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Abstract. – OBJECTIVE: Monitoring Jack-
son Pratt and Hemovac drains plays a crucial 
role in assessing a patient’s recovery and identi-
fying potential postoperative complications. Ac-
curate and regular monitoring of the blood vol-
ume in the drain is essential for making deci-
sions about patient care. However, transferring 
blood to a measuring cup and recording it is a 
challenging task for both patients and doctors, 
exposing them to bloodborne pathogens such 
as the human immunodeficiency virus (HIV), 
hepatitis B virus (HBV), and hepatitis C virus 
(HCV). To automate the recording process with 
a non-contact approach, we propose an innova-
tive approach that utilizes deep learning tech-
niques to detect a drain in a photograph, com-
pute the blood level in the drain, estimate the 
blood volume, and display the results on both 
web and mobile interfaces. 

MATERIALS AND METHODS: Our system 
employs semantic segmentation on images tak-
en with mobile phones to effectively isolate the 
blood-filled portion of the drain from the rest of 
the image and compute the blood volume. These 
results are then sent to mobile and web applica-
tions for convenient access. To validate the ac-
curacy and effectiveness of our system, we col-
lected the Drain Dataset, which consists of 1,004 
images taken under various background and 
lighting conditions. 

RESULTS: With an average error rate of less 
than 5% in milliliters, our proposed approach 
achieves highly accurate blood level detection 
and estimation, as demonstrated by our trials 
on this dataset. The system also exhibits ro-
bustness to variations in lighting conditions and 
drain shapes, ensuring its applicability in differ-
ent clinical scenarios. 

CONCLUSIONS: The proposed automated 
blood volume estimation system can significant-
ly reduce the time and effort required for man-
ual measurements, enabling healthcare profes-
sionals to focus on other critical tasks. The data-
set and annotations are available at: https://www.
kaggle.com/datasets/ayenahin/liquid-volume-de-
tection-from-drain-images and the code for the 
web application is available at https://github.
com/itsjustaplant/AwesomeProject.git.
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Introduction

A Jackson Pratt drain and a Hemovac drain 
are devices designed to collect excess bodily 
fluids during or after surgery. The measurement 
of blood in these drains traditionally involves 
emptying their contents into a measuring cup 
and meticulously recording the volume and time, 
a critical aspect of comprehending the surgical 
process. However, this manual process poses sev-
eral inconveniences for both doctors and patients. 
Not only is it susceptible to measurement errors 
and potential spillage, but it also exposes indi-
viduals to bloodborne pathogens such as malaria, 
syphilis, brucellosis, and most notably, human 
immunodeficiency virus (HIV), hepatitis B virus 
(HBV), and hepatitis C virus (HCV). Further-
more, this process consumes valuable time for 
doctors and can be distressing for recently operat-
ed patients, impacting their well-being, as well as 
that of their caregivers and the healthcare team, 
due to hygiene concerns and time constraints.

In this study, we introduce a robust, user-friend-
ly, and precise mobile system designed for esti-
mating blood volume in drains through image 
analysis. Our system allows users to capture a 
photo with a mobile phone, which is then ana-
lyzed with advanced deep-learning techniques 
to detect the Jackson Pratt and Hemovac drains 
and also to determine the volume of the blood 
contained in these drains, as shown in Figure 1. 
The obtained results are then displayed through 
cloud storage systems, accessible both on a mo-
bile phone and as a web application. This innova-
tive system not only delivers quick and accurate 
results but also maintains a comprehensive data-
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base of measurements. Importantly, it performs 
effectively under various lighting conditions. To 
the best of our knowledge, this is the first study 
in the literature that estimates the blood volume 
in surgical drains using automated image pro-
cessing techniques. Further, both the dataset and 
the source code of the system have been made 
available to contribute to the advancement and 
accessibility of this approach.

