Discover millions of ebooks, audiobooks, and so much more with a free trial

From $11.99/month after trial. Cancel anytime.

The Physical Basis of Mind: Being the Second Series of Problems of Life and Mind
The Physical Basis of Mind: Being the Second Series of Problems of Life and Mind
The Physical Basis of Mind: Being the Second Series of Problems of Life and Mind
Ebook655 pages10 hours

The Physical Basis of Mind: Being the Second Series of Problems of Life and Mind

Rating: 0 out of 5 stars

()

Read preview

About this ebook

The author of "The Physical Basis of Mind," George Lewes, was a strong proponent of the theory that mind and body coexist in the living organism and the philosophical truth that all knowledge of objects implies a knowing subject. In other words, he suggests that the mind and body are viewed as different aspects of the same series of psychophysical events. "The Physical Basis of Mind" is the third book on the topic, focusing on the writer's views on organic activities.
LanguageEnglish
PublisherGood Press
Release dateNov 19, 2019
ISBN4057664093196
The Physical Basis of Mind: Being the Second Series of Problems of Life and Mind

Read more from George Henry Lewes

Related to The Physical Basis of Mind

Related ebooks

Classics For You

View More

Related articles

Related categories

Reviews for The Physical Basis of Mind

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    The Physical Basis of Mind - George Henry Lewes

    George Henry Lewes

    The Physical Basis of Mind

    Being the Second Series of Problems of Life and Mind

    Published by Good Press, 2022

    [email protected]

    EAN 4057664093196

    Table of Contents

    PREFACE.

    PROBLEM I. THE NATURE OF LIFE.

    THE NATURE OF LIFE.

    CHAPTER I. THE PROBLEM STATED.

    THE POSITION OF BIOLOGY.

    ORGANISMS.

    VITAL FORCE.

    VITAL FORCE CONTROLLING PHYSICAL AND CHEMICAL FORCES.

    CHAPTER II. DEFINITIONS OF LIFE.

    CHAPTER III. ORGANISM, ORGANIZATION, AND ORGANIC SUBSTANCE.

    ORGANISM AND MEDIUM.

    THE HYPOTHESIS OF GERMINAL MATTER.

    ORGANISMS AND MACHINES;

    CHAPTER IV. THE PROPERTIES AND FUNCTIONS.

    DOES THE FUNCTION DETERMINE THE ORGAN?

    CHAPTER V. EVOLUTION.

    NATURAL SELECTION AND ORGANIC AFFINITY.

    RECAPITULATION.

    PROBLEM II. THE NERVOUS MECHANISM.

    THE NERVOUS MECHANISM.

    CHAPTER I. SURVEY OF THE SYSTEM.

    THE EARLY FORMS OF NERVE CENTRES.

    THE PERIPHERAL SYSTEM.

    GANGLIA AND CENTRES,

    CHAPTER II. THE FUNCTIONAL RELATIONS OF THE NERVOUS SYSTEM.

    CHAPTER III. NEURILITY.

    ORIGIN OF NERVE-FORCE.

    THE HYPOTHESIS OF SPECIFIC ENERGIES.

    CHAPTER IV. SENSIBILITY.

    CHAPTER V. ACTION WITHOUT NERVE-CENTRES.

    CHAPTER VI. WHAT IS TAUGHT BY EMBRYOLOGY?

    CHAPTER VII. THE ELEMENTARY STRUCTURE OF THE NERVOUS SYSTEM.

    DIFFICULTIES OF THE INVESTIGATION.

    THE NERVE-CELL.

    THE NERVES.

    THE NEUROGLIA.

    THE RELATIONS OF THE ORGANITES.

    RECAPITULATION.

    CHAPTER VIII. THE LAWS OF NERVOUS ACTIVITY.

    THE ENERGY OF NEURILITY.

    THE PROPAGATION OF EXCITATION.

    STIMULI.

    STIMULATION.

    THE LAW OF DISCHARGE.

    THE LAW OF ARREST.

    THE HYPOTHESIS OF INHIBITORY CENTRES.

    ANATOMICAL INTERPRETATION OF THE LAWS.

    PROBLEM III. ANIMAL AUTOMATISM.

    ANIMAL AUTOMATISM.

    CHAPTER I. THE COURSE OF MODERN THOUGHT.

    CHAPTER II. THE VITAL MECHANISM.

    CHAPTER III. THE RELATION OF BODY AND MIND.

    CHAPTER IV. CONSCIOUSNESS AND UNCONSCIOUSNESS.

    CHAPTER V. VOLUNTARY AND INVOLUNTARY ACTIONS.

    CHAPTER VI. THE PROBLEM STATED.

    CHAPTER VII. IS FEELING AN AGENT?

    PROBLEM IV. THE REFLEX THEORY.

    THE REFLEX THEORY.

    CHAPTER I. THE PROBLEM STATED.

    CHAPTER II. DEDUCTIONS FROM GENERAL LAWS.

    CHAPTER III. INDUCTIONS FROM PARTICULAR OBSERVATIONS.

    CEREBRAL REFLEXES.

    DISCRIMINATION.

    MEMORY.

    INSTINCT.

    THE MECHANISM OF INSTINCT.

    ACQUISITION.

    CHAPTER IV. NEGATIVE INDUCTIONS.

    PREFACE.

