interested in testing set equality. Thus, it is important
that we can prove that the probability of making a mis-
take is not dependent on the particular characteristics
of the input string, otherwise our application could only
use sequences of requests which had those characteris-
tics. We accomplish this by constructing a class of

algorithms and showing that for the worst input the

probability that a randomly chosen algorithm will prod-

uce an error is low.

We will first present a simple, although incomplete
algorithm. Let G be a group with operation ® and de-
note the inverse of x in G by x-!. Hash is a function
chosen from a strongly universal, set which maps ele-
ments of tfle sets being constructed into G. One might
implement this scheme with G being the set of bit

strings of a certain length, and ® being exclusive-or.

This operation is easy to perform, and the inverse oper-
ation - the identity function - is even easier. |
Given Sets S;forj =1ton
and elements x; fori = 1 to m,

Set V, to a group element y, where y i1s a constant
For each add(xi,sj) request,

set V;:=V; ® hash(x;);
For each delete(xi,sj) request,

set V;:=V, ® hash(x,)-!;
For each test(S;,S;) request,

output ’yes’ if V=V, otherwise ’no’;

There are two imaginable errors: our algorithm
might say two equal sets were unequal, or it might say
two unequal sets were equal. If V. # ‘v’j then sets Sj
and §; must be unequal. Thus, we cannot say two
equal sets are unequal. We will now bound the proba-

bility of saying two unequal sets are equal.

If sets S; and S; are unequal then either set S; or set
S; must have an element not contained in the other.
We enumerate the elements of set S; by S;,. Without
loss of generality we will assume S; has an element, S; |

not contained in S;. If V, = V; then

hash(S; t)@hash(Siiz)..;hash(S“)@hash(S-jz)...

j
which is true if and only if

hﬂSh(Si1])=hﬂ.Sh(Si‘2)'l@hﬂﬂh(sij)_l...
®hash(S; |) ®hash(s, ,)...

It follows from the definition of strongly universal that
for any bit string b, the probability that hash(S; |)=b is

independent of the value of b and the values of hash on

181

SR o S R AR e SR R R R R T

other

elements, that

the probability
hash(S; ;)=hash(S; ,)-! ®hash(§; ;)-!...
@hﬂﬂh(SL |) @hﬂSh(Shz)....

number of possible bit strings.

SO

is the reciprocal of the

Thus, the probability
that V;=V; when S;#S; is the reciprocal of the number
of possible bit strings. As the length of the bit strings
produced by hash is increased, the probability of a mis-

take is decreased.

Notice that one indeed needs to use a strongly
universal, set of functions, since the above reasoning
requires that the value of hash(S;) be independent of
the value of hash on all the other elements of sets S,
and §;.

6. A Strongly Universal , Set

We can get a strongly universal set of functions
as follows. The techniques of [CW] give us the ability
L0 use an associative memory which requires constant
expected time per request. We assume the ability to
generate random numbers. We will use these two abili-
ties to create a partial function f defined only on all the
inputs we have seen. The algorithm f uses is: if there is
a value associated with its argument, X, in the associa-
tive memory, f(x) is that value. Otherwise, f(x) equals
a randomly chosen value, and the algorithm stores x
and that value in the associative memory. Thus, the
value of hash on any element is independent of its val-

ues on any other elements.

The above argument suffices to prove:
Theorem: the probability of any equality test resulting
In an incorrect answer, in the above algorithm, is exact-
ly equal to the reciprocal of the number of elements in

the group.

If the group elements are all bit string of length
1
It

100, the error probability per test would be ——
probability of

2100 °
could be argued that this is less than the
a machine error in the extra time necessary to do a

complete check.

We briefly mention some extensions to this techni-
que. If we want to be able to test membership quickly

as well as the other three requests, we can add a hash

RN

e e = w7

table with each set. If we want to form a set, S; which
is the symmetric difference of two other sets, S; Si;
then the value of V; will be equal to V; exclusive-ored
with V, and the group operation will be exclusive-or.
Since V; can be formed quickly, forming of symmetric
difference can be added to the above three. However,
finding the hash table that corresponds to a set which 1s
the symmetric difference of two sets is not a fast opera-
tion so forming symmetric difference and testing mem-
bership cannot be combined. If in the above discussion
exclusive-or is replaced by addition, a request for form-
ing a set by multi-set-union becomes possible in the
same way forming symmetric difference was. We leave
as exercises to the reader the proofs that it is improba-

ble that mistakes will be made.

We now give two applications of this testing of set
equality. A graph may be represented as a set of nodes
and a set of edges. Testing labeled graphs for equality
is now easy. Secondly the memory state of a computer
may be represented as a set of pairs, each pair consist-
ing of an address and the value stored in that address
[Brown]. If a value in memory is changed, we delete
the pair consisting of the address and the old value, and
add the pair of the address and the new value. We can
use a hash table to see if a memory state has been seen
before, and thus whether the program is looping (see

Cocke).

It is conceivable that the equality test could be
extended to other requests. If the equality test could
be extended adequately, a good part of a language like

SETL might fit in such a scheme. However, a recent
result by Yao suggests that it is impossible to find a fast

test for two sets being disjoint [Yao].

References

[Adleman] Adleman, L. Private communication, Dec.
1977. '

[Brassard] Brassard, G. Private communication, May
1977. ,

182

[Brown] Brown, D., Ph.D Dissertation, MIT.

[Cocke] Cocke, J., as told to P.C. Goldberg, "Partial

Execution", in preparation.

[CGFMW] Carter, J.L., Gill, J., Floyd, R., Markowsky,
G., and Wegman, M., "Exact and Approximate Mem-
bership Testers', Proceedings of the Tenth Annual

ACM Symposium on Theory of Computing, May 1978,
pp.59-65.

[CW] Carter, J. L. & Wegman, M. N. "Universal
Classes of Hash Functions," Proceedings of the Ninth
Annual ACM Symposium on Theory of Computing,
May, 1977, pp.106-112 (newer version IBM RC-
6687).

[Diffie] Diffie, W. and Hellman, M. "New Directions in

Cryptography", IEEE Transactions on Information
Theory (November 1976)

[Fak] Fak, V. "Repeated Use of Codes which Detect
Deception' IEEE Transactions on Information Theory
Vol. 25 No. 2 pp. 233-234

[ENPS] R. Fagin, J. Nievergelt, N. Pippenger, H. R.
"Extendible Hashing - A Fast Access Method

for Dynamic Files", to appear in ACM Transactions on

Strong

Database Systems.

[GMS] Gilbert, E.N., MacWilliams, F.J. and Sloane
N.J.A. "Codes Which Detect Deception', The Bell
System Technical Journal pp.405-424 (March 1947).

[Rivest] Rivest R., Shamir A., and Adleman L. "On

Digital Signatures and Public-key Cryptosystems"
MIT/LCS/TM-82.

[Schwartz] Schwartz J. T. SETL Newsletter.

[Yao] Yao, A., "Some Complexity Questions Related to
Distributive Computing", Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing,
May 1979, pp.209-213.

	01.jpg
	02.jpg
	03.jpg
	04.jpg
	05.jpg
	06.jpg
	07.jpg
	08.jpg

