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Abstract. – OBJECTIVE: Based on the inter-
actions between immune components in the tu-
mor microenvironment and ovarian cancer (OC) 
cells, immunotherapies have been demonstrat-
ed to be effective in dramatically increasing sur-
vival rates. This study aimed to identify land-
mark genes, develop a prognostic risk model, 
and explore its relevance to the efficacy of im-
munotherapy.

MATERIALS AND METHODS: A risk model 
was built based on the immune- and stromal-relat-
ed genes, which were extracted from the OC gene 
expression data of “The Cancer Genome Atlas” 
(TCGA) database. Survival analysis and receiver 
operating characteristic (ROC) analysis were then 
conducted through the model’s risk score pat-
tern, which was established depending on the TC-
GA training cohort and verified based on the inter-
nal TCGA cohort and external “Gene Expression 
Omnibus” (GEO) datasets. Furthermore, the im-
mune-related characteristics and prognostic val-
ues of the risk model were evaluated.

RESULTS: The prognostic risk model for 
ovarian cancer demonstrated excellent perfor-
mance in predicting survival rates, as validated 
in both the TCGA and GEO databases. The mod-
el showed significant associations with 17 func-
tional immune cells, 17 immune checkpoints, 
PD-1, and several immune pathways, suggesting 
its potential to enhance the efficacy of immuno-
therapy in OC.

CONCLUSIONS: The risk model developed in 
this study has the potential to serve as a prog-
nostic marker for OC, enabling the development 
of personalized immunotherapy protocols and 
providing a theoretical basis for novel combina-
tions of immunotherapeutic approaches.

Key Words:
Risk model, Tumor microenvironment, Ovarian 

cancer, Prognosis, Immunotherapy.

Introduction

Ovarian cancer (OC) is a highly fatal gyneco-
logical oncological disorder, ranking as the fifth 
leading cause of cancer-related mortality among 
women in the United States (US)1. Additionally, 
OC holds the third position in terms of global pre-
valence among all gynecological malignancies2. 
The prognosis is generally unfavorable due to 
the absence of early warning symptoms, effecti-
ve diagnostic markers, tumor heterogeneity, and 
high drug resistance during chemotherapy3. De-
spite its aggressive phenotype and complex pa-
thophysiology, the molecular mechanisms under-
lying OC remain unclear. The primary treatment 
for OC typically involves cytoreductive surgery 
combined with adjuvant therapies such as antian-
giogenic therapy, chemotherapy, poly-adenosine 
diphosphate ribose polymerase inhibitor (PARPi) 
treatment, and occasionally, growth factor signa-
ling inhibitors4. However, the current therapeutic 
options for OC patients are inadequate, leading to 
high rates of recurrence5. Recent studies6,7 on im-
munotherapy have shown promising immune-re-
lated indicators that could be utilized for early 
diagnosis and effective treatment of OC.

The tumor microenvironment (TME) is a hi-
ghly intricate and adaptable system that interacts 
with tumor cells, affecting cancer growth, deve-
lopment, and progression6. Accumulating eviden-
ce suggests that the TME plays a crucial role in 
carcinogenesis and possesses numerous regula-
tory functions in tumor growth and metastasis7. 
Among the tumor-infiltrating immune cells (TI-
ICs), tumor-infiltrating lymphocytes (TILs) have 
been extensively studied and have been shown to 
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impact the clinical outcomes8 and prognosis of 
neoadjuvant chemotherapy in OC9, as tumor pro-
gression is regulated at the interface of TILs and 
cancer cells10. Multiple analyses of targeted drugs 
have indicated that TILs could serve as therapeu-
tic targets to enhance the clinical efficacy of dru-
gs. Recently, drugs targeting immune checkpoin-
ts have demonstrated significant improvements 
in survival for OC patients and have played pi-
votal roles in tumor immunotherapy11. However, 
OC exhibits limited activity with infrequent, du-
rable responses to immunotherapy using immu-
ne checkpoint blockades (ICBs)12. Therefore, the 
development of new strategies to identify progno-
sis-related hallmarks and tumor-infiltrating im-
mune cells, as well as enhance the efficiency of 
ICBs, holds promise for the management of OC. 
Our study aimed to systematically assess a pre-
dictive model about differentially expressed ge-
nes (DEGs), TIICs, immune signaling pathways, 
ICBs, and overall survival.

Materials and Methods

OC Datasets and Samples
The gene expression datasets and associated 

clinical annotations of OC cases were downloa-
ded from “The Cancer Genome Atlas” (TCGA) 
database (https://portal.gdc.cancer.gov/) and 
“The Gene Expression Omnibus” (GEO) databa-
se (http://www.ncbi.nlm.nih.gov/geo/). Informed 
consent of the OC patients involved in this study 
was obtained from these public databases. A total 
of 379 RNA sequencing datasets [fragments per 
kilobase million (FPKM) value] of TCGA-OC 
specimens were procured from the Genomic Data 
Commons (GDC) website (https://portal.gdc.can-
cer.gov/), which was specifically used for integra-
tive analysis13. Additionally, 260 GEO-OC sam-
ples were obtained from the GSE32062 DataSet 
of the GPL6480 platform (Agilent-014850 Whole 
Human Genome Microarray 4×44K)14. The in-
clusion criteria for the data were: (i) patients dia-
gnosed with ovarian serous cystadenocarcinoma; 
(ii) datasets containing intact survival times and 
outcomes.