    Table of Contents

    The title indicates that this volume is restricted to the group of material conditions which constitute the organism in relation to the physical world—a group which furnishes the data for one half of the psychologist’s quest; the other half being furnished by historical and social conditions.

    The Human Mind, so far as it is accessible to scientific inquiry, has a twofold root, man being not only an animal organism but an unit in the social organism; and hence the complete theory of its functions and faculties must be sought in this twofold direction. This conception (which has been declared to amount to a revolution in Psychology), although slowly prepared by the growing conviction that Man could not be isolated from Humanity, was first expounded in the opening volume of these Problems of Life and Mind; at least, I am not aware that any predecessor had seen how the specially human faculties of Intellect and Conscience were products of social factors co-operating with the animal factors.

    In considering the Physical Basis a large place must be assigned to the mechanical and chemical relations which are involved in organic functions; yet we have to recognize that this procedure of Analysis is artificial and preparatory, that none of its results are final, none represent the synthetic reality of vital facts. Hence one leading object of the following pages has been everywhere to substitute the biological point of view for the metaphysical and mechanical points of view which too often obstruct research—the one finding its expression in spiritualist theories, the other in materialist theories; both disregarding the plain principle that the first requisite in a theory of biological phenomena must be to view them in the light of biological conditions: in other words, to fix our gaze upon what passes in the organism, and not on what may pass in the laboratory, where the conditions are different. Analysis is a potent instrument, but is too often relied on in forgetfulness of what constitutes its real aid, and thus leads to a disregard of all those conditions which it has artificially set aside. We see this in the tendency of anatomists and physiologists to assign to one element, in a complex cluster of co-operants, the significance which properly belongs to that cluster: as when the property of a tissue is placed exclusively in a single element of that tissue, the function of an organ assigned to its chief tissue, and a function of the organism to a single organ.

    Another object has been to furnish the reader uninstructed in physiology with such a general outline of the structure and functions of the organism, and such details respecting the sentient mechanism, as may awaken an interest in the study, and enable him to understand the application of Physiology to Psychology. If he comes upon details which can only interest specially educated students, or perhaps only by them be really understood, he can pass over these details, for their omission will not seriously affect the bearing of the general principles. I have given the best I had to give; and must leave each reader to find in it whatever may interest him. The uses of books are first to stimulate inquiry by awakening an interest; secondly, to clarify and classify the knowledge already gained from direct contemplation of the phenomena. They are stimuli and aids to observation and thought. They should never be allowed to see for us, nor to think for us.

    The volume contains four essays. The first, on the Nature of Life, deals with the speciality of organic phenomena, as distinguished from the inorganic. It sets forth the physiological principles which Psychology must incessantly invoke. In the course of the exposition I have incorporated several passages from four articles on Mr. Darwin’s hypotheses, contributed to the Fortnightly Review during the year 1868. I have also suggested a modification of the hypothesis of Natural Selection, by extending to the tissues and organs that principle of competition which Mr. Darwin has so luminously applied to organisms. Should this generalization of the struggle for existence be accepted, it will answer many of the hitherto unanswerable objections.

    The second essay is on the Nervous Mechanism, setting forth what is known and what is inferred respecting the structure and properties of that all-important system. If the sceptical and revolutionary attitude, in presence of opinions currently held to be established truths, surprises or pains the reader unprepared for such doubts, I can only ask him to submit my statements to a similar scepticism, and confront them with the ascertained evidence. After many years of laborious investigation and meditation, the conclusion has slowly forced itself upon me, that on this subject there is a false persuasion of knowledge very fatal in its influence, because unhesitatingly adopted as the ground of speculation both in Pathology and Psychology. This persuasion is sustained because few are aware how much of what passes for observation is in reality sheer hypothesis. I have had to point out the great extent to which Imaginary Anatomy has been unsuspectingly accepted; and hope to have done something towards raising a rational misgiving in the student’s mind respecting the superstition of the nerve-cell—a superstition which I freely confess to have shared in for many years.

    The third essay treats of Animal Automatism. Here the constant insistance on the biological point of view, while it causes a rejection of the mechanical theory, admits the fullest recognition of all the mechanical relations involved in animal movements, and thus endeavors to reconcile the contending schools. In this essay I have also attempted a psychological solution of that much-debated question—the relation between Body and Mind. This solution explains why physical and mental phenomena must necessarily present to our apprehension such profoundly diverse characters; and shows that Materialism, in attempting to deduce the mental from the physical, puts into the conclusion what the very terms have excluded from the premises; whereas, on the hypothesis of a physical process being only the objective aspect of a mental process, the attempt to interpret the one by the other is as legitimate as the solution of a geometrical problem by algebra.

    In the final essay the Reflex Theory is discussed; and here once more the biological point of view rectifies the error of an analysis which has led to the denial of Sensibility in reflex actions, because that analysis has overlooked the necessary presence of the conditions which determine Sensibility. In these chapters are reproduced several passages from the Physiology of Common Life.

    According to my original intention, this volume was to have included an exposition of the part I conceive the brain to play in physiological and psychological processes, but that must be postponed until it can be accompanied by a survey of psychological processes which would render the exposition more intelligible.

    The Priory, March, 1877.


    PROBLEM I.

    THE NATURE OF LIFE.

    Table of Contents

    La Physiologie a pour but d’exposer les phénomènes de la vie humaine et les conditions d’où ils dépendant. Pour y arriver d’une manière sûre, il faut nécessairement avant tout déterminer quels sont les phénomènes qu’on désigne sous le nom de vie en général. C’est pourquoi la première chose à faire est d’étudier les propriétés générales du corps qu’on appelle organiques ou vivans.—Tiedemann, Traité de Physiologie de l’Homme, I. 2.

