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Abstract. Ferroptosis is a new form of 
iron-dependent programmed cell death, char-
acterized by intracellular iron overload and lip-
id peroxidation. Several studies have revealed 
that ferroptosis is associated with the occur-
rence and development of various neurodegen-
erative diseases (NDs). Therefore, this paper re-
views the mechanism and related genes of fer-
roptosis, focusing on the research of antiferro-
ptosis drugs in NDs to provide theoretical sup-
port for future experimental research and clini-
cal application.

This work focuses on ferroptosis, and the au-
thors searched the literature on PubMed relat-
ed to ferroptosis using the keywords “neurode-
generative diseases” and “neurons”. All articles 
were from August 2022 and earlier, excluding ir-
relevant or retracted articles, and articles from 
the last five years were used as the main inclu-
sion criteria.

After collection and summary, it was found 
that ferroptosis in NDs was not only related to 
iron metabolism, lipid metabolism, and amino 
acid metabolism but also related to genes such 
as Nrf2, FSP1, VDACs, and p53. We also sum-
marized drugs that inhibited ferroptosis in NDs 
and classified them according to their mecha-
nism of action.

Ferroptosis was involved in the progression 
of NDs through its production mechanism and 
related genes. Targeting ferroptosis might be a 
new strategy for treating NDs.
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Introduction

Programmed cell deaths (PCDs), such as apop-
tosis, autophagy, programmed necrosis, and py-
roptosis, are active and orderly phenomena of cel-

lular self-destruction under gene regulation1. Be-
sides determining organism development, PCD 
regulates the removal of damaged or undesirable 
cells, an organism’s evolution, and the stability of 
a cell’s internal environment2. It follows that PCD 
is diverse in its forms and carries a considerable 
deal of biological significance. However, PCD 
dysfunction has also been associated with various 
diseases, including neurodegenerative diseases 
(NDs)3. As a unique iron-reliant form of PCD, 
ferroptosis, first proposed by the Dixon team in 
20124, differs from the other forms of PCD in 
terms of morphology and biochemistry5. From 
morphological aspects, ferroptosis is character-
ized by smaller mitochondria with fewer mito-
chondrial cristae6, an increase in mitochondrial 
membrane density, and a rupture of the mito-
chondrial outer membrane without visible alter-
ations to the nucleus7. From biochemical aspects, 
ferroptosis is characterized by excessive iron-de-
pendent lipid peroxidation8. There is ongoing 
research9-14 showing that several compounds or 
drugs can induce ferroptosis, such as erastin9, 
lapatinib10, RAS-selective lethal 3 (RSL3)11, halo-
peridol12, and piperlongumine13, while the others 
inhibit ferroptosis, such as baicalein, deferox-
amine (DFO), and ferrostatin-1 (Fer-1)14. Some 
recent studies15 have linked ferroptosis to several 
genes, such as nuclear factor erythroid 2-related 
factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), 
ferroptosis suppressor protein 1 (FSP1), p53, 
voltage-dependent anion channel (VDAC), NA-
DPH oxidase 4 (NOX4), lipoxygenase (LOX), and 
acyl CoA synthase long-chain family member 4 
(ACSL4), which are primarily involved in the iron 
metabolism pathway, lipid metabolism pathway, 
and the amino acid metabolism pathway.

Various diseases are also associated with fer-
roptosis16-20, such as NDs21. Stroke, brain injury 
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(BI), and epilepsy are acute NDs22, while chronic 
NDs include Alzheimer’s disease (AD), Parkin-
son’s disease (PD), Huntington’s disease (HD), 
and amyotrophic lateral sclerosis (ALS)22. Pro-
gressive neurological impairments resulting from 
neuronal cell death and loss commonly manifest 
in NDs23. Ferroptosis has been associated with 
various NDs24. First and foremost, iron accumu-
lation in the brain, a prerequisite for developing 
neural ferroptosis, can be observed in patients 
with NDs such as AD25 and PD26. Neural cells are 
susceptible to oxidative damage because of their 
high metabolism and low antioxidant defenses. 
As a result, excessive iron accumulation catalyz-
es the reactive oxygen species (ROS) formation 
through the Fenton reaction, resulting in neuronal 
damage27. Second, high levels of polyunsaturated 
fatty acids (PUFAs) are prevalent in the brain, 
resulting in lipid peroxidation as the main form 
of neuronal oxidative damage28. In addition, low 
activity of gpx4 and glutathione (GSH) was found 
in motor neuron degeneration, which is closely 
associated with ferroptosis29. Taken together, in-
hibiting neuronal ferroptosis offers new therapeu-
tic targets for NDs. Therefore, this review aims 
to summarize the mechanisms of ferroptosis and 
its closely related genes, then focuses on anti-fer-
roptosis drugs in NDs and categorizes them by 
mechanisms of action to provide theoretical sup-
port for future experimental research and clinical 
applications.

Mechanisms of Ferroptosis and 
its Targeted Drugs

Free Iron Accumulation and 
Iron-Targeted Ferroptosis Inhibitors

As one of the most abundant essential and 
traceable elements in the human body, iron exists 
as ferrous iron and ferric30. Physiologically, iron 
is obtained from foods and primarily absorbed by 
the duodenum and upper jejunum through trans-
ferrin receptor 1 (TfR1)-mediated endocytosis 
of transferrin (Tf)-iron (III) (Fe3+) complexes31, 
and distal jejunal absorption of iron is possible in 
iron-deficient conditions32. Ferric is then convert-
ed to ferrous iron by the ferrireductase six-trans-
membrane epithelial antigens of prostate 333 and 
released into the cytoplasmic labile iron pool 
(LIP) divalent metal-ion transporter-1 (DMT1)34. 
It is also essential to maintain iron homeostasis 
through intracellular iron export. As the iron 
export protein, ferroportin (FPN) transports ex-

