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Abstract. – DNA methylation is an epigene-
tic mechanism involving the transfer of a meth-
yl group onto the C5 position of the cytosine to 
form 5-methylcytosine (5mC). In general, DNA 
methylation in cancer is associated with the re-
pression of the expression of tumor suppres-
sor genes (TSG) and the demethylation with the 
overexpression of oncogenes. DNA methylation 
was considered a stable modification for a long 
time, but in 2009, it was reported that DNA meth-
ylation is a dynamic modification. The Ten-Elev-
en-Translocations (TET) enzymes include TET1, 
TET2, and TET3 and participate in DNA de-
methylation through the oxidation of 5mC to 
5-hydroxymethylcytosine (5hmC). The 5hmC ox-
idates to 5-formylcytosine (5fC) and 5-carboxyl-
citosine (5caC), which are replaced by unmod-
ified cytosines via Thymine-DNA Glycosylase 
(TDG). Several studies have shown that the ex-
pression of TET proteins and 5hmC levels are 
deregulated in gynecological cancers, such as 
cervical (CC), endometrial (EC), and ovarian (OC) 
cancers. In addition, the molecular mechanisms 
involved in this deregulation have been report-
ed, as well as their potential role as biomarkers 
in these types of cancers. This review shows the 
state-of-art TET enzymes and the 5hmC epigen-
etic mark in CC, EC, and OC.
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Introduction

DNMT1, DNMT3A, and DNMT3B proteins 
are canonical members of the DNA methyltran-
sferases (DNMTs) family with enzymatic activity, 
while DNMT2 and DNMT3L proteins are nonca-
nonical members of this family without enzymatic 
activity. DNMT1 is a DNMT enzyme of mainte-
nance, while DNMT3A and DNMT3B are DNM-
Ts enzymes of novo1,2. DNMTs are enzymes that 
catalyze the addition of a methyl group from S-a-
denosyl-L-methionine (SAM or AdoMet) to the C5 
position of cytosine nucleotides (5-methylcytosine 
or 5mC), followed by guanine nucleotides (known 
as CpG) in DNA3,4. Rich regions in CpG dinucleo-
tides are called CpG islands and are located mainly 
in gene promoters. In general, the methylation in 
CpG islands is associated with transcriptional re-
pression; for instance, the abnormal methylation in 
the pRB Tumor Suppressor Gene (TSG) promoter 
is associated with its transcriptional silencing in 
human cancers5,6. DNA methylation was conside-
red a relatively stable modification7,8 until 2009, 
when it was shown that DNA methylation is a 
dynamic modification that involves the participa-
tion of another modification on DNA, known as 
5-hydroxymethylcytosine (5hmC)9,10.

The 5hmC was identified for the first time in 
bacteriophages in 195211. In mammals, this mo-
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dified cytosine was observed in tissue samples 
from the brain and liver of rats, mice, and frogs 
in 197212. Later, the presence of 5hmC in Purkinje 
and Granule neurons from the murine cerebel-
lum was reported in 20099. At the same time, it 
was reported that the TET1 enzyme catalyzes the 
oxidation of 5mC to 5hmC10. On the other hand, it 
was reported that TET2 and TET3 enzymes also 
catalyze the oxidation of 5mC to 5hmC13,14. Alte-
rations in the TET1 gene were discovered in 2003, 
and it was observed to TET1 as a fusion partner on 
chromosome 10q22 with the MLL gene on chro-
mosome 11q23, resulting in Ten-Eleven chromoso-
mal Translocation t (10,11) (q22, q23) in rare cases 
of acute myeloid and lymphocytic leukemias15,16. 
Similarly, TET2 and TET3 alterations were disco-
vered in myeloproliferative neoplasms in 200917-19.

DNA abnormal methylation is a common 
event in several human diseases, such as human 
cancers20-22. Alterations in DNA demethylation 
are critical events in carcinogenesis, tumor pro-
gression, and resistance to treatment in human 
cancers, including gynecological cancers. This 
review summarized the state-of-art of TET en-
zymes and 5hmC in cervical (CC), endometrial 
(EC), and ovarian (OC) cancers.