    Some weak and inexperienced persons vainly seek by dialectics and far-fetched arguments either to upset or establish things that are only to be founded on anatomical demonstration and believed on the evidence of the senses. He who truly desires to be informed of the question in hand must be held bound either to look for himself, or to take on trust the conclusions to which they who have looked have come.—Harvey, Second Dissertation to Riolan.


    THE NATURE OF LIFE.

    CHAPTER I.

    THE PROBLEM STATED.

    Table of Contents

    1. Although for convenience we use the terms Life and Mind as representing distinct orders of phenomena, the one objective and the other subjective, and although for centuries they have designated distinct entities, or forces having different substrata, we may now consider it sufficiently acknowledged among scientific thinkers that every problem of Mind is necessarily a problem of Life, referring to one special group of vital activities. It is enough that Mind is never manifested except in a living organism to make us seek in an analysis of organic phenomena for the material conditions of every mental fact. Mental phenomena when observed in others, although interpretable by our consciousness of what is passing in ourselves, can only be objective phenomena of the vital organism.

    2. On this ground, if on this alone, an acquaintance with the general principles of structure and function is indispensable to the psychologist; although only of late years has this been fully recognized, so that men profoundly ignorant of the organism have had no hesitation in theorizing on its highest functions. In saying that such knowledge is indispensable, I do not mean that in the absence of such knowledge a man is debarred from understanding much of the results reached by investigators, nor that he may not himself make useful observations and classifications of psychological facts. It is possible to read books on Natural History with intelligence and profit, and even to make good observations, without a scientific groundwork of biological instruction; and it is possible to arrive at empirical facts of hygiene and medical treatment without any physiological instruction. But in all three cases the absence of a scientific basis will render the knowledge fragmentary and incomplete; and this ought to deter every one from offering an opinion on debatable questions which pass beyond the limit of subjective observations. The psychologist who has not prepared himself by a study of the organism has no more right to be heard on the genesis of the psychical states, or of the relations between body and mind, than one of the laity has a right to be heard on a question of medical treatment.

    THE POSITION OF BIOLOGY.

    Table of Contents

    3. Science is the systematic classification of Experience. It postulates unity of Existence with great varieties in the Modes of Existence; assuming that there is one Matter everywhere the same, under great diversities in the complications of its elements. The distinction of Modes is not less indispensable than the identification of the elements. These Modes range themselves under three supreme heads: Force, Life, Mind. Under the first, range the general properties exhibited by all substances; under the second, the general properties exhibited by organized substances; under the third, the general properties exhibited by organized animal substances. The first class is subdivided into Physics, celestial and terrestrial, and Chemistry. Physics treats of substances which move as masses, or which vibrate and rotate as molecules, without undergoing any appreciable change of structural integrity; they show changes of position and state, without corresponding changes in their elements. Chemistry treats of substances which undergo molecular changes of composition destructive of their integrity. Thus the blow which simply moves one body, or makes it vibrate, explodes another. The friction which alters the temperature and electrical state of a bit of glass, ignites a bit of phosphorus, and so destroys its integrity of structure, converting phosphorus into phosphoric acid.

    4. The second class, while exhibiting both physical and chemical properties, is markedly distinguished by the addition of properties called vital. Their peculiarity consists in this: they undergo molecular changes of composition and decomposition which are simultaneous, and by this simultaneity preserve their integrity of structure. They change their state, and their elements, yet preserve their unity, and even when differentiating continue specific. Unlike all other bodies, the organized are born, grow, develop, and decay, through a prescribed series of graduated evolutions, each stage being the indispensable condition of its successor, no stage ever appearing except in its serial order.

    5. The third class, while exhibiting all the characteristics of the two preceding classes, is specialized by the addition of a totally new property, called Sensibility, which subjectively is Feeling. Here organized substance has become animal substance, and Vegetality has been developed into Animality by the addition of new factors,—new complexities of the elementary forces. Many, if not most, philosophers postulate an entirely new Existence, and not simply a new Mode, to account for the manifestations of Mind; they refuse to acknowledge it to be a vital manifestation, they demand that to Life be added a separate substratum, the Soul. This is not a point to be discussed here. We may be content with the assertion that however great the phenomenal difference between Humanity and Animality (a difference we shall hereafter see to be the expression of a new factor, namely, the social factor), nevertheless the distinctive attribute of Sensibility, out of which rise Emotion and Cognition, marks the inseparable kinship of mental with vital phenomena.

    Thus all the various Modes of Existence may, at least in their objective aspect, be ranged under the two divisions of Inorganic and Organic,—Non-living and Living,—and these are respectively the objects of the cosmological and the biological sciences.

    6. The various sciences in their serial development develop the whole art of Method. Mathematics develops abstraction, deduction, and definition; Astronomy abstraction, deduction, and observation; Physics adds experiment; Chemistry adds nomenclature; Biology adds classification, and for the first time brings into prominence the important notion of conditions of existence, and the variation of phenomena under varying conditions: so that the relation of the organism to its medium is one never to be left out of sight. In Biology also clearly emerges for the first time what I regard as the true notion of causality, namely, the procession of causes,—the combination of factors in the product, and not an ab extra determination of the product. In Vitality and Sensibility we are made aware that the causes are in and not outside the organism; that the organic effect is the organic cause in operation; that there is autonomy but no autocracy; the effect issues as a resultant of the co-operating conditions. In Sociology, finally, we see brought into prominence the historical conditions of existence. From the due appreciation of the conditions of existence, material and historical, we seize the true significance of the principle of Relativity.