cessive ferrous iron from cells into plasma via its 
interaction with hepcidin35. Ceruloplasmin then 
oxidizes ferrous iron to ferric, binds to Tf in 
the plasma, and engages in the intracellular iron 
cycle again36. Ferrous iron overload occurs when 
there is an imbalance in the iron metabolism, 
causing the Fenton reaction (ferrous iron and 
hydrogen peroxide interaction) to form hydroxyl 
radicals (·OH, the most toxic ROS)37. A final con-
sequence of ROS interacting with PUFA on lipid 
membranes is the generation of lipid ROS and 
lipid peroxides, leading to ferroptosis38. There is 
a large amount of evidence that abnormal iron 
accumulation in the brain contributes to various 
NDs39. For example, in early-onset AD patients, 
significant variations of iron distribution were 
observed and reflected the pattern of brain atro-
phy40. Further, an obvious iron overload in deep 
gray nuclei was found in an atypical presentation 
of AD, which helped to identify this condition40. 
Note that an intracellular iron overload can occur 
prior to developing senile plaques and neuro-
fibrillary tangles (NFTs)41. A study42 conducted 
on patients with PD, the second most common 
ND after AD, found that iron levels increase with 
the disease progression. An autopsy and neuroim-
aging study43 revealed elevated iron levels exclu-
sively in the substantia nigra (SN) in patients with 
PD. Similarly, the iron overload resulting from 
chronically administering ferric citrate induces 
PD-like phenotypes in middle-aged mice44. There 
has also been evidence45 of increased iron levels 
in the basal ganglia of humans with manifest HD. 
Moreover, an iron overload following intracere-
bral hemorrhage (ICH) has been observed in both 
patients and animal models and has been linked 
to excessive ROS production around the hema-
toma46. An iron overload can be linked to NDs, 
including its key manifestations and pathogens.

Various iron homeostasis genes, such as 
heat shock protein family B (small) member 1 
(HSPB1)47, Nrf248, and nuclear receptor coactiva-
tor 4 (NCOA4)49 are involved in ferroptosis. For 
example, HSPB1 (also called HSP27) negatively 
regulates TfR1, the portal for iron uptake, and 
is a marker of ferroptosis50,51. The role of HSPB1 
in iron metabolism cannot be ignored either, as 
its phosphorylation blocks cytoskeleton-mediat-
ed iron absorption, leading to ferroptosis resis-
tance52. Besides TfR1, HSPB1 slightly induc-
es ferritin heavy chain 1 (FTH1) expression53, 
promoting the conversion of ferrous ions into 
ferric for storage in ferritin, thereby decreasing 
the free iron levels and inhibiting ferroptosis54. 
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Using different behavioral tests55,56, it was found 
that the overexpression of hspb1 ameliorates the 
symptoms of AD in APP/PS1 mice55 as well 
as decreases the intracellular iron level in mu-
rine cells56. Moreover, a double transgenic mouse 
model overexpressing APPswe and HSPB1 pro-
duced similar results57. There is evidence that the 
decrease in hspb1 in ALS patients will result in 
motor neuron death, which may be avoided by 
overexpressing hspb158. Additionally, high-fat-di-
et-exacerbated PD animal models demonstrated 
decreased phosphorylation of hsp27 in the SN59. 
Therefore, NDs were strongly linked to HSP27 
abnormalities in these studies55-59.  

Considered a major regulatory factor for anti-
oxidant resistance, Nrf2 is also a transcriptional 
regulator of FTH1, regulating iron metabolism 
against NDs60,61. For example, in PD and AD pa-
tients, the Nrf2 expression is altered in neurons, 
astrocytes, and in the brain of HD or stroke pa-
tients, respectively62. Similarly, the activation of 
Nrf2 inhibited neurodegeneration in several AD 
model mice63. Furthermore, there is a decreased 
expression of fth1 in PD model mice compared to 
that in healthy mice. In contrast, Nrf2 increases 
the expression of fth1 and enhances the iron stor-
age capacity, thereby reducing susceptibility to 
ferroptosis in PD-associated PC12 cells43. Despite 
this, however, there is little evidence that Nrf2 in-
fluences ferroptosis through FTH1-mediated iron 
metabolism in NDs.

Nuclear receptor coactivator 4 (NCOA4), a fer-
ritinophagy-specific cargo receptor, facilitates the 
transportation of FTH1 to the autophagosome, 
where ferritinophagy occurs, and releases free 
iron into the cytosol64. Thus, overexpression of 
NCOA4 promotes ferritin degradation and results 
in ferroptosis, while the genetic inhibition of 
NCOA4 exerts the opposite effect65. For example, 
the reduction of fth1 levels promotes ferroptosis 
in PD models in vivo and in vitro, whereas the 
overexpression of fth1 suppresses ncoa4 expres-
sion, thus suppressing ferroptosis66. Furthermore, 
enhanced NCOA4-mediated ferritin (ferritinoph-
agy) by dexmedetomidine protects HT-22 cells 
from neurotoxicity in a model of chemothera-
py-induced cognitive dysfunction67. ALS has also 
been linked to iron ferritinophagy mediated by 
NCOA4, which can play a major role in the dis-
ease68. By increasing ncoa4 expression and reduc-
ing fth1 levels, formaldehyde can cause formalde-
hyde-related NDs69. Interestingly, overexpression 
and knockdown experiments have revealed that 
autophagy-related Beclin1 induces ferroptosis by 

increasing the free iron levels70. Not only this but 
a significant decrease in Beclin1 levels was also 
observed in AD patients71, so the relationship 
between Beclin1 and ferroptosis deserves further 
investigation in NDs. Furthermore, Tal-Beclin1, a 
Beclin1 activating peptide, is depicted to promote 
the ferroptosis induced by erastin, a small mol-
ecule inducer of ferroptosis in vivo and vitro70. 
As the only known cellular iron exporter, FPN 
knockout also causes increased iron-dependent 
ROS and ferroptosis, suggesting its anti-ferropto-
sis properties72. In the PD model, the reduction 
of FPN resulted in SN iron aggregation, thereby 
triggering an increase in iron-dependent ROS in 
neurons73. Meanwhile, the up regulation of FPN 
can decrease iron loading and ameliorate neuro-
nal death after ICH74. Similar results were also 
observed in the models of AD75 and early brain 
injury after subarachnoid hemorrhage76. In sum-
mary, iron metabolism involves multiple links, 
such as uptake, transport, storage, and export, 
and any disturbance in these links may lead to 
iron homeostasis imbalance and even ferroptosis. 
To prevent ferroptosis, it is, therefore, effective to 
regulate iron metabolism-related genes. 

