Discover millions of ebooks, audiobooks, and so much more with a free trial

From $11.99/month after trial. Cancel anytime.

Scientific American Supplement, No. 384, May 12, 1883
Scientific American Supplement, No. 384, May 12, 1883
Scientific American Supplement, No. 384, May 12, 1883
Ebook190 pages2 hours

Scientific American Supplement, No. 384, May 12, 1883

Rating: 0 out of 5 stars

()

Read preview
LanguageEnglish
Release dateNov 27, 2013
Scientific American Supplement, No. 384, May 12, 1883

Related to Scientific American Supplement, No. 384, May 12, 1883

Related ebooks

Related articles

Reviews for Scientific American Supplement, No. 384, May 12, 1883

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    Scientific American Supplement, No. 384, May 12, 1883 - Archive Classics

    The Project Gutenberg EBook of Scientific American Supplement, No. 384,

    May 12, 1883, by Various

    This eBook is for the use of anyone anywhere at no cost and with

    almost no restrictions whatsoever.  You may copy it, give it away or

    re-use it under the terms of the Project Gutenberg License included

    with this eBook or online at www.gutenberg.org

    Title: Scientific American Supplement, No. 384, May 12, 1883

    Author: Various

    Posting Date: October 10, 2012 [EBook #8862]

    Release Date: September, 2005

    First Posted: August 15, 2003

    Language: English

    *** START OF THIS PROJECT GUTENBERG EBOOK SCIENTIFIC AMERICAN SUPPL., NO. 384 ***

    Produced by Don Kretz, Juliet Sutherland, Charles Franks

    and the Distributed Proofreaders Team

    SCIENTIFIC AMERICAN SUPPLEMENT NO. 384

    NEW YORK, MAY 12, 1883

    Scientific American Supplement. Vol. XV., No. 384.

    Scientific American established 1845

    Scientific American Supplement, $5 a year.

    Scientific American and Supplement, $7 a year.



    LOCOMOTIVE FOR ST. GOTHARD RAILWAY.

    We give engravings of one of a type of eight-coupled locomotives constructed for service on the St. Gothard Railway by Herr T.A. Maffei, of Munich. As will be seen from our illustrations, the engine has outside cylinders, these being 20.48 in. in diameter, with 24 in. stroke, and as the diameter of the coupled wheels is 3 ft. 10 in., the tractive force which the engine is capable of exerting amounts to (20.48² x 24) / 46 = 218.4 lb. for each pound of effective pressure per square inch on the pistons. This is an enormous tractive force, as it would require but a mean effective pressure of 102½ lb. per square inch on the pistons to exert a pull of 10 tons. Inasmuch, however, as the engine weighs 44 tons empty and 51 tons in working order, and as all this weight is available for adhesion, this great cylinder power can be utilized. The cylinders are 6 ft. 10 in. apart from center to center, and they are well secured to the frames, as shown in Fig. 4. The frames are deep and heavy, being 1 3/8 in. thick, and they are stayed by a substantial box framing at the smokebox end, by a cast-iron footplate at the rear end, and by the intermediate plate stays shown. The axle box guides are all fitted with adjusting wedges. The axle bearings are all alike, all being 7.87 in. in diameter by 9.45 in. long. The axles are spaced at equal distances of 4 ft. 3.1 in. apart, the total wheel base being thus 12 ft. 9.3 in. In the case of the 1st, 2d, and 3d axles, the springs are arranged above the axle boxes in the ordinary way, those of the 2d and 3d axles being coupled by compensating beams. In the case of the trailing axle, however, a special arrangement is adopted. Thus, as will be seen on reference to the longitudinal section and plan (Figs. 1 and 2, first page), each trailing axle box receives its load through the horizontal arm of a strong bell-crank lever, the vertical arm of which extends downward and has its lower end coupled to the adjoining end of a strong transverse spring which is pivoted to a pair of transverse stays extending from frame to frame below the ash pan. This arrangement enables the spring for the trailing axle to be kept clear of the firebox, thus allowing the latter to extend the full width between the frames. The trailing wheels are fitted with a brake as shown.

    LOCOMOTIVES FOR ST. GOTHARD RAILWAY.

    The valve motion is of the Gooch or stationary link type, the radius rods being cranked to clear the leading axle, while the eccentric rods are bent to clear the second axle. The piston rods are extended through the front cylinder covers and are enlarged where they enter the crossheads, the glands at the rear ends of cylinders being made in halves. The arrangement of the motion generally will be clearly understood on reference to Figs. 1 and 2 without further explanation.

    The boiler, which is constructed for a working pressure of 147 lb. per square inch, is unusually large, the barrel being 60.4 in. in diameter inside the outside rings; it is composed of plates 0.65 in. thick. The firebox spreads considerably in width toward the top, as shown in the section, Fig. 5, and to enable it to be got in the back plate of the firebox casing is flanged outward, instead of inward as usual, so as to enable it to be riveted up after the firebox is in place. The inside firebox is of copper and its crown is stayed directly to the crown of the casing by vertical stays, as shown, strong transverse stays extending across the boiler just above the firebox crown to resist the spreading action caused by the arrangement of the crown stays. The firegrate is 6 ft. 11.6 in. long by 3 ft. 4 in. wide.