    7. Having thus indicated the series of the abstract sciences we have now to consider more closely the character of Biology. The term was proposed independently yet simultaneously in Germany and France, in the year 1802, by Treviranus and Lamarck, to express the study of the forms and phenomena of Life, the conditions and laws by which these exist, and the causes which produce them. Yet only of late years has it gained general acceptance in France and England. The term Cosmology, for what are usually called the Physical Sciences, has not yet come into general use, although its appropriateness must eventually secure its recognition.

    Biology,—the abstract science of Life,—embracing the whole organic world, includes Vegetality, Animality, and Humanity; the biological sciences are Phytology, Zoölogy, and Anthropology. Each of the sciences has its cardinal divisions, statical and dynamical, namely, Morphology—the science of form,—and Physiology—the science of function.

    Morphology embraces—1°, Anatomy, i.e. the description of the parts then and there present in the organism; and these parts, or organs, are further described by the enumeration of their constituent tissues and elements; and of these again the proximate principles, so far as they can be isolated without chemical decomposition. 2°, Organogeny, i.e. the history of the evolution of organs and tissues.

    Physiology embraces the properties and functions of the tissues and organs—the primary conditions of Growth and Development out of which rise the higher functions bringing the organism into active relation with the surrounding medium. The first group of properties and functions are called those of vegetal, or organic life; the second those of animal, or relative life.

    ORGANISMS.

    Table of Contents

    8. It will be needful to fix with precision the terms, Organism, Life, Property, and Function.

    An organism, although usually signifying a more or less complex unity of organs, because the structures which first attracted scientific attention were all thus markedly distinguished from inorganic bodies, has by the gradual extensions of research been necessarily generalized, till it now stands for any organized substance capable of independent vitality: in other words, any substance having the specific combination of elements which manifests the serial phenomena of growth, development, and decay. There are organisms that have no differentiated organs. Thus a microscopic formless lump of semifluid jelly-like substance (Protoplasm) is called an organism, because it feeds itself, and reproduces itself. There are advantages and disadvantages in such extensions of terms. These are notable in the parallel extension of the term Life, which originally expressing only the complex activities of complex organisms, has come to express the simplest activities of protoplasm. Thus a Monad is an organism; a Cell is an organism; a Plant is an organism; a Man is an organism. And each of these organisms is said to have its Life, because

    "Through all the mighty commonwealth of things

    Up from the creeping worm to sovereign man"1

    there is one fundamental group of conditions, one organized substance, one vitality.

    Obviously this unity is an abstraction. In reality, the life manifested in the Man is not the life manifested in the Monad: he has Functions and Faculties which the Monad has no trace of; and if the two organisms have certain vital characteristics in common, this unity is only recognized in an ideal construction which lets drop all concrete differences. The Life is different when the organism is different. Hence any definition of Life would be manifestly insufficient which while it expressed the activities of the Monad left unexpressed the conspicuous and important activities of higher organisms. A sundial and a repeater will each record the successive positions of the sun in the heavens; but although both are instruments for marking time, the sundial will not do the work of the repeater; the complexity and delicacy of the watch mechanism are necessary for its more varied and delicate uses. A semifluid bit of protoplasm will feed itself; but it will not feed and sustain a complex animal; nor will it feel and think.

    9. Neglect of this point has caused frequent confusion in the attempts to give satisfactory definitions. Biologists ought to have been warned by the fact that some of the most widely accepted definitions exclude the most conspicuous phenomena of Life, and are only applicable to the vegetable world, or to the vegetal processes in the animal world. A definition, however abstract, should not exclude essential characters. The general consent of mankind has made Life synonymous with Mode of Existence. By the life of an animal is meant the existence of that animal; when dead the animal no longer exists; the substances of which the organism was composed exist, but under another mode; their connexus is altered, and the organism vanishes in the alteration. It is a serious mistake to call the corpse an organism; for that special combination which constituted the organism is not present in the corpse. This misconception misleads some speculative minds into assigning life to the universe. The universe assuredly exists, but it does not live; its existence can only be identified with life, such as we observe in organisms, by a complete obliteration of the speciality which the term Life is meant to designate. Yet many have not only pleased themselves with such a conception, but have conceived the universe to be an organism fashioned, directed, and sustained by a soul like that of man—the anima mundi. This is to violate all scientific canons. The life of a plant-organism is not the same as the life of an animal-organism; the life of an animal-organism is not the same as the life of a human-organism; nor can the life of a human-organism be the same as the life of the world-organism. The unity of Existences does not obliterate the variety of Modes; yet it is the speciality of each Mode which Science investigates; to some of these Modes the term Life is consistently applied, to others not; and if we merge them all in a common term, we must then invent a new term to designate the Modes now included under Life.

    10. In resisting this unwarrantable extension of the term I am not only pointing to a speculative error, but also to a serious biological error common in both spiritualist and materialist schools, namely that of assigning Life to other than organic agencies. Instead of recognizing the speciality of this Mode of Existence as dependent on a speciality of the organic conditions, the spiritualist assigns Life to some extra-organic Vital Principle, the materialist assigns it to some inorganic agent—physical or chemical. Waiving for the present all discussion of Vitalism, let us consider in what sense we must separate organic from all inorganic phenomena.