Current evidence77 suggests that iron chelators, 
such as DFO, deferiprone (DFP), and ciclopirox 
olamine (CPX), can decrease the intracellular 
iron overload by binding ferrous iron, stimulating 
its excretion, preventing the generation of highly 
reactive ROS, and then inhibiting ferroptosis. For 
example, DFO can rescue iron overload-induced 
ferroptosis triggered by ferric ammonium citrate 
(FAC) in neuron-like PC12 cells by reducing 
iron levels78. Furthermore, DFP is used as an 
oral hydroxypyridinone-derived iron chelator for 
treating thalassemia, Friedreich’s ataxia, and kid-
ney disease in clinical practice79. According to 
the literature, DFP can also inhibit ferroptosis 
in the ketamine-sevoflurane-induced general an-
esthetic (GA) model by chelating iron as well as 
inhibiting the DMT1 expression80. Interestingly, 
the use of sevoflurane and ketamine in GA for 
surgery affects the iron metabolism80, contrib-
uting to a postoperative cognitive decline in the 
elderly81. Thus, ferroptosis is linked to cognitive 
impairment in older people following anesthesia, 
and DFP is a candidate for its therapy. CPX is 
a broad-spectrum antifungal agent identified to 
functionally chelate intracellular iron82. It is well 
known that glutamate excitotoxicity is often ob-
served in several NDs, such as stroke83. Studies4 

have reported that CPX can inhibit ferroptosis by 
reducing iron ions and ROS in glutamate-induced 
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organotypic hippocampal slice cultures (OHSC). 
Moreover, Baf-A1, a ferritinophagy inhibitor, can 
block fth1-mediated ferroptosis by inhibiting fer-
rous iron, ncoa4, lipid peroxidation levels, and ex-
cessive GSH consumption in a neurotoxin 6-hy-
droxydopamine (6-OHDA)-induced PD model66. 
In light of the above, the role of iron chelators in 
inhibiting ferroptosis has been gradually discov-
ered. To make definitive conclusions, however, 
further research is needed.

Lipid Peroxidation and Lipid 
Peroxidation-Targeted 
Ferroptosis Inhibitors

Lipids are the major components of cell mem-
branes and organelle membranes, helping to 
maintain their integrity and molecular exchange 
functions84. However, it is well established that 
lipids are susceptible to peroxidation through 
enzymatic or non-enzymatic processes85. PU-
FA-containing phosphatidylethanolamine (PE) is 
more vulnerable to lipid peroxidation, partic-
ularly arachidonic acid (AA) and adrenal acid 
(ADA)86. It is true that the oxidation of lipids is a 
free radical-driven chain reaction, where reactive 
ROS begins the oxidation of PUFAs87. Non-en-
zymatic lipid peroxidation occurs when the ROS 
generated by the iron-dependent Fenton reactions 
oxidize the membrane phospholipids resulting 
in a lipid ROS accumulation88. Under iron accu-
mulation conditions, Fenton chemistry signifi-
cantly initiates NDs, such as AD, PD, and HD, 
by promoting free radical formation in cells89. 
A possible explanation for iron accumulation in 
the central nervous system (CNS) during NDs 
is inflammatory cells migrating into the affected 
areas and depositing iron there89. Somewhat dif-
ferently, enzymatic lipid peroxidation is mediated 
by multi-enzymatic reactions. First, ACSL4 cata-
lyzes the conversion of AA or ADA to AA-CoA 
and ADA-CoA90 and is in turn esterified into 
AA-PE and ADA-PE by lysophosphatidylcholine 
acyltransferase 3 (LPCAT3)91, and lastly oxidized 
by LOX, particularly arachidonate lipoxygenase 
(ALOX) to the harmful lipid peroxidation prod-
uct PE-AA-OOH or PE-ADA-OOH92. Lipid per-
oxides, once abundant, destroy the membrane bi-
layer and amplify their damage by reacting with 
the adjacent polyunsaturated lipids, thus causing 
ferroptosis93. In this manner, delaying lipid perox-
idation will be effective in inhibiting ferroptosis. 
There is no doubt that lipid peroxidation has been 

identified as a pathological marker in almost all 
NDs, such as AD94, PD95, and ALS96. In this con-
text, the role of LOX in NDs is becoming more 
evident. For example, in AD models, the activa-
tion of LOX in microglia produces large amounts 
of ROS and causes enzymatic lipid peroxidation 
that affects microglia function97. Consequently, 
ferroptosis inhibitors counteracting lipid perox-
idation hold many promises in treating NDs, 
including radical-trapping antioxidants (RTAs), 
NOX inhibitors, and LOX inhibitors.  

Some RTAs, such as liproxstatin-1 (Lip-1), Fer-
1, edaravone, tetrahydronaphthyridinols (THN), 
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 
phenothiazine, mitoquinone (MitoQ), BI-6c9, 
and resveratrol can inhibit ferroptosis by scav-
enging oxygen free radicals. For example, Lip-1 
has been displayed to inhibit the RSL3-induced 
rat oligodendrocyte cell line (OLN-93) ferroptosis 
in a spinal cord injury (SCI) model by scaveng-
ing oxygen free radicals98. Fer-1, an inhibitor of 
ferroptosis, produced a similar outcome in a col-
lagenase-induced ICH model99. A non-phenolic 
antioxidant, edaravone, acts as a powerful agent 
to improve neurological functions in disease con-
ditions100. It was found that edaravone attenuates 
hippocampal neuronal ferroptosis by the acti-
vation of the silent information regulator 2 ho-
molog 1 (Sirt1)/Nrf2/heme oxygenase-1 (HO-1)/
GPX4 pathway in the chronic social defeat stress 
(CSDS) depression model mice101. As an RTA, 
THN, particularly lipophilic C12 THN, is highly 
effective against glutamate-induced ferroptosis in 
the hippocampal HT-22 cell line102. Furthermore, 
TEMPO103 and phenothiazine104 can inhibit ferro-
ptosis in NDs by exploiting their ability to scav-
enge free radicals. The gasified form of TEMPO 
inhibits not only glutamate-induced ferroptosis 
in HT-22 cells but also protects neuronal cells 
from middle cerebral artery occlusion (MCAO) 
model-induced injury in CB-17 mice103. Pheno-
thiazine, particularly it is derivative 51104, as a 
diarylamine radical-trapping antioxidant, inhibits 
ferroptosis in an MCAO-induced ischemic stroke 
SD rat model by increasing GSH expression 
and reducing lipid peroxidation levels-. MitoQ 
is a mitochondria-targeted ROS scavenger, and 
some experiments have demonstrated that mitoQ 
reverses RSL3-induced ferroptosis in an HT-22 
brain ischemia model by inhibiting mitochondri-
al ROS production and then reducing the RSL3 
toxicity105. BI-6c9, a pro-apoptotic protein Bid 
inhibitor, also plays a unique role in inhibiting 
ferroptosis. It has been demonstrated that BI-6c9 
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reverses the mitochondrial impairment caused by 
the mitochondrial transactivation of Bid by scav-
enging mitochondrial ROS and finally reverses 
the RSL3-induced ferroptosis in HT-22 cells106. A 
polyphenol found in many plants, resveratrol, is a 
potential therapeutic agent for NDs107. Like Fer-1, 
it inhibits (OGD/R)-induced ferroptosis in primary 
cortical neurons by its powerful antioxidant effect, 
as well as in MCAO-induced SD rats and RSL3-in-
duced primary cortical neurons108. According to 
the abovementioned studies98-108, RTA can inhibit 
ferroptosis and improve neuron survival in several 
NDs models, particularly ICH and stroke.