In the literature, quantifying liquid levels is an 
active research area with applications in various 
fields such as the chemistry and bottling indus-
tries1,2, medical and hospital settings3, as well as 
security and surveillance. Beyond standard cam-
eras, researchers have developed several sensors 
and robotic systems tailored for different appli-
cations. For instance, a millimeter-wave Doppler 
sensor was designed to measure liquid levels with 
sub-millimeter accuracy, specifically for record-
ing properties related to centrifuged blood in a 
blood-collection tube3. Subsequently, researchers 
combined acoustic and visual data to understand 
the manipulation of a container based on the 
sounds it generated4. Similarly, a motorized sys-
tem was designed to position the camera close to 
a glass container, capturing multiple close-con-
tact images5. These images were then utilized 
to quantify liquid levels in glass containers, for 
biomedicine applications.

On the other hand, the use of standard cameras 
is more common and less costly. Earlier works 
used edge, color, and gradient information to 
compute liquid levels. For transparent vessels, the 

detection of liquid levels was performed in chem-
istry applications6. For infusion bottles7, image 
processing, and motion detection were used to de-
tect the liquid levels. Similarly, a system based on 
edge detection was proposed to detect the end of 
drip infusion in a hospital setting, alerting nurses 
before the liquid runs out in the infusion bag8. 
Furthermore, several researchers have studied the 
reasoning behind liquid containers, such as con-
tent estimation and pouring prediction, especially 
in robotic settings9-11.

Several datasets have been recently released 
to follow up on the demand for liquid detection 
research. Among these are (1) the Wine data12; 
(2) the general-purpose liquid containers data-
set13; (3) the Vector-LabPics dataset for chemis-
try14; and (4) the TransProteus Dataset, a com-
puter-generated dataset complemented with re-
al-world data with depth maps15. The availability 
of such datasets paved the way for deep learning, 
which requires ample data.

Within the deep learning approach, semantic 
segmentation has been employed to identify liq-
uids and their containers. Semantic segmentation 
is a computer vision technique that involves clas-
sifying and labeling each pixel in an image, pro-
viding a pixel-level understanding of the visual 
content. In two studies14,16, instance and semantic 
segmentation were used for chemistry applica-
tions, hospitals, and medical labs. Our study also 
employs semantic segmentation but focuses on 
detecting and segmenting two types of drains 
in real-world environments with various back-

Figure 1. Pouring the contents of the drain into a measuring cup exposes the physicians and the patients to bloodborne 
pathogens, spillage, and measurement errors (on the left). Our proposed system introduces a complete framework to get the 
measurements from the images automatically and systematically (on the right).
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grounds and lighting conditions. Additionally, 
it quantizes the blood with high precision, along 
with a web interface that provides online access 
to the tool for recording the outputs by the patient 
or their caregiver. In contrast to other studies, 
our computations were made using segmentation 
outputs instead of training at volume intervals 
to achieve the precision needed for medical pur-
poses. Further, our study advances detection to a 
level where patients and their caregivers can use 
it through web services. 

To compute the volume of the blood in the 
drain from the image, the exact location of the 
drain and the blood inside of it must be identi-
fied. To use the drain in the picture, all other ob-
jects were separated using semantic segmentation 
methods. Separate annotations were made for 
the image’s drain and blood regions to train the 
semantic segmentation algorithms. Annotations 
were then used to make masks. These masks 
were used to train the pre-trained DeepLabV320 
fully Convolutional Neural Network (CNN) mod-
el17,18. 1,004 photos were taken with various back-
grounds, distances, and angles to train this model 
and to achieve high-accuracy results. The details 
of the dataset, the deep learning method, and the 
web application are given below.

Materials and Methods

Drain Dataset and Image Annotation
Our Drain Dataset consists of 1,004 pictures 

collected in two resolutions: 1,536 × 2,048 and 
3,024 × 4,032, as shown in Figure 2. The pho-
tographs were taken between 10 to 40 cm away 
from the drain. The dataset was prepared on a va-
riety of backgrounds, both inside and outside, in 
diverse lighting conditions. Further, to facilitate 
the generation of a dataset encompassing a broad 
range of volumes, drains were filled with vary-
ing volumes of theatrical blood with short gaps 
between the fillings. This variability in volume 
is a critical factor during the subsequent phase of 
volume calculations. Each image’s number and 
the amount of liquid it contained were recorded. 
Out of the 1,004 pictures, 532 were from the Jack-
son Pratt drain and 472 were from the Hemovac 
drain. Of these, 99 images were reserved for test-
ing the Jackson Pratt drain and 66 for testing the 
Hemovac drain. The rest of the photos were used 
in training, as outlined in Table I.