    11. There is a distinction between inorganic and organic which may fitly be called radical: it lies at the root of the phenomena, and must be accepted as an ultimate fact, although the synthesis on which it depends is analytically reducible to a complication of more primitive conditions. It has been already indicated in §5. All organisms above the very simplest are syntheses Of three terms: Structure, Aliment, and Instrument. Crystals, like all other anorganisms have structure, and in a certain sense they may be said to grow (Mineralia crescunt), though the growth is by increase and not by modification:2 the motherlye, which is the food of the crystal, is never brought to the crystal, nor prepared for it, by any instrumental agency of the crystal. Organisms are exclusively instrumental; the organ is an instrument. The structural integrity of an organism is thus preserved through an alimentation which is effected through special instruments. Nothing like this is visible in anorganisms.

    The increase of a crystal is further distinguishable from the growth of an organism, in the fact Of its being simple accretion without development; and the structure of the crystal is distinguishable from that of an organism in the fact that its integrity is preserved by the exclusion of all molecular change, and not by the simultaneous changes of molecular decomposition and recomposition. Inorganic substances are sometimes as unstable as organic, sometimes even more unstable; but their instability is the source of their structural destruction—they change into other species; whereas the instability of organized substances (not of organic) is the source of their structural integrity: the tissue is renovated, and its renovation is a consequence of its waste.

    12. But while the distinction is thus radical, when we view the organism from the real—that is, from the synthetic point of view—we must also urge the validity of the analytical point of view, which seizes on the conditions here complicated in a special group, and declares these conditions to be severally recognizable equally in anorganisms and in organisms. All the fundamental properties of Matter are recognizable in organized Matter. The elementary substances and forces familiar to physicists and chemists are the materials of the biologist; nor has there been found a single organic substance, however special, that is not reducible to inorganic elements. We see, then, that organized Matter is only a special combination of that which in other combinations presents chemical and physical phenomena; and we are prepared to find Chemistry and Physics indispensable aids in our analysis of organic phenomena. Aids, but only aids; indispensable, but insufficient.

    13. There is therefore an ambiguity in the common statement that organized matter is not ordinary matter. Indisputable in one sense, this is eminently disputable when it is interpreted as evidence of a peculiar Vital Force wholly unallied with the primary energy of Motion. If by ordinary matter be meant earths, crystals, gases, vapors, then assuredly organized matter is not ordinary. "Between the living state of matter and its non-living state, says Dr. Beale, there is an absolute and irreconcilable difference; so far from our being able to demonstrate that the non-living passes by gradations into or gradually assumes the scale or condition of the living, the transition is sudden and abrupt, and matter already in the living state may pass into the non-living condition in the same sudden and complete manner."3 The ambiguity here is sensible in the parallel case of the difference between crystallizable and coagulable matter, or between one crystal and another. If we can decompose the organic into the inorganic, this shows that the elements of the one are elements of the other; and if we are not yet able to recompose the inorganic elements into organic matter (not at least in its more complex forms), may this not be due to the fact that we are ignorant of the proximate synthesis, ignorant of the precise way in which the elements are combined? I may have every individual part of a machine before me, but unless I know the proper position of each, I cannot with the parts reconstruct the machine. Indeed the very common argument on which so much stress is laid in favor of some mysterious Principle as the source of organic phenomena, namely, that human skill is hopelessly baffled in the attempt to make organic substances, still more a living cell, is futile. Men can make machines, it is said, but not organisms, ergo organisms must have a spiritual origin. But the fact is that no man can make a machine, unless he take advantage of the immense traditions of our race, and apply the skill of millions who have worked and thought before him, slowly and tentatively discovering the necessary means of mechanical effect. The greatest thinker, or the deepest scholar, who did not place himself in the line of the tradition, and learn the principles of mechanism, and the properties of the materials, would be as incapable of making a watch, as the physiologist now is of making a cell. But the skill of man has already succeeded in making many organic substances, and will perhaps eventually succeed in making a cell, certainly will, if ever the special synthesis which binds the elements together should be discovered. Not that such a discovery would alter the position of Biology in relation to Chemistry. The making of albumen, nay, the construction of an organism in the laboratory, would not in the least affect the foundation of Biology, would not obliterate the radical difference between organisms and anorganisms. It is the speciality of organic phenomena which gives them a special place, although the speciality may only be due to a complication of general agencies.

    VITAL FORCE.

    Table of Contents

    14. A similar ambiguity to that of the phrase ordinary matter lies in the equally common phrase Vital Force, which is used to designate a special group of agencies, and is then made to designate an agent which has no kinship with the general group; that is to say, instead of being employed in its real signification—that which alone represents our knowledge—as the abstract statical expression of the complex conditions necessary to the manifestation of vital phenomena, or as the abstract dynamical expression of the phenomena themselves, it is employed as an expression of their unknown Cause, which, because unknown, is dissociated from the known conditions, and erected into a mysterious Principle, having no kinship with Matter. In the first sense the term is a shorthand symbol of what is known and inferred. The known conditions are the relations of an organism and its medium, the organism being the union of various substances all of which have their peculiar properties when isolated; properties that disappear in the union, and are replaced by others, which result from the combination—as the properties of chlorine and sodium all disappear in the sea-salt which results from their union; or as the properties of oxygen and the properties of hydrogen disappear and are replaced by the properties of water. When therefore Vital Force is said to be exalted or depressed, the phrase has rational interpretation in the alteration which has taken place in one or more of the conditions, internal and external: a change in the tissues, the plasma, or the environment, exalts or depresses the energy of the vital manifestations; and to suppose that this is effected through the agency of some extra-organic Principle is a purely gratuitous fiction.