As ROS is mainly generated by NADPH oxi-
dase (NOX)109, its inhibitors, such as diphenylene-
iodonium chloride (DPI) and GKT137831, help 
inhibit ferroptosis by reducing ROS production110. 
For instance, paraquat and maneb co-exposure 
cause dopaminergic neurodegenerative disorders 
as well as ferroptosis in the neuroblastoma cel-
lular line SHSY5Y. DPI and GKT137831, as an 
inhibitor of nox, have some significant adverse ef-
fects on the abovementioned phenomenon by in-
creasing the gpx4 levels and decreasing the intra-
cellular MDA content111. In addition, vildagliptin 
(vilda), originally acting as a selective DPP-4 in-
hibitor, exerts neuroprotective effects in NDs by 
inhibiting oxidative stress112 and potently inhibits 
ferroptosis by blocking the DPP-4-mediated nox 
activity in the ICH model113.

LOX inhibitors [e.g., vitamin E, baicalein, 
zileuton, and N-acetylcysteine (NAC)] can re-
sist ferroptosis by inhibiting LOX-mediated lipid 
peroxidation. There is an increased expression 
of LOX enzymes in stroke, AD, epilepsy, and 
ICH models, such as 15-lipoxygenase (15-LOX), 
5-LOX, and ALOX114-116. Treatment of NDs by 
inhibiting LOX enzymes is another exciting pros-
pect. Natural lipophilic antioxidant vitamin E is 
considered an adjunctive treatment for epilepsy, 
particularly in children117. Further studies118 have 
depicted that it inhibits pentylenetetrazol-induced 
neuronal ferroptosis in epileptic rats by sup-
pressing the 15-LOX-mediated overoxidation of 
PUFAs. Baicalin, derived from the root of Scute-
llaria baicalensis Georgi119, has shown neuropro-
tective effects in posttraumatic epilepsy (PTE)116. 
Its treatment increases the gpx4 content by de-
creasing the 12/15-LOX levels, thereby reducing 
the FAC-induced lipid peroxidation in the HT-22 
cell PTE model and further inhibiting ferropto-
sis. An effect consistent with this can also be 
observed in an in vivo model of FeCl3-induced 
epilepsy116. Zileuton is an inhibitor of 5-LOX that 

has pharmacologically demonstrated benefits in 
treating AD120. In addition to this, Zileuton can 
attenuate oxidative stress by inhibiting the LOX5 
expression, thereby protecting HT-22 cells from 
glutamate-induced ferroptosis121. Several chronic 
neurological disorders, including AD, have been 
demonstrated122 to benefit from NAC, a cysteine 
prodrug. According to recent studies123, NAC 
inhibits ferroptosis by blocking the production 
of toxic lipids through ALOX in a heme-induced 
primary cortical neuronal ICH model.  

There is a critical link between lipid peroxida-
tion and acsl4, which is the target of rosiglitazone 
(ROSI)124 and paeonol (PAN)125. ROSI is a prolif-
erator-activated receptor gamma (PPARγ) agonist 
that has been shown to have neuroprotective ef-
fects in various NDs126. ROSI reduces lipid peroxi-
dation levels and protects neurons from ferroptosis 
after an ischemic stroke by inhibiting acsl4127. PAN 
is a natural product isolated from Paeonia Lactiflo-
ra pall128 that inhibits ferroptosis in an ICH model 
in vivo and in vitro. For example, in ICH model 
mice, PAN alleviated neuronal ferroptosis by sup-
pressing the expression of acsl4125, which could 
be degraded by direct binding to upf1. Moreover, 
the overexpression of LncRNA HOX transcript 
antisense RNA reversed the protective effect of 
PAN on the neurons through the UPF1/ acsl4 ax-
is125. Consistent with this, in hemoglobin-induced 
primary cortical neurons or HT-22 cells, PAN was 
observed to protect neuronal cells from iron death 
through similar mechanisms125.

Additionally, fatty acid synthesis is the up-
stream pathway that triggers ferroptosis129; there-
fore, drugs can inhibit ferroptosis by inhibiting 
fatty acid synthesis. For example, the transam-
inase inhibitor AOA can inhibit ferroptosis by 
silencing acyl-CoA synthase family member 2 
(acsf2), thereby regulating the upstream of fer-
roptosis4. Interestingly, phase contrast images 
reveal that AOA treatment also blocks gluta-
mate-induced ferroptosis in HT-22 cells130. 

Collectively, targeting lipid peroxidation-tar-
geted ferroptosis inhibitors is a promising way to 
treat NDs. Research results obtained in a labora-
tory and a fundamental understanding of ferro-
ptosis inhibitors counteracting lipid peroxidation 
lay the groundwork for clinical trials.

Amino Acid Metabolism Disorder and 
Their Related Ferroptosis Inhibitors
System Xc− cystine/glutamate antiporter is 

widely distributed in the phospholipid bilayer131 
and works as an important component of the 



Ferroptosis in neurodegenerative diseases: inhibitors as promising candidate mitigators