The Visual Geometry Group (VGG) image 
annotator (VIA)19 was used to annotate the image 
manually. The drain and blood were annotated 
separately in each image using the VIA’s poly-

Figure 2. Examples from the Drain dataset with varying amounts of blood in several background and lighting conditions in 
(A), and their segmentation results with our proposed approach in (B).

A

B

Table I. Properties of the Drain dataset.

	 Type of drain	 Volume (ml)	 Training	 Test

The Jackson Pratt drain	 250	 433	 99
The Hemovac drain	 400	 406	 66
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gon region form. New photos, called masks, 
were generated to assign a color value of 1 to 
the marked areas and 0 to the remaining regions. 
During the blood annotation stage, diverse strat-
egies were implemented to address issues aris-
ing from the angle at which the drain was held, 
resulting in an elliptical structure at the liquid’s 
top while the camera is tilted up or down. This 
structural distortion presented challenges in the 
annotation process. To mitigate these challenges, 
only the front image of the blood, rather than the 
entire blood’s body, is retained in the annotation.

Methodology
This research unfolds on two fronts. Firstly, 

it delves into an image processing pipeline de-
signed to detect drains from cell phone images. 
This includes addressing challenges such as clut-
tered backgrounds, various surroundings with 
multiple objects, and potential tilting of the drain 
in different axes. The algorithms identify the 
drain and discern the blood within, computing its 
relative volume, ultimately deducing the actual 
volume in milliliters.

On the second front, the research introduces a 
cell phone application. This application connects 

to a cloud server housing the model parameters 
developed in the first phase. The framework of 
the system is given in Figure 3A. Within this 
framework, image processing takes place in the 
FastAPI part, and the other components are the 
databases, web servers, and mobile interfaces. 
The training for image processing follows the 
steps shown in Figure 3B. These aspects are elab-
orated further below.

Image Processing Pipeline for Detecting 
the Drain and Measuring the Blood

In this work, we focus solely on the blood quan-
tization problem in two drain containers using the 
DeepLabv3 model20 derived from the DeepLab 
architecture17,18, which is a semantic segmenta-
tion model that results in annotations at the pixel 
level. DeepLabv3 is a fully Convolutional Neural 
Network (CNN) model, but unlike the traditional 
image classification CNNs, DeepLabv3 employs 
an encoder-decoder architecture that enables the 
model to make decisions for every pixel in an 
image. The encoder is constructed from CNNs, 
and it extracts the feature maps from the input 
image. The decoder gradually reconstructs the 
output to be the same dimension as the input 

Figure 3. Framework of the system. The components of the web application are given in (a), and the architecture of training 
is shown in (b).
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and uses upsampling to recover the details from 
the low-dimensional feature maps17. Within this 
process, the uniqueness of DeepLabv3 lies in its 
use of atrous convolutions that allow the model to 
capture multi-scale contextual features efficient-
ly. The model further incorporates Atrous Spatial 
Pyramid Pooling, a mechanism for classifying 
regions of arbitrary scale. Since the drains in our 
database also appear on multiple scales, our solu-
tion uses the DeepLabv3 network to detect the 
drain and blood. Additionally, ResNet-50 served 
as the backbone. A well-known ResNet family 
architecture ResNet-50 includes 50 layers total 
depth, 48 convolution layers, 1 max-pooling lay-
er, and an average pooling layer21.

For training the DeepLabv3 model, both the 
blood and drain masks, as well as the original 
photos, were used. Four classes were obtained: 
Class-0 for the background, Class-1 for the Jack-
son Pratt drain, Class-2 for the Hemovac drain, 
and Class-3 for the blood. Figure 3B shows the 
architecture we utilize for training. The model 
was given images in the JPG file format, all set 
to 900x900 resolutions during the training. The 
model is trained with fixed-size images, but there 
are no size specifications for test images, as the 
model can handle images of any size in the test 
stage.