ImmuneScore and StromalScore 
Generation 

The ESTIMATE algorithm used gene expres-
sion signatures to calculate the fraction of infil-
trating immune and stromal cells for each sam-
ple in the TME in the form of ImmuneScore and 

StromalScore, respectively15. Furthermore, a 
total of 379 tumor specimens from TCGA were 
divided into two groups: (i) high and low Immu-
neScore groups, and (ii) high and low Stromal-
Score groups, based on their respective scores 
in relation to the median score. This categori-
zation was performed to facilitate a comparison 
of the extent of immune-stromal component in-
filtration. Subsequently, the empirical Bayesian 
approach of the “limma” package in R investi-
gated the gene expression variation between the 
high-scoring and low-scoring samples. The si-
gnificance criteria for defining DEGs were set at 
an absolute value of logFC (fold change) greater 
than 1 and a false discovery rate (FDR) less than 
0.05.

Weighted Gene Co-expression 
Network Analysis 

Following data collection from TCGA, the 
expression profiles of the 379 OC samples were 
selected as an expression matrix to create a 
co-expression network using the WGCNA, a 
package in R16. Genes that lacked expression va-
lues were deleted while establishing the WGCNA 
network in this study. Initially, a hierarchical clu-
stering tree was constructed utilizing gene inte-
raction patterns, and significant outliers were re-
moved. The optimal soft threshold was selected to 
create a closely scale-free co-expression network. 
Subsequently, the highly co-expressed gene mo-
dules were arranged into a hierarchical clustering 
tree by dividing different genes with comparable 
expression forms into the matching module. Ba-
sed on the clinical information on immune and 
stromal scores, the correlations between clinical 
phenotype and gene modules were estimated to 
determine the most significant module. After ac-
quiring the key gene module, the hub genes were 
detected by screening gene significance (GS) and 
module membership (MM) values. GS was the co-
efficient of connection between a specified gene’s 
expression pattern and the module’s correspon-
ding phenotypic trait. The relationship coefficient 
between a module gene (the initial primary com-
ponent of each module) and the gene expression 
level defined MM. This study evaluated genes 
with GS values greater than 0.50 and MM values 
greater than 0.60 as the modules’ signature genes.

Identification of Simultaneously 
Expressed DEGs

Venn (https://bioinfogp.cnb.csic.es/tools/ven-
ny/index.html) is a collaborative online tool that 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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utilizes multiple established datasets to visually 
represent unions, intersections, and distinctions17. 
This study conducted an interaction analysis of 
hub genes derived from the key gene module and 
DEGs obtained from immune-stromal compo-
nents to identify simultaneously expressed DEGs. 
Consequently, immune-related hub genes and 
stromal-related hub genes in OC patients were 
acquired.

Establishment and Validation of 
the Prognostic Risk Model

The union of the immune-related gene set was 
obtained and used for further analysis. Subse-
quently, the expression data (FPKM) and relevant 
clinical data of genes were extracted from TC-
GA-OC samples to assess the connection betwe-
en hub genes and the overall survival rate for OC 
patients. All the clinical expression data of TC-
GA-OC samples were randomly categorized into 
a training group and authentication cohort in a 
ratio of 7:3, completing internal validation. In ad-
dition, data from the GEO database was used for 
external validation. The purpose of the training 
cohort was to establish a prognostic risk model, 
whereas the validation set was used to authenti-
cate the model.

Univariate Cox Regression Analysis
A univariate Cox regression analysis was con-

structed in this research to identify potential risk 
factors and prognostic DEGs in hub genes found 
in the training group. The analysis was performed 
using the R package “survival” with the “Efron” 
method. A p-value < 0.05 was considered statisti-
cally significant for all the investigations.

Cox Regression Analysis with 
Multiple Variables 

The prognostic genes obtained by univariate 
analysis were incorporated into a multivariate 
Cox regression analysis to develop a progno-
stic risk model. The multivariate Cox analysis 
used the stepwise regression analysis method 
to adjust the regression model and identify the 
optimal model in which the Akaike information 
criterion (AIC) was the smallest. Based on AIC 
statistics, the stepwise regression method dele-
ted or added variables by selecting the smallest 
AIC values. Its primary function was to obtain 
the best regression equation for screening the 
genes associated with prognosis. This study me-
asured these predictive gene risk scores through 
the linear part of the multivariate Cox regression 

model. The risk score calculation formula used 
for the evaluation is presented in Equation (1):

Risk score =  ƩN i = 1 Expi*Coei 
Equation (1)

where N is the gene number; Expi and Coei 
are the gene expression level and coefficient va-
lue, respectively18. Subsequently, the risk scores 
of individuals in the training group were calcula-
ted using the aforementioned formula. Patients in 
the training group were distributed into low-risk 
and high-risk clusters, with the cutoff value set 
to the medium-risk level, to evaluate the effect of 
prognostic genes obtained by multivariate analy-
sis on the overall survival rate in OC. The “sur-
vminer” package (version 0.4.9) was employed to 
conduct survival analysis and visualizations.