51

antioxidant system132. In the brain, system Xc− is 
expressed at the blood-brain barrier as well as 
throughout the brain parenchyma133. By regulating 
the production of GSH as described below, system 
Xc− stimulates many ROS-dependent pathways134. 
First, cystine is taken up by system Xc− in ex-
change for glutamate at a 1:1 ratio135. Upon intro-
duction into cells, cystine converts to cysteine for 
the synthesis of GSH136, which is the only substrate 
of gpx4 in mammals that eliminates lipid-based 
ROS137. In particular, gpx4 converts lipid peroxides 
into nontoxic lipid alcohols by oxidizing GSH to 
glutathione disulfide, blocking the lipid peroxida-
tion chain reaction and thus playing a critical role 
in maintaining cellular redox homeostasis138. In a 
substantial body of literature, the amino acid me-
tabolism disorder has been linked to NDs, and the 
system Xc−, as well as the GPX4 proteins, has been 
proposed as the molecular therapeutic target139. For 
instance, GSH levels are reduced in AD, which 
limits the activity of GSH-dependent enzymes, 
such as GPX4, leaving neurons vulnerable to oxi-
dative stress damage140. According to a post-mor-
tem study141 on PD, reduced GSH levels and GSH 
depletion were found in the SN, which might be 
the first indicators of oxidative stress during the 
disease process. The results were similar for other 
NDs as well. Simultaneously, the inhibition of 
system Xc− affects the glutamate release142; excess 
glutamate has neurotoxic effects, can overstimu-
late nerve cells and cause death143. For example, 
high glutamate concentrations have been detected 
in the cerebrospinal fluid of AD patients144. In 
addition, neuronal death due to the excitotoxicity 
of glutamate can be observed in various diseases, 
such as PD145, ALS146, and stroke147. Taken together, 
the inhibition of system Xc− increases the impaired 
glutamate release and a decrease in GSH, and the 
low activity of GSH-dependent GPX4, leading to 
the accumulation of lipid ROS, lipid peroxides, and 
glutamate, ultimately leading to ferroptosis148.

There are many chemosynthetic drugs that can 
inhibit ferroptosis by system Xc−

 and up-regulating 
gpx4, such as 2-amino-5-chloro-N, 3-dimethyl-
benzamide (CDDO), dopamine (DA), β-mercap-
toethanol (β-ME), sodium selenite (SS), idebenone, 
ebselen, and pioglitazone (PDZ). The triterpenoid 
CDDO blocks the gpx4 degradation by inhibiting 
the expression of heat shock protein 90, gpx4’s 
chaperone protein, thus protecting the HT-22 cells 
from glutamate or erastin-induced ferroptosis149. 
The neurotransmitter DA blocks the degradation 
of gpx4 in HT-22 cells, thereby exerting a similar 
effect as CDDO130. A commonly used reducing 

agent in experiments, β-ME, bypasses the system 
Xc− restricted by glutamate induction to provide 
cysteine for the GSH synthesis, thereby inhibiting 
HT-22 cell ferroptosis102,150. In SCI mice injected 
with SS, a common form of selenium, neurolog-
ical recovery was observed by up regulating the 
SP1/GPX4 pathway, thus avoiding neuronal and 
oligodendrocyte ferroptosis after SCI151. Idebenone 
is a synthetic coenzyme Q10 (CoQ10) analog that 
is regularly used in the clinical treatment of AD152. 
Recent studies153 showed that idebenone reduces 
lipid peroxidation levels and inhibits neuronal fer-
roptosis in a rotenone-induced PD rat’s model by 
up-regulating gpx4. Moreover, ebselen, a potent 
glutathione peroxidase mimetic and neuroprotec-
tive agent, exhibited antiferroptosis by increasing 
gpx4 in erastin or RSL3-induced N27 neuronal cell 
models154,155. PDZ is a PPARγ agonist with potent 
neuroprotective effects in various NDs156-158. Both 
in vivo and in vitro ICH models revealed that the 
PDZ activated PPARγ and enhanced its antioxi-
dant effects in concert with nrf2 while increasing 
the expression of nrf2 and gpx4-mediated ferro-
ptosis suppressor genes159. 

Similarly, some natural drugs can inhibit 
ferroptosis by increasing the GPX4 expression, 
such as carvacrol (CAR), galangin, glycyrrhizin 
(GL), ginkgolide B (GB), paeoniflorin (PF), and 
forsythoside A (FA). For example, carvacrol, a 
monoterpenoid found in many aromatic plants, 
is neuroprotective160,161. In gerbils, CAR reduces 
lipid peroxidation by up-regulating gpx4, thus 
inhibiting neuronal ferroptosis after ischemia/
reperfusion (I/R)162. Galangin is the main com-
ponent of the natural medicine galangal that has 
neuroprotective and antioxidant properties163,164. 
Some studies165 have found that galangin en-
hances the antioxidant capacity of neurons, thus 
inhibiting ferroptosis after I/R injury by activat-
ing slc7a11/gpx4. GL is a triterpenoid saponin 
extracted from licorice that is useful in AD, ICH, 
and so on166. As a consequence of inhibiting the 
HMGB1 translocation dependent on ROS, GL 
elevates the GPX4 expressions in neonates with 
OGD-induced I/R brain injury and prevents the 
ferroptosis of cortical neurons due to oxidative 
stress167. Among the main components of ginkgo 
biloba, GB, has neuroprotective effects in AD, 
stroke, and other brain diseases168,169. In SAMP/8 
mice (a model of AD), it activates the Nrf2/
GPX4 pathway, enhancing the antioxidant ca-
pacity against ferroptosis170. PF is a water-soluble 
monoterpene glycoside extracted from the root of 
Paeonia Lactiflora, which has been used in treat-
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ing neurodegenerative diseases171. For example, in 
a 1-methyl-4-phenylpyridinium (MPP)-induced 
PD model of primary dopaminergic neurons, PF 
exerts its neuroprotective effect against ferropto-
sis by increasing the GPX4 expression through 
the regulation of the protein kinase B (Akt)/Nrf2/
GPX4 pathway172. FA is a natural drug with var-
ious pharmacological properties, including an-
ti-inflammatory, antioxidant, and neuroprotective 
properties, and is found in large quantities in 
Forsythia suspensa173. There is now proof that FA 
protects erastin-exposed HT-22 cells from ferro-
ptosis in AD models by targeting the activation of 
the Nrf2/GPX4 pathway174.

