Physical and Chemical Techniques for Discharge Studies - Part 1
()
About this ebook
Groundwater discharge is associated with salinity and pollution problems. The widespread presence of millions of saline lakes in North America, Africa and Australia, shows that across the geological record, most salinity and desertification problems have been caused by saline groundwater discharge. In recent times, dryland salinity has spread widely in southern Australia, resulting in the loss of more than 50% of the fresh streams in Western Australia and causing major salinity problems in the Murray River in South Australia.
Related to Physical and Chemical Techniques for Discharge Studies - Part 1
Related ebooks
Water Supply: the Present Practice of Sinking and Boring Wells: With Geological Considerations and Examples of Wells Executed Rating: 0 out of 5 stars0 ratingsSurface Water Balance for Recharge Estimation - Part 9 Rating: 0 out of 5 stars0 ratingsUsing Soil Water Tracers to Estimate Recharge - Part 7 Rating: 0 out of 5 stars0 ratingsGroundwater Processes and Modelling - Part 6 Rating: 4 out of 5 stars4/5Soil Physical Methods for Estimating Recharge - Part 3 Rating: 0 out of 5 stars0 ratingsThe Rother Valley: A Short History of a Lowland English River Catchment and Prospects for Future Management Rating: 0 out of 5 stars0 ratingsDictionary of Hydrology and Water Resources: 2Nd Edition Rating: 0 out of 5 stars0 ratingsFloodplain Wetland Biota in the Murray-Darling Basin: Water and Habitat Requirements Rating: 0 out of 5 stars0 ratingsTectonically Active Landscapes Rating: 0 out of 5 stars0 ratingsHydrology Dictionary: Grow Your Vocabulary, #54 Rating: 0 out of 5 stars0 ratingsDynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans Rating: 0 out of 5 stars0 ratingsFloods Dictionary - Natural Disasters: Grow Your Vocabulary Rating: 0 out of 5 stars0 ratingsGlobal Environment: Water, Air, and Geochemical Cycles - Second Edition Rating: 5 out of 5 stars5/5Ecohydrology: Vegetation Function, Water and Resource Management Rating: 0 out of 5 stars0 ratingsUsing Groundwater Responses to Infer Recharge - Part 5 Rating: 0 out of 5 stars0 ratingsEarth Dams, A Study Rating: 1 out of 5 stars1/5Marine Macroecology Rating: 0 out of 5 stars0 ratingsWater Pollution Control Rating: 0 out of 5 stars0 ratingsComparison of Methods of Sewage Purification Rating: 0 out of 5 stars0 ratingsCalifornia Rivers and Streams: The Conflict Between Fluvial Process and Land Use Rating: 0 out of 5 stars0 ratingsMelbourne's Water Catchments: Perspectives on a World-Class Water Supply Rating: 0 out of 5 stars0 ratingsSaving the St.Lawrence: The disastrous impact of climate changes Rating: 0 out of 5 stars0 ratingsSaratoga and How to See It Rating: 0 out of 5 stars0 ratingsAustralia's Water Resources: From Use to Management Rating: 0 out of 5 stars0 ratingsThe Oceans: A Deep History Rating: 4 out of 5 stars4/5A Field Guide to Clean Drinking Water: How to Find, Assess, Treat, and Store It Rating: 0 out of 5 stars0 ratingsCommercial Forest Plantations on Saline Lands Rating: 0 out of 5 stars0 ratingsHydrate the Earth Rating: 0 out of 5 stars0 ratingsGroundwater Chemical Methods for Recharge Studies - Part 2 Rating: 0 out of 5 stars0 ratingsCave Regions of the Ozarks and Black Hills Rating: 0 out of 5 stars0 ratings
Earth Sciences For You
Roadside Geology of Georgia Rating: 0 out of 5 stars0 ratingsThe Witch's Yearbook: Spells, Stones, Tools and Rituals for a Year of Modern Magic Rating: 5 out of 5 stars5/5SAS Survival Handbook, Third Edition: The Ultimate Guide to Surviving Anywhere Rating: 4 out of 5 stars4/5Rockhounding for Beginners: Your Comprehensive Guide to Finding and Collecting Precious Minerals, Gems, Geodes, & More Rating: 0 out of 5 stars0 ratingsNorwegian Wood: Chopping, Stacking, and Drying Wood the Scandinavian Way Rating: 4 out of 5 stars4/5Foraging for Survival: Edible Wild Plants of North America Rating: 0 out of 5 stars0 ratingsThe Pocket Guide to Prepping Supplies: More Than 200 Items You Can?t Be Without Rating: 5 out of 5 stars5/5I Contain Multitudes: The Microbes Within Us and a Grander View of Life Rating: 4 out of 5 stars4/5Nuclear War Survival Skills: Lifesaving Nuclear Facts and Self-Help Instructions Rating: 4 out of 5 stars4/5Bushcraft Basics: A Common Sense Wilderness Survival Handbook Rating: 0 out of 5 stars0 ratingsThe Rise and Fall of the Dinosaurs: A New History of a Lost World Rating: 4 out of 5 stars4/5A Book of Bees Rating: 4 out of 5 stars4/5The Phantom Atlas: The Greatest Myths, Lies and Blunders on Maps Rating: 4 out of 5 stars4/5Fantasy Map Making: Writer Resources, #2 Rating: 4 out of 5 stars4/5The Finest Hours: The True Story of the U.S. Coast Guard's Most Daring Sea Rescue Rating: 4 out of 5 stars4/5Five Acres and Independence Rating: 4 out of 5 stars4/5Weather For Dummies Rating: 4 out of 5 stars4/5A Fire Story: A Graphic Memoir Rating: 4 out of 5 stars4/5The Mother Plane: UFO's Rating: 4 out of 5 stars4/5Mother of God: An Extraordinary Journey into the Uncharted Tributaries of the Western Amazon Rating: 4 out of 5 stars4/5Summary of Bruce H. Lipton's The Biology of Belief 10th Anniversary Edition Rating: 5 out of 5 stars5/5Answers to Questions You've Never Asked: Explaining the 'What If' in Science, Geography and the Absurd Rating: 3 out of 5 stars3/5Young Men and Fire Rating: 4 out of 5 stars4/5The Lost Book of Dr Sebi Self-Healing Bible Rating: 5 out of 5 stars5/5
Reviews for Physical and Chemical Techniques for Discharge Studies - Part 1
0 ratings0 reviews
Book preview
Physical and Chemical Techniques for Discharge Studies - Part 1 - RB Salama
1 INTRODUCTION
Groundwater discharge studies are not given the same importance as those of groundwater recharge. This may be due to the fact that recharge has always been associated with groundwater resources assessment, development and utilisation, while groundwater discharge is associated with salinity and pollution problems that have not been given sufficient attention except in the last twenty years.