    15. That we are ignorant of one or more of the indispensable conditions symbolized in the abstract term Vitality or Vital Force, is no reason for quitting the secure though difficult path of Observation, and rushing into the facile but delusive path of Fiction, which proposes metempirical Agents (in the shape of Vital and Psychical Principles) to solve the problems of Life and Mind. We may employ the term Vital Force to label our observations, together with all that still remains unobserved; and we are bound to recognize the line which separates observation from inference, what is proved from what is inferred; but while marking the limits of the known, we are not to displace the known in favor of the unknown. It is said that because of our ignorance we must assume these causes of Life and Mind to be unallied with known material causes, and belonging to a different order of existences. This is to convert ignorance into a proof; and not only so, but to allow what we do not know to displace what we do know. The organicist is ready to admit that much has still to be discovered; the vitalist, taking his stand upon this unknown, denies that what has been discovered is really important, and declares that the real agent is wholly unallied to it. How can he know this?

    He does not know it; he assumes it; and the chief evidence he adduces is that the ordinary laws of inorganic matter are incapable of explaining the phenomena of organized matter; and that physical and chemical forces are controlled by vital force. I accept both these positions, stripping them, however, of their ambiguities. The laws of ordinary matter are clearly incompetent in the case of matter which is not ordinary, but specialized in organisms; and when we come to treat of Materialism we shall see how unscientific have been the hypotheses which disregard the distinction. The question of control is too interesting and important to be passed over here.

    VITAL FORCE CONTROLLING PHYSICAL AND CHEMICAL FORCES.

    Table of Contents

    16. The facts relied on by the vitalists are facts which every organicist will emphasize, though he will interpret them differently. When, for example, it is said that Life resists the effect of mechanical friction, and the proof adduced is the fact that the friction which will thin and wear away a dead body is actually the cause of the thickening of a living—the skin of a laborer’s hand being thickened by his labor; the explanation is not that Life, an extra-organic agent, resists mechanical friction—for the mechanical effect is not resisted (the skin is rubbed off the rower’s hand sooner than the wood is rubbed off the oar)—but that Life, i.e. organic activity repairs the waste of tissue.

    17. Again, although many of the physical and chemical processes which invariably take place under the influences to which the substances are subjected out of the organism, will not take place at all, or will take place in different degrees, when the substances are in the organism, this is important as an argument against the notion of vital phenomena being deducible from physical and chemical laws, but is valueless as evidence in favor of an extra-organic agent. Let us glance at one or two striking examples.

    18. No experimental inquirer can have failed to observe the often contradictory results which seemingly unimportant variations in the conditions bring about; no one can have failed to observe what are called chemical affinities wholly frustrated by vital conditions. Even the ordinary laws of Diffusion are not always followed in the organism. The Amœba, though semifluid, resists diffusion when alive; but when it dies it swells and bursts by osmosis. The exchange of gases does not take place in the tissues, precisely as in our retorts. The living muscle respires, that is, takes up oxygen and gives out carbonic acid, not on the principle of simple diffusion, but by two separable physiological processes. The carbonic acid is given out, even when there is no oxygen whatever present in the atmosphere, and its place may then be supplied by hydrogen; and this physiological process is so different from the physical process which goes on in the dead muscle (the result of putrefaction), that it has been proved by Ranke to go on when the temperature is so low that all putrefaction is arrested. The same experimenter finds4 that whereas living nerve will take up, by imbibition, 10 per cent of potash salts, it will not take up 1 per cent of soda salts, presented in equal concentration; and he points to the general fact that the absorption of inorganic substances does not take place according to the simple laws of diffusion, but that living tissues have special laws, the nerve, for instance, having a greater affinity for neutral potash salts than for neutral soda salts. Let me add, by way of anticipating the probable argument that may urge this in favor of Vital Principle which is lightly credited with the prescience of final causes, that so far from this elective affinity of the tissues being intelligent and always favorable, Ranke’s experiments unequivocally show that it is more active towards destructive, poisonous substances, than towards the reparative, alimentary substances; which is indeed consistent with the familiar experience that poisons are more readily absorbed than foods, when both are brought to the tissues. Thus it is well known that of all the salts the sulphate of copper is that which plants most readily absorb—and it kills them. The special affinities disappear as the vitality disappears, and dying plants absorb all salts equally.

    19. The more the organism is studied, the more evident it will become that the simple laws of diffusion, as presented in anorganisms rarely if ever take effect in tissues; in other words, what is called Imbibition in Physics is the somewhat different process of Absorption in Physiology.5 The difference is notable in this capital fact, that whereas the physical diffusion of liquids and gases is determined by differences of density, the physiological absorption of liquids and gases is determined by the molecular organization of the tissue, which is perfectly indifferent to, and resists the entrance of, all substances incapable of entering into organic combination, either as aliment or poison. A curious example of the indifference of organized substances to some external influences and their reaction upon others, is the impossibility of provoking ciliary movement in an epithelial cell, during repose, by any electrical, mechanical, or chemical stimuli except potash and soda. Virchow discovered that a minute quantity of either of these, added to the water in which the cell floated, at once called forth the ciliary movements.