The learning rate is set to 1e-5, representing 
the step size of the gradient descent. Batch Size, 
or the quantity of photos used in each training 
iteration, is selected as 3. Annotation masks for 
randomly selected photos in each cycle are updat-
ed based on the class type: areas with blood are 
labeled as 1, Jackson Pratt drain locations as 2, 
and Hemovac drain locations as 3 in the annota-
tion maps. Subsequently, 4D matrices are created 
by stacking multiple images. The last layer of the 
pre-trained model network is a convolution layer 
with 256 layers of input and 21 layers of output. 
We add one additional convolutional layer after 
the model because we only have 4 classes in our 
dataset, and we want to replace it with a new 
convolutional layer that has 4 outputs. The Adam 
algorithm is employed as an optimizer to manage 
gradient rates during the backpropagation step. 
Autograd is performed to initiate backpropaga-
tion from a variable, converting the data into 
gradient variables usable by the network. Predic-
tions from the network are compared with ground 
truth data, and the loss is computed between 
predictions and annotations. Based on this loss 
function, gradients are calculated through back-
propagation, and weights are updated. The model 

obtained after 10,000 rotations in the training 
loop is utilized in the outputs. The Tesla A100 
GPU (https://www.nvidia.com/en-us/data-center/
a100/) is employed in the Colab environment to 
train the model. The saved model weights are 
then utilized in our backend Application Pro-
gramming Interface (API) to estimate the volume 
of blood in the Jackson Pratt or Hemovac drain.

Web Application Architecture
We propose an integrated system featuring 

Nginx, MinIO, MongoDB, FastAPI, React, and 
React Native that seamlessly combines web serv-
ing, data storage, databases, and interface devel-
opment. This architecture is designed to provide 
a platform that efficiently manages large-scale 
data, facilitates image analysis, and delivers re-
al-time results. Upon saving the model as a ten-
sor, we deploy it to a cloud server to establish a 
robust and user-friendly web application system. 
Leveraging MinIO for file storage in the file sys-
tem, FASTAPI for efficient RESTAPI creation, 
and React for a simple frontend, our backend 
evaluates uploaded images stored in the MinIO 
file system. The system then returns a response 
indicating the estimated blood level. Detailed ex-
planations of each technology used in this work 
are provided below:

•	 Nginx (https://www.nginx.com) is a web serv-
er and reverse proxying software. As a web 
server, it plays a crucial role in responding 
to client requests and ensuring reliable page 
delivery. Additionally, Nginx operates as a 
reverse proxy, sitting between clients and web 
servers, effectively distributing incoming traf-
fic and enhancing the overall performance and 
security of web applications.

•	 MinIO (https://min.io) is a high-performance 
object store built for large-scale data lakes. 
It can handle extensive volumes of data and 
serves a pivotal role in our system by efficient-
ly storing both analyzed and uploaded images. 
By recording each data point on the system, all 
images can be used to detect faulty points and 
improvements.

•	 MongoDB (https://www.mongodb.com) is a 
flexible and scalable document database. It is 
used to store analyzed data in object IDs for 
further analysis of the system.

•	 FastAPI (https://fastapi.tiangolo.com) is a mod-
ern, high-performance microframework. Due 
to Python’s speed and simplicity, we chose Py-
thon as our backend. When the FastAPI thread 
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is spawned, it runs our pre-trained model to 
detect blood and drain in the uploaded image. 
When the process is completed, each image is 
stored on MinIO, and our algorithms run to 
estimate the blood volume in the image.

•	 React (https://react.dev) is a library for creat-
ing native user interfaces. We chose to create 
our initial web prototype with React due to its 
simplicity. Our interface is simple yet ideal for 
uploading an image of the drain.

•	 React Native (https://reactnative.dev) is a li-
brary for creating native user interfaces for 
mobile applications. We chose React Native to 
reuse the components from the web application 
developed with React.

All of these components are connected, as 
shown in Figure 3A. The codes to connect these 
architectures are given at the GitHub link provid-
ed with the paper.

Results

We used the Intersection over Union (IOU) 
metric in Equation 1 to evaluate our model, mea-
suring the similarity between the prediction and 
the ground truth. To calculate the IOU, both the 
ground truth area and the prediction area are nec-
essary. In our setup, the masks act as our ground 
truth area, and the segmented output of a test im-
age serves as our prediction area. The ratio of the 
overlap of these areas to their unions is presented 
in Table II. IOU values are computed individually 
for blood and for each type of drain.