Receiver Operating Characteristic Curve
A survival ROC analysis was conducted using 

the ROC package (version 1.0.3) to assess the ef-
fectiveness of the Cox hazards regression model. 
The ROC curve displayed the effect of grouping 
the model under all classification thresholds19. 
The false positive and true positive rates were 
plotted with respect to the graphical presentation 
of the ROC curve. The area under the ROC curve 
(AUC) is used as a summary value of prognostica-
tion of the ROC curve; the higher the AUC value, 
the better its prognostic accuracy. In the present 
study, the AUC values for the training cohort’s 
1-, 3-, and 5-year overall survival were estimated 
to measure the accuracy of the prognostic model. 
Risk score distribution plots, a heatmap of model 
gene expression, a survival curve comparing the 
high- and low risk groups, and ROC curves for 
individuals in the validation group were imple-
mented to validate the model.

Analysis of Differences Between Low- 
and High-Risk Clusters

Analysis of immune cell differences in the 
training group

A single-sample gene set enrichment analysis 
(ssGSEA) was applied to reflect how the input 
gene checksum was coordinately upregulated or 
downregulated inside a sample20. This study used 
previously reported genes derived from multiva-
riate Cox analyses and corresponding expression 
data to calculate the ssGSEA score for 29 immune 
cells of the immune microenvironment from 264 
patients in the training cohort.
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Investigation of Immune Checkpoint 
Differences of the Training Group

For the training group, the Wilcoxon test and 
the false discovery rate (method) were adjusted 
to identify the differentially expressed immu-
ne checkpoint molecules between the high-risk 
and low-risk categories based on immunological 
checkpoint molecular information. Given the ex-
tensive current research on programmed cell de-
ath 1 (PDCD1, also known as PD1, PD1 derived 
from the last step was selected as the target to se-
arch for its correlation with module genes of the 
risk model.

Verification of Immune Checkpoint 
Differences of the Validation Group

For the external verification group, the risk mo-
del was subsequently applied to the IMvigor210 
cohort (http://research-pub.gene.com/IMvigor-
210CoreBiologies), a real immunotherapy cohort 
consisting of 298 RNA-seq datasets of metastatic 
urothelial carcinoma (mUC) patients who recei-
ved PD-L1 blocking therapy21, in order to assess 
the model’s predictive capability for immunothe-
rapy. Finally, the GSE32062 DataSet was utilized 
to evaluate the effectiveness of ICBs therapy by 
employing TIDE scores (available at https://tide.
nki.nl)22, which are based on the risk scores of the 
prognostic model. Notably, higher TIDE scores in 
this software indicate less effective the ICBs tre-
atment (Supplementary Table I).

Gene Set Enrichment Analysis Between 
Low and High-Risk Categories

Gene expression changes among low and hi-
gh-risk subtypes were examined by employing 
the “limma” package in R. The hallmark gene set 
was obtained from the Molecular Signatures Da-
tabase (MSigDB). The c5.go.v7.4 and c2.cp.kegg 
collections were downloaded, including GO-BP, 
GO-MF, GO-CC, and KEGG. GSEA of the above 
DEGs was performed depending on the “Cluster 
Profiler” R set and the corresponding annotation 
gene sets.

Independent Prognostic Value of 
Risk Module

Univariate Cox regression analysis has shown 
the function of the aforementioned clinicopatho-
logical characteristics in forecasting the progno-
sis of risk models. This study assessed parameters 
such as stage, age, grade, race, tumor residual di-
sease, and risk score. Parameters with a p < 0.05 
were considered significant. To further validate 

the risk model and enhance its effectiveness, the 
factors with p < 0.05 were subsequently included 
in their models to construct a multivariate Cox re-
gression analysis.

Creation of a Prognosis Nomogram for 
Survival Rate

Each parameter was assigned a score accor-
ding to its role in the outcome variables of the no-
mograms. The total scores of all parameters were 
then converted into an estimate of the likelihood 
of outcome events23. In this study, a nomogram 
was developed, incorporating a risk score, to cal-
culate the predictive values of 1-, 3-, and 5-year 
overall survival. The 1-, 3-, and 5-year survival 
calibration curves were plotted and utilized to 
calculate the prognostic accuracy of the above 
prognostic model. The closer the slope was to 1, 
the better its predictive accuracy.