Moreover, some drugs, such as curcumin, 
gastrodin (GAS), tetrahydroxy stilbene glyco-
side (TSG), alpha-lipoic acid (LA), and salidro-
side inhibit ferroptosis in NDs by activating 
nrf2-related signaling and up-regulating gpx4 
or system Xc−. For example, curcumin, a natural 
antioxidant compound extracted from the plants 
of the Zingiberaceae and Araceae families, is a 
promising neuroprotective agent175. Several stud-
ies176 have reported that curcumin nanoparticles 
activate the Nrf2/HO-1 pathway to enhance the 
antioxidant capacity of erastin-induced HT-22 
cells, avoiding ferroptosis after ICH. GAS, a 
major component of gastrodia elata, plays a 
similar role in glutamate-induced HT-22 cells 
through the Nrf2/HO-1 pathway177. There is 
promising evidence that TSG, an extract of an-
other natural medicine, polygonum multiflorum, 
helps treat AD178. In an APP/PS1 transgenic AD 
mouse model, TSG intervention increased the 
GPX4 expression by activating the kelch-like 
ECH-associated protein 1 (Keap1)/Nrf2/antiox-
idant responsive element (ARE) pathway and 
inhibited neuronal ferroptosis179. The universal 
antioxidant and iron chelator LA is known to 
be beneficial in inhibiting ferroptosis180. In a 
PD model induced by MPP, LA decreased the 
ferrous iron levels and ROS, thereby inhibiting 
ferroptosis by activating the phosphoinositide 
3-kinases (PI3Ks)/Akt/Nrf2 pathway181. Salidro-
side is a natural drug that has been reported 
to have potential therapeutic value in neurode-
generative diseases182. Salidroside also exerts 
neuroprotective effects by activating the Nrf2/
HO-1 pathway to attenuate neuronal ferroptosis 
in Aβ1-42-induced AD mice and gluconate-ex-
posed-exposed HT-22 cells183.

Taken together, multiple drugs have been de-
veloped and tested in recent years with potential 
activity against ferroptosis, particularly by regu-

lating system Xc− and GPX4. Note that the results 
of this study are based on laboratory research, 
but no clinical confirmation has been obtained 
(Table 1).

Ferroptosis-Related Genes

Nrf2
As is well known, Nrf2 is the master transcrip-

tional regulator of the antioxidant gene expres-
sion that plays a critical role in the antioxidant 
response in cells184. Under normal physiological 
conditions, Keap1 binds to and retains Nrf2 in 
the cytoplasm, preventing its nuclear transloca-
tion185. In contrast, upon exposure to oxidative 
stress, the Nrf2-Keap1 complex is disrupted, and 
subsequently, Nrf2 is released and translocated 
to the nucleus186. This process is regulated by the 
autophagy receptor p62 that binds to Keap1 and 
then promotes the activation of Nrf2187. In the 
nucleus, Nrf2 binds to the antioxidant response 
elements and promotes the expression of antioxi-
dant genes, such as HO-1, to counteract oxidative 
stress188, as well as many ferroptosis-related genes 
such as SLC7A11, GPX4, and FTH1189-191. Several 
studies192 have reported that Nrf2 has emerged as 
an important target for NDs because of its role 
in neuronal resistance to oxidative stress and 
glutamate-induced excitotoxicity and, finally, in 
maintaining neuronal survival in neurological 
injury. For example, it has been reported that 
Nrf2 expression is significantly reduced in the 
hippocampal neurons of AD patients193. The same 
decrease can be observed in many NDs, such as 
PD194 and ALS195. Furthermore, the Nrf2 agonists 
EPI-743 and sulforaphane inhibit oxidative stress 
and ferroptosis by increasing the nuclear trans-
location of Nrf2 in the fibroblasts of Friedreich’s 
ataxia patients196. Therefore, Nrf2 has been wide-
ly viewed as the primary therapeutic target of 
NDs. (Figure 1).

FSP1
A study197 in 2019 discovered that FSP1, al-

so called apoptosis-inducing factor mitochon-
dria-associated 2 (AIFM2, or PRG3), can inhibit 
ferroptosis independently of GSH. As a cotransla-
tional lipidic modification, FSP1 is targeted to the 
plasma membrane through myristoylation, where 
it decreases CoQ10 to create ubiquinol through 
the FSP1/CoQ10 pathway. Known as a lipophilic 
antioxidant, ubiquinol traps radicals, halting lipid 
peroxidation and finally inhibiting ferroptosis198. 
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Interestingly, ferroptosis is related to FSP1 in 
brain disorders199, which is also a potential neuro-
protective target against ferroptosis in the models 
of neonatal hypoxic-ischemic brain injury, acute 
spinal cord injury, and PD200-202. For example, 
FSP1 was up-regulated, and ferroptosis was ob-
served in 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP)-induced PD mice models. Apo-
ferritin prevents MPTP-induced ferroptosis part-
ly by inhibiting the downregulation of FSP1203. 
In general, the role of FSP1 in NDs is still in its 
infancy, and in-depth research is needed.

VDACs 
VDACs are the most abundant proteins in the 

mitochondrial outer membrane in their three iso-
forms: VDAC1, VDAC2, and VDAC3204. VDAC, 
an ion channel protein, can regulate the exchange 
of metabolites, ions, and ATP between mito-
chondria and cytoplasm205. Erastin, as a ferro-
ptosis activator, binds to VDAC2/3 and promotes 
its opening, generating hyperpolarization in the 
mitochondria, increasing ROS production, and 
eventually triggering ferroptosis206. Meanwhile, 
high levels of glutamate in HT-22 cells up-reg-
ulate the VDAC protein expression, resulting 
in a loss of the mitochondrial membrane poten-

tial, increased ROS production, and ATP con-
sumption, finally leading to ferroptosis206. While 
4,4’-diisothiocyanatostilbene-2,2’-disulfonate as 
a VDAC inhibitor can decrease mitochondrial 
ROS levels and effectively inhibit cell death206. In 
other words, VDACs are involved in ferroptosis 
occurrence and development and can be a poten-
tial target for its intervention.  

p53
Tumor suppressor p53 is a transcription factor 

that plays a key role in regulating cell cycles207. In 
response to DNA damage, p53 engenders cell-cy-
cle arrest, senescence, and apoptosis, which con-
strains cell growth208. Additionally, p53 increases 
the spermidine/spermine N1-acetyltransferase 1 
(SAT1) expression, a rate-limiting enzyme in 
polyamine catabolism, facilitating the decompo-
sition of polyamine spermine, which functions 
as a free radical scavenger209,210. As a result, 
a p53-induced overexpression of SAT1 results 
in the peroxidation of lipids and ferroptosis by 
accelerating the decomposition of polyamine 
spermine211. SAT1 also produces a significant 
amount of hydrogen peroxide during the poly-
amine decomposition process, ultimately leading 
to ferroptosis that can be rescued by the ferro-

Figure 1. Overview of the mechanism of ferroptosis.
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Continued

Table I. Common ferroptosis inhibitors.

    Mechanism or
 Drugs Model Dose pathway of action Signal Refs.