The widespread presence of millions of saline lakes in North America, Africa and Australia shows that, across the geological record, most salinity and desertification problems have been caused by saline groundwater discharge. In recent times, dryland salinity has spread widely in southern Australia, resulting in the loss of more than 50% of the fresh streams in Western Australia and causing major salinity problems in the Murray River in South Australia.
The aims of this chapter are:
To define the discharge mechanisms that occur in nature
Explain how and where discharge takes place and what the effects of soil, water table and vegetation on discharge are
To introduce the mechanisms of biological discharge (plants, etc.) and the critical role it has in controlling groundwater recharge through its discharge mechanism (evapotranspiration)
To present the various physical, chemical and isotope techniques used for determining discharge rates
To discuss the various options available for enhancing groundwater discharge.
Groundwater Discharge
Groundwater discharge is the removal of water from the saturated zone of a drainage basin across the water table surface, together with the associated flow toward the water table within the saturated zone. In discharge areas the groundwater flow direction is upward and hydraulic head in the aquifer systems increases with depth. It may discharge as a spring, seep, or baseflow, or by evaporation and transpiration. The discharge rate depends on the size of the recharge area, the rate of rainfall or other water accretion in the area, and the transmissivity of the aquifer system or other water-conducting material.
Discharge areas are usually located in topographic lows, e.g. valleys, depressions and downstream ends of catchments and wide-scaled basins. The location is in principle controlled by the gravity-driven groundwater flow systems which are directly related to the groundwater basin’s topography. In a landscape of undulating topography, several discharge regions at different elevation levels and scale can exist, fed by local or regional flow systems (Fig. 1). Geologic structures such as faults, dykes or structural highs can impede or enhance groundwater flow and affect the manifestation of discharge areas (Salama et al. 1992).
Figure 1. Areas of point and diffuse discharge in relation to topography, geology and groundwater flow systems.
Two principal types of discharge can be differentiated and recognised in the field: point (focal) discharge and diffuse discharge. Point discharge is clearly defined and limited in its areal extent. Ascending groundwater is channelled or focused to its region of discharge, whereas diffuse discharge describes the continuous, spatially distributed discharge of water to the atmosphere resulting from upward groundwater flow from the water table to the soil surface.
Point discharge
Springs and seeps
Springs or seeps are the most conspicuous form of natural return of groundwater to the surface. They can be permanent or ephemeral and their discharge rate may show little change or may vary with time from an insignificant perceptible seepage to more than 90 m³ s−1 (Meinzer 1923). Springs and seeps occur where down-gradient sections of confined aquifers are exposed to the surface, e.g. at mountain sides, or where shallow water tables of unconfined aquifers reach the surface at the base of long slopes. Springs also form where geological discontinuities present hydraulic barriers and channel groundwater upward, allowing water to reach the surface if the potentiometric surface in the aquifer is sufficiently high. Fractured rock and fissures can fill with rainwater, which then flows through the fissure system to form springs at lower points. Rock debris and piles at the base of hills or mountains can temporarily store water in periods of rainfall and run-off and gradually release the water via springs or seeps along their periphery. Depression springs form as local discharge zones in topographic depression; contact springs result from lower hydraulic conductivity layers (clays at the bottom of sand dunes); and fault and fracture springs are created by geologic structures. A typical example of point discharge is the mud mounds created by the groundwater discharge in the Great Artesian basin (Williams and Holmes 1978). Another example is the sandhill seeps in the wheat belt of Western Australia, which occur at the bottom of sandplains underlain by clayey layers (Nulsen 1985; George and Frantom 1991).
Streams and lakes
Groundwater discharge into a stream (effluent stream) takes place when the water table lies above the stream surface. The amount of groundwater discharge is directly proportional to the hydraulic gradient towards the stream. Modification of the native vegetation, e.g. by deforestation has a pronounced effect on groundwater discharge to streams. Clearance of native forests in recharge areas is common practice in South and Western Australia (Williamson 1990). This causes the water table to rise and the hydraulic gradient and the seepage velocity to increase.
Lakes may be classified hydrogeologically on the basis of domination of the annual hydrologic budget by surface water or groundwater. Surface-dominated drainage lakes have inflow and outflow streams, while seepage lakes are groundwater-dominated by discharge (Fetter 1980). In most cases, groundwater seepage into lakes is highest