Results

Study Procedure
A flow chart illustrating the data preparation, 

processing, and analysis in this study is shown in 
Figure 1. Data from the transcriptome and clinical 
data from 379 cases of TCGA were obtained to cal-
culate the DEGs of stromal and immune elements 
in OC samples. ESTIMATE method was then em-
ployed to analyze the data. WGCNA was perfor-
med based on these phenotypes, and the key module 
trait and hub genes within the module were obtai-
ned. Finally, 312 DEGs related to the OC immune 
microenvironment were obtained to construct a 
prognostic prediction model for OC. A nine-gene 
model was created through multivariate and univa-
riate Cox regression analysis. A risk score pattern 
was established depending on the expression levels 
of these nine genes in the TCGA training cohort. 
Based on the internal TCGA validating cohort and 
external GEO validating datasets, this study then 
focused on assessing the independent prognostic 
power of the risk model. Finally, the relevance of 
this risk model to immune cell differences, immu-
ne checkpoint differences between the high- and 
low-risk score, and the prognostic value of this mo-
del were investigated in particular.

StromalScore- and 
ImmuneScore-based DEGs

This study conducted a comparison between 
the low- and high-scoring categories to reveal 
1,149 DEGs screened based on ImmuneScore. 

http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
https://tide.nki.nl)
https://tide.nki.nl)
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-I-79.pdf


Y.-R. Wang, W.-L. Wu, X. Cheng, H.-X. Gao, W. Li, Z.-Y. Liu

11618

It included 629 upregulated and 520 downregu-
lated genes. Similarly, 1,132 DEGs (734 upregu-
lated genes and 398 downregulated genes) were 
acquired from StromalScore. The DEGs were 
visualized by volcano plots (Figures 2A and 2B) 

to understand the overall differential gene profile 
distribution. Heatmaps of the top 20 upregulated 
and downregulated DEGs in the immunological 
and stromal elements were also observed (Figures 
2C and 2D).

Figure 1. The overview of research design.
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Construction of Weighted Gene 
Co-Expression Network Analysis

This study performed WGCNA (Figure 3) with 
the 379 identified OSC samples, forming a hie-
rarchical cluster tree (Hclust value = 30,000, with 
four significant outliers removed) (Figure 3A). 
With a soft threshold power and a scale-free R2 
of 4 and 0.9, respectively, the gene distribution 
conformed to a scale-free topology model fit (Fi-
gure 3B). Hierarchical clustering results divided 
genes into WGCNA modules (Figure 3C). The 
module-trait relationships revealed that the mo-
dule-trait “blue” was strongly linked with Immu-
neScore (r = 0.58, p = 1e-35) and StromalScore (r 
= 0.9, p = 2e- 137). Therefore, the “blue” module 
was considered the key gene module. Setting GS 
> 0.5 and MM > 0.6 screened 357 hub genes in the 
ImmuneScore group (cor = 0.97, p < 1e-200) and 
150 hub genes in the StromalScore group (cor = 
0.85, p < 1e-200) from the “blue” module (Figures 
3D and 3E).

Identification of Differentially Expressed 
Genes in Ovarian Cancer

This research performed an intersection analy-
sis on the Venn plots of the DEGs in ImmuneSco-
re, and the immune-regulated hub genes screened 
from the WGCNA identified 311 genes (Figure 
4A). A total of 126 stromal-regulated genes were 
shared by stromal groups (Figure 4B).

Advancement and Validation of an 
Ovarian Cancer Prognostic Risk Model 

Prognostic risk model and risk score 
assessment in a training cohort

This study obtained 312 DEGs from the 
union of the 311 immune-related genes and 
126 stromal-associated genes identified above. 
According to the expression of DEGs and the 
corresponding survival information of 374 OC 
patients (excluding five samples without survi-
val information) obtained from TCGA, 28 DEGs 

Figure 2. Volcano plots and heat maps of DEGs. A-B, Volcano plot of DEGs based on ImmuneScore and StromalScore, 
respectively. C-D, Heatmap of the top 20 DEGs based on ImmuneScore and StromalScore, respectively.
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Figure 3. Results of the weighted gene co-expression network analysis (WGCNA). A, Hierarchical cluster tree with detected 
outliers. B, Network graph of all thresholds. C, Module-ImmuneScore/StromalScore correlations and the corresponding 
p-values. The color panel on the left displays eight modules, and the right scale shows module-trait relationships from –1 (blue) 
to 1 (red). D-E, Scatter plot representation of the correlation between gene significance for ImmuneScore and module “blue”, 
and StromalScore and module “blue”, respectively.
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correlated with prognosis were identified throu-
gh a univariate Cox regression analysis (Figure 
5A). A successive deterioration method was ap-
plied using a multivariate Cox regression model 
for the above single prognostic factor analysis. 
An optimal model obtained nine prognostic ge-
nes (GIMAP7, HTRA4, CCL5, ICOS, CD40LG, 
CD3G, VSIG4, CD2, and ANKRD22). The risk 
score was generated using the linear part of the 
multivariate Cox regression model of these nine 
genes (Equation 2):

Risk score = (expression of GIMAP7) × 
(–0. 169715998) + (expression of HTRA4) 
× (– 1.744715582) + (expression of CCL5) 
× (–0.014980592) + (expression of ICOS) × 
(–0.806180272) + (expression of CD40LG) 
× (– 1.998681563) + (expression of CD3G) 
× (–0.841718491) + (expression of VSIG4) 
× (0.050245582) + (expression of CD2) × 
(0.433625656) + (expression of ANKRD22) × 
(–0.403295818)

Equation (2).