           Area of Overlap
IOU = –––––––––––––––––

          Area of Union (1)

Jackson Pratt, Hemovac drains and blood can 
be easily identified by separating from the back-
ground, as shown by the outputs. Our four classes 
are also segmented in different colors. Volume 
calculation activities are carried out by propor-
tioning for 250 ml Jackson Pratt and 400 ml 
Hemovac utilizing the segment colors.

As depicted in Figure 4, the pre-trained model 
underwent training for Jackson Pratt and Hemo-
vac drains, utilizing blood and drain ground truth 
masks derived from the original photographs. 
Consequently, our model produces segmented 
outputs. The drains and blood can be readily 
identified by their clear separation from the back-
ground, as illustrated by the outputs. Our model 
assigns distinct colors to the four classes during 
segmentation. Volume calculation activities are 
performed by correlating the segment colors, 
specifically allocating 250 ml for Jackson Pratt 
and 400 ml for Hemovac drains.

Since we meticulously incorporate data from 
diverse angles into our dataset, tilting the drain 
does not impede detection. However, during vol-
ume estimation, the tilting angle influences the 
margin of deviation. Results of 170, 175, 177, 179, 
and 182 ml were obtained from images taken by 
altering the slope under consistent environmental 
conditions for a drain containing 167 ml of blood. 
In this scenario, angles range from 0 to 45. It 
is evident that the result deviates from the real 
value as the angle increases; therefore, it is rec-
ommended to avoid excessive tilting of the drain 
when using the application.

We generated test datasets by defining small 
volume intervals. Each volume is represented by 
a prediction. The link between the volume values 
generated by our model and the volume values 
of the images in the test dataset is depicted in 
Figure 5.

By comparing the ground truth value xi and the 
predicted values x, we determined the residual 
standard deviation Sres as in Equation 2:

(2)

The discrepancy between the actual results’ 
trend and the predicted data is known as the re-
sidual value. The challenges experienced during 
volume estimate are confirmed by the fact that 
the high-accuracy results displayed in our IOU 
table outperform the sigma value.

Discussion

Our results demonstrate that the prototype 
system can be used effectively for blood-level 
detection of various drains. This shows that deep 

Table II. IOU results of drains.

	 Type of drain	 Drain	 Blood

The Jackson Pratt drain	 0.99242	 0.99015
The Hemovac drain	 0.98042	 0.96788
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Figure 4. Summary view of segmentation.
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learning can significantly improve the monitor-
ing and management of drains like Jackson Pratt 
and Hemovac, providing an automated and effi-
cient alternative to manual measurements.

On the other hand, it is crucial to acknowl-
edge the constraints of the prototype. The sys-
tem’s performance may be influenced by factors 
such as lighting conditions, drain positioning, 
tilt angle, network speed, and server-side issues, 
which would adversely affect the accuracy of the 
blood-level estimates. Our system can be further 
studied to overcome these constraints, both in de-
veloping deep learning to enhance its robustness 
to diverse scenarios and in developing a more 
robust real-time system to eliminate the listed 
limitations.

Conclusions

This paper presents a full framework utilizing 
a deep-learning approach for automated blood 
volume estimation in Jackson Pratt and Hemovac 
drains and also introduces the Drain Dataset to 
develop this framework. The system success-
fully estimates the fluid levels in these drains 
with a slight margin of error attributed to the 
drain’s tilt angle. The user interface presents the 
fluid-level information clearly, facilitating easy 
interpretation and decision-making. Overall, our 
prototype highlights the potential of deep learn-
ing techniques in improving the monitoring and 
management of drains, offering a more efficient 
and automated solution for healthcare profes-
sionals. The proposed system demonstrates high 

accuracy, robustness, and potential to enhance 
patient care in postoperative settings. Future 
work involves refining and optimizing the sys-
tem further to ensure its reliability and suitabili-
ty for clinical applications, as well as integrating 
real-time alerts and notifications for timely inter-
ventions and improved clinical decision-making.
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