    20. The true meaning of the resistance of Vitality to ordinary chemical affinity is, that the conditions involved in the phenomena of Vitality are not the conditions involved in the phenomena of Chemistry; in other words, that in the living organism the substances are placed under conditions different from those in which we observe these substances when their chemical affinities are displayed in anorganisms. But we need not go beyond the laboratory to see abundant examples of this so-called resistance to chemical affinity, when the conditions are altered. The decomposition of carbonates by tartaric acid is a chemical process which is wholly resisted if alcohol instead of water be the solvent employed. The union of sulphur with lead is said to be due to the affinity of the one for the other; but no one supposes this affinity to be irrespective of conditions, or that the union will take place when any one of these conditions is absent. If we fuse a compound of lead and iron in a crucible containing sulphur, we find it is the iron, and not the lead, which unites with the sulphur; yet we do not conclude that there is a Crucible Principle which frustrates chemical affinity and resists the union of sulphur and lead; we simply conclude that the presence of the iron is a condition which prevents the combination of the sulphur with the lead: not until all the iron has taken up its definite proportion of sulphur will the affinity of the lead come into play. This is but another illustration of the law that effects are processions of their causes, summations of the conditions of their existence. If the fire burns no hole in the teakettle so long as there is water to conduct the heat away, this is not due to any principle more mysterious than the presence of a readily conducting water.6

    21. In accordance with the law of Causation just mentioned, which has been expounded in detail in our First Series (Vol. II. p. 335), the special combinations of Matter in organisms must present special phenomena. Therefore since the province of Biology is that of explaining organic phenomena by means of their organic conditions, it must be radically distinguished from the provinces of Physics and Chemistry, which treat not of organized but of inorganic matter. It is idle, it is worse, for it is misleading, to personify the organic conditions, known and inferred, in a Vital Principle; idle, because we might with equal propriety personify the conditions of crystallization in a Crystal Principle; misleading, because the artifice is quickly dropped out of sight, and the abstract term then becomes accepted as an entity, supposed to create or rule the phenomena it was invented to express.

    22. Inquirers are but too apt to misconceive the value of Analysis, which is an artifice of Method indispensable to research, though needing the complementary rectification by Synthesis before a real explanation can be reached. Analysis decomposes the actual fact into ideal factors, separates the group into its components, and considers each of these, not as it exists in the group, in the reality, but as it exists when theoretically detached from the others. The oxygen and hydrogen into which water is decomposed did not exist as these gases in the water; the albumen and phosphate we extract from a nerve did not exist as isolated albumen and phosphate in the nerve, they were molecularly combined. In like manner the physical and chemical processes which may analytically be inferred in vital processes do not really take place in the same way as out of the organism. The real process is always a vital process, and must be explained by the synthesis of all the co-operant conditions. The laws of Physics and Chemistry formulate abstract expressions of phenomena, wherever and whenever these appear, without reference to the modes of production; and in this sense the movement of a limb is no less a case of Dynamics than the movement of a pulley—the decomposition of a tissue is a case of Chemistry no less than the decomposition of a carbonate; the electromotor phenomena observed in muscle are as purely physical as those observed in a telegraph. But when a biologist has to explain the movements of the limbs, or the decompositions of tissues, he has to deal with the phenomena and their modes of production, he has a particular group before him, and must leave out nothing that is characteristic of it. The movements of the pulley do not depend on Contractility and Sensibility, which in turn depend on Nutrition. The decomposition of the carbonate does not depend on conditions resembling those of a living tissue. Vaucanson’s duck was surprisingly like a living duck in many of its movements; but in none of its actions was there any real similarity to the actions of a bird, because the machine was unlike an organism in action. The antithesis of mechanism and organism will be treated of in §78.

    23. We conclude, then, that defining physical phenomena as the movements which take place without change of structure, and chemical phenomena as the movements with change of structure, although both classes may be said to take place in the organism, and to be the primary conditions on which organic phenomena depend, they do not embrace the whole of the conditions, nor are the sciences which formulate them capable of formulating either the special phenomena characteristic of organisms or their special modes of production. The biologist will employ chemical and physical analysis as an essential part of his method; but he will always rectify what is artificial in this procedure, by subordinating the laws of Physics and Chemistry to the laws of Biology revealed in the synthetic observation of the organism as a whole. The rectification, here insisted on, will be recognized as peculiarly urgent in Psychology, which has greatly suffered from the misdirection of Analysis.

    24. No one will misunderstand this specialization of Biology to mean a separation of Life from the series of objective phenomena, and the introduction of a new entity; the specialization points to a Mode of Existence. All classifications are artifices, but they have their objective grounds; the ground of difference on which Biology is separated from Chemistry and Physics, though all three may be merged in a common identity, is such as to justify the term radical. A vital process is no more to be considered physico-chemical, because physico-chemical conditions are presupposed in it, than a feeling is to be considered a nutritive process, because Nutrition is presupposed in all Feeling. Organic substances have been made by chemists, and inorganic cells have also been made; but these substances were not organized, these cells would not live. The germ-cell is the workshop of generation, the secreting-cell the workshop of secretion, the muscle-cell the workshop of contraction. What is required over and above organic substances and cell-forms, is that special state called organization. See § 49.