This study considered the risk score of every 
case in the training group, depending on the 
DEG appearance. Compared to the middle, indi-
viduals were categorized into high-risk (n = 132) 
and low-risk (n = 132) categories. The patient’s 
risk curve (red for high-risk values and green for 
low-risk values) and the existing state diagram 
(green for alive, red for death) were mapped ac-

cording to the risk model (Figures 5B and 5C). 
These risk graph results demonstrated that the 
greater the risk, the greater the fatalities.

Authentication of the prognostic risk model 
in a training cohort

The forecast model was validated, and the 
overall survival curve was plotted depending on 
the risk categories. The evidence showed that 
the high-risk category had a significant correla-
tion with a poorer prognosis (p < 0.05) (Figu-
re 5D). Survival analysis with an online tool, 
Gene Expression Profiling Interactive Analysis 
(GEPIA2), clarified the fundamental role of the 
nine genes in the overall survival of OC patients. 
Patients with higher expression levels of CD2, 
HTRA4, ICOS, CD40LG, and CD3G displayed 
better survival (Supplementary Figure 1). In 
contrast, the expressions of the other four signa-
tures had no statistically significant relationship 
with overall survival. These outcomes were due 
to the bias of the research being based on single 
genes rather than multiple genes. Next, the ROC 
curve analysis was performed to calculate sen-
sitivity and accuracy. The AUC values for the 
1-year (0.728), 3-year (0.662), and 5-year (0.727) 
survival were treated as excellent for predictions 
(Figure 5E).

Authentication of the prognostic risk model 
in the validation cohort

This research sequentially plotted the risk 
curve (Figures 6A and 6B), the survival curve 

Figure 4. Venn diagrams showing common (A) immune-regulated and (B) stromal-regulated DEGs.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-35.pdf
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(Figure 6C), and the ROC curve (Figure 6D) for 
the internal validation of the TCGA data. The 
results also showed that the high-risk group had 

poorer survival rates, and the AUC values for 1-, 
3- and 5-year survival were higher than 0.6 in 
the testing cohort. Likewise, the external verifi-

Figure 5. A, Univariate Cox regression analysis of the forest plot of prognostic DEGs for the training cohort. B-C, Risk score 
and survival state analyses between the high- and low-risk groups by signature. The x-axis and y-axis represent the rank of 
patients according to risk scores, and the risk score and survival time, respectively. The dotted line represents the median risk 
score and the corresponding number of patients. D, Kaplan-Meier analysis for OC patients between the high- and low-risk 
groups. E, ROC analysis of the risk model.
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cation through GSE32062 DataSet demonstrated 
that similar results as the internal TCGA verifi-
cation, confirming the robustness of the model 
(Figures 7A-D).

Tumor Microenvironment-Related Study

Investigation of immune cell differences
The ssGSEA was implemented to evaluate pe-

netrating immunocytes to explore the differences 
in immune-related TME traits between the low 
and high-risk categories. The scores of 17 immu-
ne cells were significantly different, including Th 
1 cells, follicular helper T (Tfh) cells, and inflam-
mation-promoting cells (Figure 8).

Analysis of Immune Checkpoint 
Differences

The training cohort
The combination of risk score and immune 

checkpoint gene expression analysis showed that 
17 genes were considerably different between 
the low- and high-risk categories (Figure 9). The 
correlation between the special immunological 
checkpoint molecule PD-1 and the nine model 
genes (Figure 10A-I) showed that PD-1 was po-
sitively associated with the nine hub genes of the 
training cohort (p < 0.01). Thereinto, the higher 

expression levels of CCL5 (R = 0.74, p < 2.2e-
16) (Figure 10D), CD2 (R = 0.79, p < 2.2e-16) 
(Figure 10E), CD3G (R = 0.72, p < 2.2e-16) (Fi-
gure 10F), ICOS (R = 0.70, p < 2.2e-16) (Figure 
10G), GIMAP7 (R = 0.67, p < 2.2e-16) (Figure 
10H), ANKRD22 (R = 0.66, p < 2.2e-16) (Figure 
10I) were considered excellent correlations as R 
> 0.6. The exceptions were CD40LG (R = 0.58, 
p < 2.2e-16) (Figure 10A), HTRA4 (R = 0.55, p < 
2.2e-16) (Figure 10B), and VSIG4 (R = 0.34, p < 
6.8e-12) (Figure 10C) because their R-value was 
relatively low. 