Structure of TET Enzymes

TET1 gene is located in the 10q21 human chro-
mosome region, contains 12 exons, and encodes a 
protein of 2,136 amino acids (aa)23. TET1 proteins 
have an isoform due to the use of an alternative 
promoter, known as TET1ALT, which has 1,472 aa 
and lacks the CXXC domain; however, it retains its 
catalytic activity24. TET2 gene is located in the 4q24 
human chromosome region, contains 11 exons, and 
encodes a protein of 2,002 aa. TET2 protein (known 
as isoform 1) has two short isoforms (1,165 and 1,194 
aa, respectively) due to alternative splicing; however, 
only isoform 1 has catalytic activity17,18,23,25. More-
over, the TET2 protein isoform 1 lacks the CXXC 
domain; however, a phylogenetic and chromosome 
neighborhood analysis identified the CXXC4 gene 
(also known as the IDAX gene) in the opposite orien-
tation to the TET2 gene. CXXC4 gene encodes to the 
CXXC domain of TET2, which is separated by 650 
kb and transcribed in the opposite orientation from 
the TET2 gene, suggesting that a local chromosomal 
inversion separated the CXXC domain from the 
TET2 gene26. TET3 gene is located in the 2p13 human 
chromosome region, contains 11 exons, and encodes 
a protein of 1,795 aa23,27 (Figure 1).

TET proteins have a common CXXC zinc fin-
ger domain at the amino-terminal region and a 
conserved catalytic domain (CD) that consists of 
a cysteine (Cys) rich region and a Double-Stran-
ded β-Helix (DSBH) domain at the carboxyl-ter-
minal region. Specifically, the DSBH domain 
contains eight conserved anti-parallel β strands 
with a highly conserved His-Xaa-Asp-(Xaa) 
n-His motif (Xaa is any aa) and a conserved Arg 
aa that binds the Fe (II) and 2-oxoglutarate (OG) 
cofactors. Two zinc fingers bring the DSBH 
domain and Cys-rich region to form a compact 
catalytic domain26,28 (Figure 1).

Action Mechanism of TETs Enzymes

TET1, TET2, and TET3 enzymes are members 
of the TET family, which are Fe (II) and 2-OG 
dependent methylcytosine dioxygenases10,13,14. 
TET enzymes participate in “active” and “pas-
sive” DNA demethylation (Figure 2). In “active” 
DNA demethylation, TET proteins catalyze the 
oxidation of 5mC to 5hmC10,13,14. 5hmC is con-
verted to 5-formylcytosine (5fC) by TET enzy-
mes-mediated oxidation, subsequently, the 5fC is 
oxidate to 5-carboxylcytosine (5caC)29. Finally, 
5fC and 5caC are excised by Thymine-DNA 
glycosylase (TDG), generating abasic sites, whi-
ch are replaced by unmodified cytosines throu-
gh the Base-Excision Repair (BER) pathway30-32. 
In “passive” DNA demethylation, TET enzymes 
convert 5mC to 5hmC, which is poorly recogni-
zed by the UHRF1/DNMT1 complex; thus, DNA 
methylation is lost passively through successive 
cell divisions (Figure 2)33.

Some studies34,35 have shown that 5hmC is pre-
sent in different normal human tissues. However, 
5hmC levels and expression of TET enzymes are 
down-regulated in various human cancers36-38, 
including gynecological cancers, such as cervi-
cal, endometrial, and ovarian.

Cervical Cancer

Cervical cancer (CC) ranks as the second most 
common gynecological cancer in incidence and 
mortality, with 604,127 new cases and 341,831 
new deaths estimated in 2020 worldwide39. A total 
of 14,100 new cases and 4,280 new deaths were 
estimated in the United States in 202240. Accor-
ding to the Human Development Index (HDI), 
CC ranks second in incidence and mortality in 
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countries with HDI lower39. It is well known that 
the main risk factors are infection by High Ri-
sk-HPV (HR-HPV), immunosuppression by HIV, 
smoking, a high number of full-term pregnancies, 
long-term use of oral contraceptives, multiple 
sexual partners, and first sexual intercourse at a 
young age41-43. Moreover, there are key epigenetic 
factors in cervical carcinogenesis, including DNA 
methylation, which is a well-characterized epige-
netic modification in CC44, while the role of TET 
proteins and 5hmC remains largely unknown.