    ST. GOTHARD LOCOMOTIVES.

    The barrel contains 225 tubes 1.97 in. in diameter outside and 13 ft. 9½ in. long between tube plates. On the top of the barrel is a large dome containing the regulator, as shown in Fig. 1, from which view the arrangement of the gusset stays for the back plate of firebox casing and for the smokebox tube plate will be seen. A grid is placed across the smokebox just above the tubes, and provision is made, as shown in Figs. 1 and 4, for closing the top of the exhaust nozzle, and opening a communication between the exhaust pipes and the external air when the engine is run reversed. The chimney is 15¾ in. in diameter at its lower end and 18.9 in. at the top. The chief proportions of the boiler are as follows:

                               Sq. ft

      Heating surface: Tubes   1598.5

                       Firebox  102.5

                               ------

                               1701.0

      Firegrate area                                              23.3 [1]

      Sectional area through tubes (disregarding ferrules)         3.5

      Least sectional area of chimney.                             1.35

      Ratio of firegrate area to heating surface.                  1:73

      Ratio of flue area through tubes to firegrate area.          1:6.7

      Ratio of least sectional area of chimney to firegrate area.  1:17.26

    [Transcribers note 1: Best guess, 2nd digit illegible]

    The proportion of chimney area to grate is much smaller than in ordinary locomotives, this proportion having no doubt been fixed upon to enable a strong draught to be obtained with the engine running at a slow speed. Of the general fittings of the engine we need give no description, as their arrangement will be readily understood from our engravings, and in conclusion we need only say that the locomotive under notice is altogether a very interesting example of an engine designed for specially heavy work.--Engineering.


    THE MERSEY RAILWAY TUNNEL.

    The work of connecting Liverpool with Birkenhead by means of a railway tunnel is now an almost certain success. It is probable that the entire cost of the tunnel works will amount to about half a million sterling. The first step was taken about three years ago, when shafts were sunk simultaneously on both sides of the Mersey. The engineers intrusted with the plans were Messrs. Brunlees & Fox, and they have now as their resident representative Mr. A.H. Irvine, C.E. The contractor for the entire work is Mr. John Waddell, and his lieutenant in charge at both sides of the river is Mr. James Prentice. The post of mechanical engineer at the works is filled by Mr. George Ginty. Under these chiefs, a small army of nearly 700 workmen are now employed night and day at both sides of the river in carrying out the tunnel to completion. On the Birkenhead side, the landward excavations have reached a point immediately under Hamilton Square, where Mr. John Laird's statue is placed, and here there will be an underground station, the last before crossing the river, the length of which will be about 400 feet, with up and down platforms. Riverward on the Cheshire side, the excavators have tunneled to a point considerably beyond the line of the Woodside Stage; while the Lancashire portion of the subterranean work now extends to St. George's Church, at the top of Lord street, on the one side, and Merseyward to upward of 90 feet beyond the quay wall, and nearly to the deepest part of the river.

    When completed, the total length of the tunnel will be three miles one furlong, the distance from wall to wall at each side of the Mersey being about three-quarters of a mile. The underground terminus will be about Church street and Waterloo place, in the immediate neighborhood of the Central Station, and the tunnel will proceed from thence, in an almost direct line, under Lord street and James street; while on the south side of the river it will be constructed from a junction at Union street between the London and Northwestern and Great Western Railways, under Chamberlain street, Green lane, the Gas Works, Borough road, across the Haymarket and Hamilton street, and Hamilton square.

    Drainage headings, not of the same size of bore as the part of the railway tunnel which will be in actual use, but indispensable as a means of enabling the railway to be worked, will act as reservoirs into which the water from the main tunnel will be drained and run off to both sides of the Mersey, where gigantic pumps of great power and draught will bring the accumulating water to the surface of the earth, from whence it will be run off into the river. The excavations of these drainage headings at the present time extend about one hundred yards beyond the main tunnel works at each side of the river. The drainage shafts are sunk to a depth of 180 feet, and are below the lowest point of the tunnel, which is drained into them. Each drainage shaft is supplied with two pumping sets, consisting of four pumps, viz., two of 20 in. diameter, and two of 30 in. diameter. These pumps are capable of discharging from the Liverpool shafts 6,100 gallons per minute, and from the Birkenhead 5,040 gallons per minute; and as these pumps will be required for the permanent draining of the tunnel, they are constructed in the most solid and substantial manner. They are worked by compound engines made by Hathorn, Davey & Co., of Leeds, and are supplied with six steel boilers by Daniel Adamson & Co., of Dukinfield, near Manchester.

    In addition to the above, there is in course of construction still more powerful pumps of 40 in. diameter, which will provide against contingencies, and prevent delay in case of a breakdown such as occurred lately on the Liverpool side of the works. The nature of the rock is the new red sandstone, of a solid and compact character, favorable for tunneling, and yielding only a moderate quantity

    Enjoying the preview?
    Page 1 of 1