The external validation cohort
Through the risk assessment of 298 mUC 

samples of IMvigor210 based on the risk model 
established in this paper, 43 patients who exhi-
bited a partial response (PR) to anti-PD-1 anti-
bodies had a statistically higher risk score com-
pared to the 25 patients who showed a complete 
response (CR) (p = 0.041) (Figure 11A). This 
finding suggests that a higher risk score, as de-
termined by the prognostic model, is associated 
with a poorer therapeutic response to anti-PD-1 
antibodies. In terms of the GSE32062 samples 
of GEO, Spearman’s correlation test found that 
the risk score is significantly positively correla-
ted with TIDE scores (cor = 0.46, p = 2.93e- 12) 
(Figure 11B), that is to say, the risk score is ne-

Figure 6. Analyses of the testing set. A-B, Risk score and survival state analyses between the high- and low-risk groups by 
signature. C, Kaplan-Meier analysis for OC patients between the high- and low-risk groups. D, ROC analysis of the risk model.
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Figure 7. Analyses of external validation of the GEO-OC data. A-B, The plot exhibit the risk score and survival state analysis 
between the high- and low-risk group by signature, (C) Kaplan-Meier analysis between the high- and low-risk groups, and (D) 
ROC analysis of this risk model.

Figure 8. Analyses about immune cells differences between the high- and low-risk groups of the training set.
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gatively related with the efficacy of ICBs the-
rapy. At the same time, 68.00% (102/150) of the 
ICB-effective group and only 3.45% (2/58) of the 
ICB-ineffective group were in the low-risk set 
(p = 2.51e-16) (Figure 11C). The verification re-
sult of the GEO is consistent with the results of 
IMvigor210.

Gene set enrichment analysis 
enrichment analysis

GSEA analysis was carried out using the “Clu-
ster Profiler” R package to compare the low-risk 
and high-risk clusters with the average risk score, 
as the risk score was found to be associated with 
the survival of OC patients. In the low-risk group, 
the DEGs were found to be enriched in several im-
mune-related processes (Figure 12A), including 
autoimmune thyroid disease, antigen processing 
and presentation, the intestinal immune network, 
and IGA production. However, the DEGs were 
enriched in only one pathway for the high-ri-
sk group (not displayed). When considering the 
collection defined by MSigDB, the DEGs in the 
low-risk group were mainly enriched in various 
immune cell events, including adaptive immune 
response, positive regulation of the immune re-
sponse, and regulation of T cell activation (Figure 
12B). In the high-risk group, the genes improved 
mRNA translation and protein synthesis (Figure 
12C). These outcomes suggested that the risk mo-

del may serve as a potential indicator of the TME 
status in OC patients. 

Assessment of the Independent 
Prognostic Power of the Risk Model

To investigate the relationship between pro-
gnosis and clinical and pathological features of 
OC patients, age, race, tumor stage, tumor grade, 
residual tumor disease, and risk score in the pre-
dictive risk model were included in the univariate 
Cox regression analysis. The outcomes showed 
that only the p-values of residual tumor disease 
and the risk score were lower than 0.05 (Figure 
13A). Consequently, these two clinical factors 
were incorporated into the multivariate Cox re-
gression analysis. The p-value of the risk score 
was identified as having prognostic significance 
(Figure 13B). Therefore, the prognostic value of 
the risk score was unaffected by other clinicopa-
thological features. 

Nomogram Construction for 
Survival Prediction

According to the total scores, this study con-
structed a prognostic nomogram with risk scores 
to predict the 1-, 3-, and 5-year overall survival. 
The greater the score, the lower the overall sur-
vival rate (Figure 14A). Calibration curves were 
plotted to predict OC patient survival probabi-
lities at 1-, 3-, and 5-year in the training group 

Figure 9. Analyses about immune checkpoint molecules differences between the high- and low-risk groups of the training set.
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Continued

Figure 10. A-I, Scatter plots showing the correlation of PD-1 with the expressions of the nine genes using the Pearson 
coefficient. The blue line in each plot is a fitted linear model indicating the level of PD-1 along with model gene expression.
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(Figures 14B, 14C, and 14D). The closer the slope 
was to 1, the higher the prediction accuracy. The 
results of forecasting the 1-, 3- and 5-year overall 
survival showed that the model’s accuracy in fo-
recasting prognosis was very high, indicating that 
the prediction model was valid.

Discussion

OC patients experience poor prognoses, and 
researchers have developed prognostic models to 
ameliorate this condition. The use of risk models 
to predict the survival of OC patients dates back to 
1,998, although only 40 patients were included24. 

An integrated clinical-and-gene model, which 
was assumed to be superior to the clinical-alone 
model, was constructed in 2,016 based on mRNA 
and microRNA expression profiles from TCGA25. 
Wang et al26 also stressed the importance of deve-
loping predictive markers for OC. Therefore, this 
study aimed to develop a new, effective, and accu-
rate gene risk prediction model.