DFO FAC-induced PC12-NGF Unknown Iron chelator GPX4, FTH1 ↑ [78]
 cell PD model   DMT1, TfR1, FPN,  
    ACSL4, ROS ↓ 

DFP Ketamine-and sevoflurane- 100 μM Iron chelator GHS, SOD2 ↑ [80]
 induced-hippocampal neuronal   DMT1, MDA, ROS ↓ 
 GA model

CPX Glutamate-induced OHSC 5 μM Iron chelator ROS ↓ [4]

Baf-A1 6-OHDA-induced PC12 100 nM Autophagy GPX4, FTH1 ↑ [66]
 cell PD model  inhibitor NCOA4 ↓ 

Lip-1 RSL3-induced OLN-93 1 μM RTA GPX4, GSH, FSP1 ↑ [98]
 cell line SCI model   MDA, ROS ↓ 

Fer-1 Collagenase-induced
 C57BL/6 mouse ICH model In vivo: 1 pmol RTA MDA,4-HNE, ROS, [99]
 Hb-induced OHSC ICH model of Fer-1  PTGS2 ↓
  In vitro: 10 μM   

Edaravone C57BL/6J mouse CSDS model 10 mg/kg RTA GSH, SOD, GPX4,  [101]
    GSH-PX, Nrf2, 
    HO-1 ↑ MDA, ROS ↓ 

C12-THN Glutamate-induced HT-22 cells 100 nM RTA ROS ↓ [102]
TEMPO MACO-induced CB-17 mouse  In vivo: 0.1-g RTA ROS, 4-HNE ↓ [103]
 stroke model cotton soaked   
 Glutamate-induced HT-22 cell  in 5-mL tempo   
 stroke model In vitro: 10 μL   

Phenothiazine MCAO-induced SD rat  0.01, 0.1, 1 μM RTA GSH ↑ ROS, MDA ↓ [104]
derivative 51  stroke model    

MitoQ RSL3-induced HT-22 cells 0.1-1.5 μM RTA ROS, lipid [105]
    peroxidation ↓ 

BI-6c9 Erastin- and glutamate- 10 μM BID inhibitor ROS ↓ [106]
 induced HT-22 cells    

Resveratrol MCAO-induced SD rat  In vivo: 30 mg/kg RTA GPX4, GSH ↑ ROS,  [108]
 stroke model In vitro: 5,  ACSL4, Fe2+ ↓ 
 OGD/R-induced primary  10, 20 µM   
 cortical neuron stroke model    

DPI PQ- and maneb-induced 1 μM NOX inhibitor GSH, GPX4 ↑ [111]
 SHSY5Y cells   ROS, MDA ↓ 

GKT137831 PQ- and maneb-induced 0.5 μM NOX inhibitor GSH, GPX4 ↑ [111]
 SHSY5Y cells   ROS, MDA ↓ 

Vilda Collagenase-induced 50 mg/kg/d DPP-4 inhibitor GPX4 ↑ MDA, [113]
 C57BL/6J mouse ICH model    Fe2+ ↓ 

Vitamin E PTZ-induced SD rat chronic 200 mg/kg ALOX inhibitor GPX4, GSH ↑MDA,  [118]
 epilepsy model   ROS, 15-LOX ↓ 

Baicalein FeCl3-induced C57BL/ 6J In vivo: 100 mg/kg ALOX inhibitor GPX4 ↑ ROS, PTGS2, [116]
 mouse PTE model FAC-induced In vitro: 1, 2, 4,   4-HNE, 12/15-LOX ↓ 
 HT-22 cell PTE model 8, 16, 32 μM  

Zileuton Glutamate-induced HT-22 cells 1, 10, 50, 100 µM ALOX inhibitor ROS, 5-LOX, lipid  [121]
    peroxidation ↓ 

NAC Collagenase-induced ICH model In vivo: 300 mg/kg ALOX inhibitor GSH ↑ ALOX5 ↓ [123]
 Hemin-induced primary cortical In vitro: 1 mM   
 neuronal ICH model    
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Continued

Table I (Continued). Common ferroptosis inhibitors.

    Mechanism or
 Drugs Model Dose pathway of action Signal Refs.

ROSI MCAO-induced ischemic 0.4 mg/kg Lipid peroxidation GSH, SOD, GPX4 ↑ [127]
 stroke model   PTGS2, ROS, MDA,  
    ACSL4↓ 

PAN Collagenase-induced ICH model In vivo: 5, 10, ACSL4 inhibitor GPX4, SLC7A11 ↑ [125]
 Hemin-induced primary cortical  15 mg/kg  ROS, MDA, Fe2+ ↓ 
 neuronal and HT-22 cell In vitro: 10, 20,    
 ICH model and 40 mM   

AOA Glutamate-induced HT-22 cells 2 mM Transaminase ACSF2↓ [130]
   inhibitor

CDDO Erastin- and glutamate-induced 10 μM HSP90 inhibitor System Xc−, GSH, [149]
 HT-22 cells   GPX4 ↑ ROS, MDA ↓ 

DA Glutamate-induced HT-22 cells 5 μM GPX4 GPX4 ↑ [130]

β-ME Glutamate-induced HT-22 cells 100 nM System Xc− GSH ↑ [150]

SS Contusion SCI model 2.5 μM GPX4 GSH↑ MDA, 4-HNE,  [151]
    Fe2+ ↓  
Idebenone Rotenone-induced PD model 200 mg/kg GPX4 GSH, SOD↑ MDA ↓ [153]

Ebselen Erastin- or RSL3-induced N27 10 μM GPX4 GPX4↑ [155]
 cell stroke model    

PDZ Autologous blood-induced  In vivo: 30 mg/kg PPARγ agonist GPX4, Nrf2,  [159]
 ICH model In vitro: 10 μM  SLC11A7 ↑ MDA,  
 Heme-induced primary neuron    4-HNE, NCOA4,  
 ICH model   SAT1 ↓ 

CAR I/R-induced stroke model 25, 50, 100 mg/kg GPX4 GSH, GSH-PX, [162]
    FPN1, SOD ↑ ROS, 
    Fe2+, TfR1, MDA ↓ 

Galangin I/R-induced stroke model 25, 50, 100 mg/kg SLC7A11/ GSH, SOD,  [165]
   GPX4 pathway ↑  GSH-PX ↑ MDA,  
    4-HNE, ROS, Fe2+ ↓ 