TET1 expression is decreased in CC tissue 
samples compared with non-cancerous cervical 
tissue samples and correlates with advanced FI-
GO stage, advanced grade of differentiation, and 
squamous histological type45. Interestingly, in 
cervical precancerous lesion tissue samples, the 
TET1 expression is increased compared to squa-
mous epithelium without lesion tissue samples46. 
TET2 expression is decreased in CC tissue com-
pared with matched non-tumor tissue samples 

and correlates with poor Overall Survival (OS) 
and Disease-Free Survival (DFS), advanced FI-
GO stage, advanced tumor grade, lymph node 
metastasis, vascular invasion, and low 5hmC 
levels47. In addition, TET2 expression negatively 
correlates with the methylation level in its promo-
ter and positively correlates with immune-infil-
trating tumor-associated fibroblasts and immuni-
zation routes, such as activated B and CD4 T cells 
in patients with CC48. The 5hmC levels decrease 
in CC and correlate with poor OS and DFS47,49.

Some frameshift mutations in the TET1 gene 
were identified in recurrent tumors after radiothe-
rapy compared with a treatment-naive tumor in 
CC, suggesting that alterations in the TET1 gene 
could be involved in radioresistance50. In addi-
tion, the mutation (R1516*/Q) was identified in 
the TET2 protein in a patient with CC48. 

Little is known about the molecular mechanism 
involved in TET1 deregulation in CC. The aber-
rant methylation in the TET1 promoter negatively 

Figure 1. Structure of TET1, TET2, and TET3. A, The structure of the TET1 (upper), TET2 (middle), and TET3 (lower) genes 
are shown. Black box: exon. Yellow box: CpG island. B, Structure of TET proteins. The structure of TET1 (upper), TET2 
(middle), and TET3 (lower) proteins is shown. Red box: CXXC domain. Purple box: Cys-rich region. Brown box: domain of 
interaction with Fe(II) (left) and 2-OG (right). CD: Catalytic domain. DSBH: Double Stranded Beta Helix domain.
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correlates with its expression in CaSki, HeLa, and 
SiHa CC cells, but not C-33A CC cells51. On the 
other hand, the long noncoding RNA (lncRNA) 
HOTAIR indirectly inhibits TET1 expression via 
methylation of its promoter in HeLa cells, and 
TET1 re-expression decreases the Wnt/β-catenin 
signaling pathway by demethylation in promoters 
of negative regulators of this signaling pathway52. 
Moreover, Snail/PRMT5/NuRD complex inhibits 
the TET1 expression; this increases the 5mC levels 
and decreases the 5hmC levels in vivo and in vitro53. 
Interestingly, TET1 promotes stemness through 
an increase in SOX2 and NESTIN expression 
via 5hmC, and inhibits Epithelial-Mesenchymal 

Transition (EMT), decreasing ZEB1 and VIMEN-
TIN expression through its interaction with LSD1 
and EZH2 in Z172 and Z183 precancerous cervi-
cal cells, avoiding the malignant transformation of 
HPV-immortalized cells46. 

Several studies have reported the use of CD of 
TET enzymes to induce the expression of TSG 
via demethylation of their promoters in CC. In 
this sense, TET1CD-dCas9 fusion protein incre-
ases 5hmC levels and promotes site-specific de-
methylation in the BRCA1 gene promoter, incre-
asing its expression and inhibiting the cell proli-
feration of HeLa cells54. Another TET1CD-dCas9 
fusion protein promotes the demethylation in the 

Figure 2. Mechanism of DNA 
demethylation by TET enzymes. Black 
arrow: DNA methylation. Red arrow: 
Passive demethylation. Blue arrow: 
Active demethylation. Black arrow 
with the dashed line: Indicate the 
substrate and products of oxidation.
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Eph7A gene promoter and increases its expression 
in SiHa and Ca Ski cells55. An artificial transcrip-
tion factor fused to the TET2 CD in combination 
with Trichostatin A (TSA) treatment increases 
EPB41L3 expression in Ca Ski CC cells56. Simi-
larly, an artificial transcription factor fused to 
the TET2 CD increases TFPI2 and C13ORF18 
expression by demethylation of their promoters, 
which decreases the cell proliferation, viability, 
and colony formation and increases apoptosis in 
CC-11, Ca Ski, and HeLa CC cells57. 