OC is tumor immunogenicity, and TME is a 
complex network composed of immune cells, 
stromal cells, cancer cells, and the surrounding 
signal molecules. It is critical for tumorigenesis 
and development. Evidence shows that TILs play 
an active role in clearing ovarian tumors and im-
proving clinical outcomes by recognizing tumor 

Figure 10 (Continued). A-I, Scatter plots showing the correlation of PD-1 with the expressions of the nine genes using 
the Pearson coefficient. The blue line in each plot is a fitted linear model indicating the level of PD-1 along with model gene 
expression.
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antigens and secreting cytokines characteristic of 
effector cells27. Stromal components suppressed 
the antitumoral immune response in some cases. 
Yang et al28 reported high immunological and 
stromal scores related to lymphatic and venous 
invasion in OC and higher stromal and lower im-
mune scores for healthy cells. These findings illu-
strated that the role of stromal and immune cells 
in patient prognosis in OC is distinct and compli-
cated at different stages.

Therefore, this study developed a nine-gene 
predictive model with significant association with 
overall survival based on the close correlation 
between the immune system and patient outco-
mes in OC, indicating that immune and stromal 
cells had a vital function in diagnosing OC. Other 
studies31 showed good overall survival rates in 
gastric cancer29 and lung adenocarcinoma30, asso-
ciated with greater stromal-immune scores, whi-

le low stromal scores were good factors in colon 
cancer patients. However, this study found that 
a reduced stromal-immune risk score was asso-
ciated with a good survival rate in OC patients, 
indicating that stromal-immune scores might play 
distinct roles in the prognosis of different tumors. 
Based on the results, the prognosis-related model 
might significantly change immunotherapeutic 
effects, influenced by the heterogeneity in OC, 
and provide potential guidance for prognostic 
stratification.

In the risk score formula, overexpression of 
VSIG4 and CD2 had a positive and significant ef-
fect, demonstrating that these could increase the 
risk score and were associated with a poor pro-
gnosis. Seven genes (GIMAP7, HTRA4, CCL5, 
ICOS, CD40LG, CD3G, and ANKRD22) had a ne-
gative coefficient, contributing to improved ove-
rall survival. VSIG4, a new macrophage protein 

Figure 11. A, External Validation of IMvigor210. The risk score differences between groups with different reactions to anti-
PD-1 antibodies. PD: progressive diseases (n = 167), SD: stable disease (greater than 6 months, n = 63), PR: partial response (n 
= 43), CR: complete response (n = 25). External Validation of GSE32062 was exhibited by (B) and (C): (B) is the relationship 
between the risk score and the TIDE score and (C) is the relationship between the risk score and the respond rate to ICB.
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from the B7 family, suppressed T-cell activation 
and promoted OC growth32. Multiple studies33 
about solid tumors have confirmed that CD2 is 

associated with prognosis. CD2 is correlated with 
a better prognosis in breast carcinoma and partici-
pates in tumor invasion. For ovarian, endometrial, 

Figure 12. GSEA of samples with high- and low-risk groups. A, The top 10 enriched KEGG pathways of the low-risk group. 
Each line represents one pathway with a unique color Positively correlated pathways are located above the x-axis, while 
negatively correlated pathways are below the x-axis. B, The top 10 enriched GO terms in the low-risk group. C, The top 10 
enriched GO terms in the high-risk group.
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Figure 13. A, Univariate and (B) multivariate Cox prognostic analyses of the training cohort.

Figure 14. Nomogram of 1-, 3-, and 5-year overall survival (A-D) Calibrations of 1-, 3-, and 5-year overall survival.
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and colorectal malignancies, the downregulation 
of CD2 weakens PD-1 immunotherapy efficacy 
by reducing antitumor T-cell responses34. Rese-
archers have reported that CD2 plays a role in T, 
natural killer (NK) cell activation, and signaling 
pathways in immunoregulation35. However, this 
paper found that CD2 was related to increased 
risk scores and contributed to a poor prognosis, 
suggesting that CD2 might be the biological hal-
lmark of tumor survival. GIMAP7 predicts better 
survival status in most tumor types36, agreeing 
with this study’s finding. Schwefel et al37 found 
that GIMAP7 directly impacted survival and ho-
meostasis regulations, and it was positively rela-
ted to the high quantity of CD8+ and CD4+ T cel-
ls in the TME. HTRA4 is an apoptosis regulator 
that increases cell cycle arrest in the G2/M phase, 
stimulates cell death, and participates in oncoge-
nesis in brain, breast, and prostate tumors38.