GL Hypoxia-ischemia-induced In vivo: 20 mg/kg HMGB1/ SOD, GSH ↑ MDA,  [167]
 HIBD model In vitro: 55 μM GPX4 pathway ↑ ROS ↓ 
 OGD-induced primary cortical     
 neuron HIBD model    

GB AD model In vivo: 20, 30,  Nrf2/GPX4 SOD, HO-1, GSH,  [170]
  40 mg/kg signaling pathway ↑ FTH1 ↑ Fe2+,  
    MDA, TfR1, NCOA4, 
    ROS ↓ 

PF MPP-induced primary  10 μM Akt/Nrf2/GPX4 GSH ↑ ROS ↓ [172]
 dopaminergic neuron PD model  signaling pathway ↑  

FA Erastin-exposed HT22 cells 40 μM, 80 μM Nrf2/GPX4 FTH, GSH ↑ DMT1, [174]
 AD model   signaling pathway ↑ MDA, ROS ↓ 

Curcumin Collagenase-induced ICH model In vivo: 20 mg/kg Nrf2/HO-1 GPX4 ↑ ROS ↓ [176]
 Erastin-induced HT-22 cells In vitro: 2.5, 5,  signaling pathway ↑  
 ICH model and 10 μM   

GAS Glutamate-induced HT-22 cells 1, 5, 25 μM Nrf2/HO-1 pathway FPN1 ↑ ROS, ACSL4, [177]
    PTGHS2,  MDA,  
    ACSL4, Fe2+ ↓ 
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ptosis inhibitor Fer-1 but not by other cell death 
inhibitors212. The p53-induced ferroptosis is also 
involved in the progression of NDs, such as the 
MPP-induced PD model in vitro213. MPP reduces 
the levels of GSH, SLC7A11, and GPX4 through 
the amino acid pathway, resulting in ferroptosis 
in PC12 cells. Pretreatment with the p53 inhibitor 
pyrethrin-α reverses these phenomena, indicating 
that MPP-induced ferroptosis is p53-dependent213. 
Overall, p53 inhibits cystine uptake and limits 
GSH synthesis, thereby increasing the ROS levels 
and the susceptibility of cells to ferroptosis by the 
downregulation of slc7a11214.

This figure displays the three regulatory path-
ways of ferroptosis and the several genes that 
affect ferroptosis. The first one is regulated by 
iron metabolism. After ferric ions enter the cell 
through the Tf and TfR1-mediated transport to 
ferrous iron, they are transported by DMT1 to 
LIP, where excessive iron accumulation triggers 
an iron overload, which causes a Fenton reaction 
to generate ROS and further leads to ferropto-
sis. Drugs (i.e., DFO, DFP, and CPX) inhibit 
ferroptosis through this pathway. Furthermore, 
the regulatory mechanism of lipid metabolism 
is illustrated, taking AA as an example. AA is 
linked to CoA by the catalytic action of acsl4 
to form AA-CoA and, subsequently, AA-PE 
through LPCAT3. AA-PE formation can be con-
verted to lipid peroxides through LOX-mediated 
enzymatic or non-enzymatic effects, ultimately 
leading to cellular ferroptosis. Drugs (i.e., Lip-1, 
Fer-1, edaravone, and AOA) can attenuate lipid 
peroxidation by trapping lipid ROS and inhib-
iting the activity of lipid peroxidation-related 
enzymes. The third category is the related path-
ways surrounding glutamate metabolism. Sys-
tem Xc− regulates the uptake of cystine, which 

is rapidly reduced to cysteine upon entry into 
the cell and is involved in the synthesis of GSH. 
GSH is an important substrate for the role of 
GPX4, which helps to scavenge lipid peroxides 
and thus inhibit ferroptosis. Drugs (i.e., CDDO, 
DA, and β-ME) can target system Xc−, GPX4, 
and their related pathways to inhibit ferropto-
sis. It is also advisable to introduce some genes 
affecting the occurrence of ferroptosis, such as 
Nrf2, FSP1, VDAC, and p53.

Conclusions

Ferroptosis, an iron-dependent cell death phe-
nomenon, has attracted widespread attention in 
the scientific community since its discovery in 
2012. Although originally observed in cancer 
cells, ferroptosis has been linked to different 
NDs. This article provided an overview of the 
ferroptosis-related mechanisms in NDs: iron 
metabolism, lipid peroxidation, and amino acid 
metabolism, as well as ferroptosis-related genes 
such as Nrf2, FSP1, p53, and VDAC (Figure 
1). Moreover, we classified ferroptosis inhibitors 
targeting these mechanisms and elucidated their 
efficacy, targets, and signaling pathways in spe-
cific models (Table I). Taken together, ferroptosis 
inhibitors have overlapping and unique functions, 
showing considerable potential in treating NDs. 
In summary, this review is expected to help you 
understand the links between ferroptosis and 
NDs and how it can be targeted by therapeutics 
accordingly.

However, some challenges should be over-
come. As a starting point, these inhibitors exhibit 
good antiferroptosis activity in the laboratory, but 
their clinical role is unknown. To further explore 

Table I (Continued). Common ferroptosis inhibitors.

    Mechanism or
 Drugs Model Dose pathway of action Signal Refs.

TSG AD model 60, 120, 180 mg/kg Keap1/Nrf2/ARE GSH, GPX4 ↑ [179]
   signaling pathway ↑ ROS, DMT1,  
    ACSL4, NCOA4 ↓ 

LA MMP-induced PC12 cell  0, 0.1, 1, 10, PI3K/Akt/Nrf2 GPX4, SLC7A11,  [181]
 PD model 20 mM signaling pathway ↑ GSH ↑ MDA,  
    4-HNE, Fe2+, ROS ↓ 

Salidroside Aβ1−42-induced AD model In vivo: 50 mg/kg Nrf2/HO-1 SOD, GSH, GPX4, [183]
 glutamate-induced HT-22 In vitro: 10, 20,40,  pathway ↑ SLC7A11 ↑ 
 cell AD model 80, 160, 320 μM  ROS, Fe2+, MDA ↓ 
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their therapeutic effects on humans, clinical trials 
are required. Second, there are several inhibitors 
targeting the same disease or the same target, yet 
they are not compared in terms of efficacy. The 
third question is whether ferroptosis inhibitors ef-
fective in one ND are also effective in another. In 
conclusion, these findings must be further inves-
tigated for clarity to better understand the spec-
ificity of inhibitors and how to target ferroptosis 
biomarkers for more effective treatment of NDs.
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