Endometrial Cancer

Endometrial cancer (EC) is the third gynecolo-
gical cancer most frequent worldwide, with an esti-
mated 417,367 new cases and 97,370 new deaths in 
202039. Its incidence is increasing in countries with 
very high HDI, such as the United States, where 
the EC ranks as the second most common cancer 
among women, with an estimated 65,950 new cases 
and 12,550 new deaths in 202240. The main risk 
factors are obesity, resistance to insulin, advan-
cing age, early menarche, late menopause, chronic 
anovulation, nulliparity, and menopausal hormonal 
use58-60. The role of DNA methylation in EC61 is 
well known; however, the role of TET enzymes and 
5hmC has not been well characterized.

TET1 and TET2 expressions are decreased, 
and TET3 expressions are increased in EC tis-
sue samples compared with normal endometrial 
tissue samples. TET1 and TET2 expressions are 
lower in advanced FIGO stages, advanced hi-
stological differentiation grade, and lymph node 
metastasis62,63; in contrast, TET3 expression is hi-
gher in these groups. TET1 and TET2 expression 
positively correlates with 5hmC levels; however, 
only low TET1 expression correlates with shorter 
OS62,64. In contrast, the expression of the TET1ALT 
isoform is increased in EC tissue samples compa-
red with normal endometrial tissue and correlates 
with shorter OS in patients with EC24. TET2 
expression positively correlates with immuniza-
tion routes, including routes as activated CD8 T 
and dendritic cells, and some neoantigens, while 
it negatively correlates with tumor mutational 
burden and the tumor microenvironment in pa-
tients with EC. Moreover, the methylation in the 
TET2 gene is increased and correlates with poor 
OS48. Finally, 5hmC levels are downregulated in 
patients with EC and correlate with clinical sta-
ge, differentiation, depth of myometrial invasion, 
lymph node metastasis, and OS63. 

Some Single Nucleotide Polymorphisms (SNPs) 
and mutations in TET2 have been identified, such 
as rs7679673, which is located ~6 kb upstream of 
TET2 gene and C allele is associated with the risk 
of EC in women of European ancestry65. Another 
SNP is the rs6839705 SNP, localized in an intron 
of the TET2 gene, and the C allele is associated 
with the risk of EC in European and American 
women66. A missense mutation was identified in 
the TET2 gene in the Taiwanese population with 
EC. The mutation is C˃T, localized to 3,116 nucle-
otides from the TET2 encoding gene and induces 
a change of Ser1039Leu in the TET2 protein67. 
Recently, it was reported that the phosphoryla-
tion in S38 of TET2 protein is more increased in 
patients with EC (particularly in grade 2) than in 
non-tumoral tissue samples. Other genetic alte-
rations, such as missense mutations (most com-
monly R1516*/Q) in the TET2 gene were identified 
in 9.07% of patients with EC. These genetic alte-
rations were associated with a good OS, Progres-
sion-Free Survival (PFS), and Disease-Specific 
Survival (DSS) in female cancers, including EC48.

MiR-191 binds to TET1 mRNA 3 -́UTR and de-
creases its expression; however, TET1 re-expression 
increases APC expression via demethylation of its 
promoter, inhibiting cell viability of Ishikawa and 
HEC-1A EC cells68. TET3 induces the expression 
of maker genes of EMT, such as TWIST1 and 
ZEB1, through the binding to chromatin and histone 
modifications (H3K4me3, H2BK120Ub, and H2B 
S112GlcNAc) in HEC-1A and Ishikawa EC cells69. 