Several researchers39 have reported that CCL5 
modulates immune cell infiltration (NK cells and 
T cells) in solid cancers. Therefore, CCL5 might 
be a perfect target for predicting OC cell survival. 
Similar to previous work40, this study found that 
CCL5 was a good signature to the high overall 
OC patient survival. ICOS was found to be highly 
correlated with an enhanced total life cycle in the 
TCGA ovarian tumor cohort. High-grade serous 
ovarian cancer (HGSOC) has demonstrated the 
pro-apoptotic effects of CD40LG41. CD3G, who-
se defect is associated with T-cell immunodefi-
ciency42, has been proposed as a novel biomarker 
for tumor development through its modulation of 
the T-cell receptor complex (TCR) signaling pa-
thway43. For lung cancer, ANKRD22 promotes cell 
propagation by increasing the expression of E2F1 
and facilitating cell cycle progression44. In con-
trast, ANKRD22 is a tumor suppressor in prostate 
cancer45. ANKRD22 can play a beneficial or detri-
mental role in the tumor context, and its effects on 
the tumorigenesis of OC need to be investigated. 
This study found that the oncogenesis and pro-
gnosis of OC involve multiple TME signatures, 
providing new insights into immunotherapy pro-
tocols for OC.

Furthermore, this study conducted ssGSEA 
and found that 17 functional immune cells were 
associated with risk score changes, indicating that 
specific immune cells in TME affected the risk 
score and prognosis of OC. It was found that the 
accumulation of these immune cells, such as Tfhs, 
TILs, and regulatory T cells (Tregs), increased in 
patients with lower risk scores. Studies46 have in-
dicated that TILs, which include macrophages, T 

cells, B cells, and NK cells, play a vital role in 
controlling solid tumor growth. For ovarian can-
cer, the TILs infiltration is prognostic for incre-
ased overall survival, while increased immuno-
suppressive Tregs are related to poor outcomes. 
Antigen-presenting cells (APCs) mainly comprise 
dendritic cells (DCs), macrophages, and B cells. 
Depending on the targeted cell types, APCs can 
be defined by their different abilities to capture, 
process, and present exogenous antigens to T-cel-
ls. As for solid tumor regions, DCs are considered 
the dominant cell populations for tumor antigen 
uptake and presentation. Similar to APCs, DCs 
initiate antitumor T-cell activation by transmit-
ting tumor antigens to the draining lymph nodes, 
bridging the gap between innate and adaptive im-
munity, and regulating immunotherapy outcomes 
within tumors47. This study theoretically indica-
ted that the risk score-based predictive model mi-
ght be a useful biomarker for OC therapy. It could 
enhance the immunogenicity of cancer and che-
mo-preventive immune responses33. 

This study identified immune checkpoint mo-
lecules as important regulatory factors of the an-
titumor immune response. ICBs could block the 
immune escape of the tumor and reactivate the 
immunological system by eliminating critical 
targets in the tumor immune tolerance process48. 
Surprisingly, 17 immune checkpoint molecules 
were closely related to the predictive model in 
terms of differential expression. This observation 
indicated that ICBs could foster clinical success. 
As a most widely used ICBs, anti-PD-1 therapy 
has yielded encouraging results in OC patients49. 
Some researchers50 suggest that inhibiting indo-
leamine-2, 3-dioxygenase1 (IDO1) in tumor-re-
populating cells (TRCs) could pave the way for 
the development of future PD-1-targeting drugs. 
Preclinical experiments in murine OC models 
showed that combining PARP inhibitors and 
PD-1 blockades could lead to significant effects 
in OC51. This study’s differential analysis demon-
strated prominent interactions between the level 
of PD-1 and the nine genes of the predictive mo-
del. This result enabled a better understanding of 
PD-1 therapy in OC immunology and might con-
stitute a new drug development method for targe-
ting PD-1 expression. 

GSEA elucidated biological functions to analy-
ze the correlation between the values of the predi-
ctive model and the immune microenvironment. 
This study’s results suggested that immune pro-
cesses were significantly improved in the low-ri-
sk score group. These processes included antigen 
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presentation and processing, cytokine-cytokine 
receptor relations, and chemokine signaling pa-
thways. Similarly, GO items, corresponding to 
active immune responses, were more prevalent 
in low-risk OC patients. These items included 
T-cell activation, lymphocyte activation, adaptive 
immune response, leukocyte cell-cell adhesion, 
positive cell adhesion regulation, and positive im-
mune response regulation. However, there were 
no immune-related signaling pathways and GO 
items in the high-risk score set. The findings in 
the low-risk score group were consistent with 
the currently accepted view that activating spe-
cific immune responses plays a facilitating role 
in suppressing malignant progression and death. 
Therefore, this study confirmed that a forecasting 
framework based on risk score could be used as a 
suitable biomarker for tumor immunotherapy be-
cause of its robustness and good applicability in 
clinical practice.

Limitations
This study has some limitations. Despite in-

ternal validation and the nomogram, the statisti-
cal bias of the risk model could not be avoided 
completely without external validation datasets. 
TCGA-OC and ICGC-OC datasets, bioinforma-
tics analysis, and qRT-PCR analysis confirmed 
the predictive value of the risk model. However, 
additional experimental validation, such as im-
munohistochemistry (IHC) assays and western 
blotting analysis, is essential to validate these fin-
dings prospectively.

Conclusions

In summary, we have successfully developed a 
prognostic signature comprising nine genes that 
exhibit robust predictive value. This study signifi-
cantly enhances the effectiveness of immunotherapy 
treatment for patients with ovarian cancer (OC).
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