    Those who contemplate the manifestations without also taking into account their modes of production may see nothing but physico-chemical facts in vital facts. It is by a similar limitation of the point of view that Vitality is often confounded with Movement, and portions of organic matter are said to live, simply on the evidence of their movements.7


    CHAPTER II.

    DEFINITIONS OF LIFE.

    Table of Contents

    25. Biology, the science of Life, being thus assigned its place in the hierarchy of objective laws, we now proceed to consider what the term Life symbolizes.

    By a large preliminary simplification, Life may be defined as the mode of existence of an organism in relation to its medium. To render this of any value, however, a clear conception of the organism is first indispensable; and this must be preceded by an examination of the various attempts to define life in anticipation of such a clear conception.

    26. Every phenomenon, or group of phenomena, may be viewed under two aspects—the statical, which considers the conditions of existence; and the dynamical, which considers these conditions in their resultant,—in their action. The statical definition of Life will express the connexus of the properties of organized substance, all those conditions, of matter, form, and texture, and of relation to external forces, on which the organism depends. These various conditions, condensed into a single symbol, constitute Vitality or Vital Force, and are hence taken as the Cause of vital phenomena. The dynamical definition will express the connexus of Functions and Faculties of the organism, which are the statical properties of organized substance in action, under definite relations.

    It is obvious that the term Life must vary with the varying significates it condenses,—every variation in the complexity of the organism will bring a corresponding fulness in the signification of the term. The life of a plant is less significant than the life of an animal; and the life of a mollusc less than that of a fish. But not only is the term one of varying significance, it is always an abstract term which drops out of sight particular concrete differences, registering only the universal resemblances.

    * * * * *

    27. It would be a profitless labor to search out, and a wearisome infliction to set down, the various definitions which have been proposed and accepted; but certain characteristic examples may be selected. All that I am acquainted with belong to two classes: 1°, the meta-physiological hypothesis of an extra-organic agent, animating lifeless matter by unknown powers; 2°, the physiological hypothesis which seeks the cause of the phenomena (i.e. the conditions) within the organism itself,—a group of conditions akin to those manifested elsewhere, but differently combined. The first hypotheses are known under the names of Animism and Vitalism,—more commonly the latter. The second are known as Organicism and Materialism,—but the latter term only applies to some of the definitions.

    28. Under Vitalism are included all the hypotheses of a soul, a spirit, an archæus, a vital principle, a vital force, a nisus formativus, a plan or divine idea, which have from time to time represented the metaphysical stage of Biology. The characteristic of that stage is the personification of a mystery, accompanied by the persuasion that to name a mystery is to explain it. In all sciences when processes are imperfectly observed, the theory of the processes (which is a systematic survey of the available evidence marshalled in the order of causal dependence) is supplemented by hypothesis, which fills up with a guess the gap left by observation. The difference between the metaphysical and the positive stages of a science lies in the kind of guess thus introduced to supplement theory, and the degree of reliance accorded to it. I have more than once insisted on the scientific canon that to be valid, an explanation must be expressed in terms of phenomena already observed; now it is quite clear that most of the extra-organic hypotheses do not fulfil this condition; no one having ever observed a spirit, an archæus, or a vital principle; but only imagined these agents to explain the facts observed. As an example of the difference, and a proof that the value of an hypothesis does not rest on the facility with which it connects observations, and seems to explain them, take the three hypotheses of animal spirits, nervous fluid, and electricity, by which neural processes have been explained. The animal spirits are imaginary; the nervous fluid is without a basis in observation, no evidence of such a fluid having been detected; but electricity (or, speaking rigorously, the movements classed as electrical), although not proved to be the agent in nerve-action, is proved to exist in nerves as elsewhere, and its modes of operation are verifiable. It, therefore, and it alone of the three hypotheses, is in conformity with the scientific canon. It may not, on full investigation, meet all requirements; it may be rejected as imperfect; but it is the kind of guess which scientific theory demands.

    The second difference noticeable between the metaphysical and the positive stages is the degree of reliance accorded to hypothesis; which is very much the same as that noticeable in the uncritical and critical attitudes of untrained and trained intellects. The one accepts a guess as if it were a proof; is fascinated by the facility of linking together isolated observations, and, relying on the guess as truth, proceeds to deduce conclusions from it; the other accepts a guess as an aid in research, trying by its aid to come upon some observation which will reveal the hidden process; but careful never to allow the guess to supersede observation, or to form a basis of deductions not immediately verified.

    29. A glance at the metaphysiological definitions will detect both the kind of guess and the kind of reliance which prevailed. The mystery was not simply recognized, it was personified as an entity: Will and Intelligence were liberally accorded to it, for it was supposed to shape matter, and direct force into predestined paths by prescience of a distant end. The observed facts of the egg passing through successive changes into a complex organism were so marvellous, so unlike any facts observable in the inorganic world, that they seemed to demand a cause drawn from higher sources. The mystery of life obtruded itself at every turn. It was named, and men fancied it explained. But in truth no mystery is got rid of by explanation, however valid; it is only shifted farther back. Explanation is the resolution of a complex phenomenon into its conditions of existence—the product is reduced to its factors; the explanation is final when this resolution has been so complete that a reconstruction of the product is possible from the factors. The vast majority of explanations—especially in the organic region—are no more than what mathematicians call "a first

    Enjoying the preview?
    Page 1 of 1