Studies63-74 have suggested that TET enzymes 
could be potential therapeutic targets in EC; IDH1 
increases TET1 expression, which induces Nrf2 
expression via demethylation of its promoter in 
Ishikawa and Spec2 EC cells. Nrf2 induces ci-
splatin and paclitaxel resistance and cell growth. 
Metformin treatment decreases IDH1, TET1, 
and Nrf2 expression and promotes cisplatin and 
paclitaxel sensitivity70. Metformin increases via 
AMPK the TET2 expression and 5hmC levels in 
Ishikawa and HEC-1A EC cells, decreasing cell 
proliferation63. Progestin is another chemothera-
peutic drug used in EC therapy, and TET sensiti-
zes the EC cells to this treatment. Mechanistical-
ly, NrCAM increases the TET1 expression, which 
induces the PR expression via hydroxymethyla-
tion of the promoter of the PRB gene in Ishikawa 
and ECC-1 EC cells71. Unfortunately, EC patients 
need high doses of progestin for a long time, indu-
cing resistance. Therefore, TET1 induces GLO1 
expression via demethylation of its promoter, 
which is involved in resistance to progestin in 
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Ishikawa and ECC-1 EC cells72. Similarly, TET1 
and TET2 promote a Cancer Stem Cell (CSC) 
state by increasing the NANOG, SOX2, and 
OCT4 expression via hydroxymethylation of their 
promote, promoting the resistance to progestin 
treatment in EC cells. However, embryonic mi-
croenvironment-derived ALPP suppresses TET1 
and TET2 expression, promoting the differentia-
tion of CSC EC cells and reducing the resistance 
to progestin treatment73. Finally, Progesterone and 
E2 treatment decrease TET1 expression in AN3 
EC cells. However, TET1 and TET3 expression is 
increased in RL95-2 EC cells74.

Insulin resistance is a risk factor for EC58, and 
interestingly, the TET1 expression is increased 
in EC tissue samples with insulin resistance 
compared with EC tissue samples without insulin 
resistance75. Insulin increases TET1 expression, 
which induces the GPER expression, activates 
the PI3K/AKT/Cycling D1 signaling pathway, 
and promotes cell proliferation in Ishikawa and 
HEC-1A EC cells76. Mechanistically, insulin in-
duces TET1 expression through PI3K/AKT si-
gnaling pathway. TET1 induces GPER expression 
by increasing the 5hmC levels of its promoter 
in Ishikawa and HEC-1A EC cells75. Insulin 
resistance promotes inflammation, and chro-
nic inflammation induces macrophage (CD68+ 
CD163+) infiltration, promoting EC cell prolifera-
tion. Macrophages produce inflammatory cytoki-
nes, including IL17A; these cytokines bind to 
IL17R to induce TET1 expression. TET1 induces 
ERα expression through an increase in 5hmC le-
vels of its promoter. Lastly, ERα activates PI3K/
AKT signaling pathway in HEC-1A EC cells77.

Ovarian Cancer

Ovarian cancer (OC) is the fourth most com-
mon gynecological cancer in incidence and mor-
tality worldwide, with an estimated 313,959 new 
cases and 207,252 new deaths in 202239. In the 
United States, there were an estimated 19,880 
new cases and 12,810 new deaths in 202240. The 
main risk factors are family history, obesity, 
smoking, endometriosis, hormone replacement 
therapy use, nulliparity, and mutations in BR-
CA1 and BRCA2 TSG78-80. Some studies81-83 have 
reported the role of DNA methylation in OC; ne-
vertheless, the underlying molecular mechanism 
of TET enzymes and 5hmC are largely unknown.

TET1 expression is decreased in several OC 
cells, and OC tissue samples compared with 

normal ovary tissue samples and correlates with 
advanced stages in patients with serous OC and 
OS51,84,85. In contrast, the expression of the TE-
T1ALT isoform is increased in OC tissue samples 
and correlates with poor OS24. Conversely, TET1 
expression is increased in epithelial OC tissue 
samples, as well as in CSC obtained from OC 
cells (A2780, HeyC2, ES2, SKOV3, and CP70) 
and patients compared with benign tumor tissue 
samples and correlates with 5hmC levels and po-
or PFS. According to EC subtypes, TET1 expres-
sion is increased in papillary serous ovarian 
adenocarcinoma, serous tubal intraepithelial car-
cinomas, and HGSOC tissue samples compared 
with normal ovarian and normal oviduct surface 
epithelium brushing samples. Interestingly, TET1 
expression increases sequentially from normal 
fallopian tubal epithelium to invasive high-grade 
serous ovarian cancer in OC patients86.

The TET2 expression is decreased in epithelial 
OC tissue samples and SKOV-3, COC1, A2780, 
and ES-2 OV cells, compared with normal ova-
rian tissue samples and HOSEpiC cells. Low 
TET2 expression correlates with advanced sta-
ges, advanced differentiation grade, metastatic 
lymph node, vascular thrombosis, poor OS, and 
poor PFS in epithelial OC patients, particularly in 
endometroid subtype, grade 1-2, debulk optimal, 
and stages 1-248,87,88. Interestingly, some parame-
ters, such as a poor OS, PFS, and the presence of 
mutated p53 were associated with a high TET2 
expression in patients with OC. Moreover, the 
TET2 promoter is methylated and negatively cor-
relates with its expression in OC patients. TET2 
expression positively correlates with immune in-
filtrating-tumor-associated fibroblasts48. 

TET3 expression is decreased in OC tissue 
samples compared with normal ovarian tissue 
samples, particularly in serous histopathologi-
cal subtype; it is associated with an advanced 
differentiation grade and decreases according to 
the clinical stages and pathological grades89,90. 
Conversely, a bioinformatic study showed that 
TET3 expression is increased in OC tissue sam-
ples compared to normal ovarian tissue samples, 
particularly in endometrioid adenocarcinoma and 
clear cell adenocarcinoma tissue samples compa-
red with normal ovarian tissue samples. Similarly, 
TET3 expression is higher in borderline tumors 
and advanced stage in serous OC tissue samples, 
and it correlates with poor OS in OC, serous type, 
high grade, and advanced stages in OC patients91. 

The 5hmC levels are decreased in epithelial 
primary and metastatic OC tissue samples, as 
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well as ES-2 and HO8910 OC cells compared 
with non-tumoral ovarian tissue samples. Low 
5hmC levels correlate with advanced stages, ad-
vanced differentiation grade, metastatic lymph 
node, vascular thrombosis, and poor OS in OC 
patients84,87. The 5hmC levels are decreased in 
patients with cisplatin resistance compared with 
patients who responded to cisplatin therapy, and 
low 5hmC levels correlate with poor OS and PFS 
following cisplatin-based chemotherapy92.

Several mutations have been identified in TET 
genes or proteins in OC patients, including the 
non-synonymous93-96. Single Nucleotide Variant 
(SNV) in exon 2 of the TET1 gene (c.C767T:p.
A256V) was identified in a OC patient with al-
terations in BRCA phenocopies93. On the other 
hand, several mutations with changes in amino 
acids (PHGVS), such as the p.Ser473delinsTerA-
la, p.Tyr1679fs, p.Val1426fs, p.His1380Tyr, p.Cy-
s1378Arg, p.Gln876*, p.Ser1246Leu, p.Gln769fs, 
p.Gln273*, p.Glu283fs, p.Ala1283Pro, and p.Ly-
s1197Glu were identified  in TET2 gene in OC 
patients94. A copy number loss in the TET2 gene 
was found in Korean patients with ovarian clear 
cell carcinoma subtype95. The rs6839705 SNP 
is located in an intron of the TET2 gene and is 
associated with the risk of OC in European and 
American women66. A frameshift deletion located 
in the TET2 gene (p.C1281Vfs*82) was reported 
in patients with OC adult-type granulosa cell tu-
mor96. Finally, the nonsynonymous SNV in exon 3 
of the TET2 gene (c.C86G:p.P29R) was identified 
in a patient with a tumor of BRCA phenocopies93.

Studies84-92 have reported the molecular me-
chanism of TET proteins in OC. TET1 incre-
ases 5hmC levels, decreases cell proliferation 
in ES-2 OC and A2780 cells, suppresses tumor 
growth, and promotes apoptosis in vivo. TET1 
induces RASSF5 expression via demethylation of 
its promoter, which decreases cell proliferation in 
A2780 OC cells84. TET1 elevates the 5hmC level 
and decreases methylation level in the promoters 
of the SFRP2 and DKK1 genes, inducing their 
expression. SFRP2 and DKK1 are the two main 
upstream antagonists of the Wnt/β-catenin signa-
ling pathway. Thus, SFRP2 and DKK1 decrease 
cell migration, proliferation, invasion, EMT, and 
metastasis in SKOV3 and OVCAR3 OC cells85. 
Conversely, TET1 promotes cell migration, proli-
feration, and chemoresistance, particularly to ci-
splatin and taxol, in A2780, HeyC2, and SKOV3 
OC cells, as well as tumor growth in vivo, through 
the re-expression of Yamanaka factors and CSC 
marker genes (ALDH1, CD117, CD133, CD44, 

LGR5, NANOG, NES, OCT4, SOX2, KLF4, and 
c-Myc genes) in A2780, HeyC2, and SKOV3 OC 
cells. Moreover, TET1 increases the expression of 
genes involved in oncogenic signaling pathways, 
such as RAS/RAF, ERBB2, VEGF, TGF-β, and 
EGFR in SKOV3 and HeyC2 OC cells, and indu-
ces the expression of the CK2α gene through the 
increase of 5hmC levels in its promoter in SKOV3 
and HeyC2 OC cells, which increases tumor 
growth in vivo86. TET1 induces Vimentin expres-
sion through the demethylation of its promoter to 
promote cisplatin resistance, migration, invasion, 
and EMT and decreases apoptosis in A2780 and 
CP70 OC cells97. GATA6-AS1 represses the miR-
19a-5p expression, increasing the TET2 expres-
sion, which decreases cell proliferation and mi-
gration in ES-2 and SKOV-3 OV cells88. On the 
other hand, TGF-β1 decreases TET3 expression 
but no TET1 or TET2 expression. TET3 induces 
miR-30d expression via demethylation, inhibiting 
the EMT in SKOV3 and 3AO OC cells89. Intere-
stingly, expression of TET proteins is increased 
in cisplatin resistance CP70, OVCAR3, SKOV3, 
and MPSC1 OC cells compared with parent cel-
ls86,97. In this sense, 5-aza increases the expression 
of TET proteins in cisplatin-resistant A2780 OC 
cells, OVCAR4, CaOV3, and OVSAHO HGSOC 
OC cells. Finally, TET2 over-expression increases 
5hmC levels and decreases the cell subpopula-
tion associated to CSC, specifically the cell side 
population, and sensitive the cells to cisplatin in 
cisplatin-resistant A2780 OC cells92. 

Berberine is an alkaloid extracted from Coptis 
and Phellodendron plants and inhibits the War-
burg effect in SKOV3 and 3AO OV cells. Mecha-
nistically, berberine increases TET3 expression, 
which demethylates the promoter of miR-145, 
inducing its expression. MiR-145 down-regulates 
the expression of key genes involved in the War-
burg effect, such as the HK2 gene90.

Future Perspectives

Studies45-49,62-65,84-94 have reported alterations in 
the expression of TET1, TET2, and TET3 enzy-
mes, as well as 5hmC levels, in gynecological 
cancers; however, there is still much to investi-
gate. Therefore, future studies are needed to elu-
cidate the molecular mechanisms involved in the 
deregulation of TET enzymes and 5hmC levels 
that involved long noncoding RNAs and circu-
lar RNAs, as well as the molecular mechanisms 
downstream in these types of human cancers. 
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On the other hand, it is important to analyze the 
expression of TET proteins as potential diagno-
stic, prognostic, and therapeutic biomarkers in 
serum or plasma samples of patients with CC, 
EC, and OC, as a non-invasive method, as well as 
to evaluate their sensitive and specificity of each 
one or in combination with the used biomarkers.

Conclusions

In summary, the expression of TET1, TET2, 
and TET3 enzymes is deregulated in cervical, en-
dometrial, and ovarian human cancers by several 
molecular mechanisms that involve miRNAs and 
transcription factors. Deregulation of TET enzy-
mes alters the 5hmC levels in these cancers. TET 
enzymes and 5hmC play a critical role in carcino-
genesis, progression, and response to gynecological 
cancers through their catalytic activity, promoting 
the DNA demethylation on promoters of TSG.
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