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Abstract

This thesis describes a search for the Standard Model Higgs boson in theH →
W+W− → µ+νµµ

−ν̄µ decay channel. A traditional cut analysis is compared
with multivariate classi�cation algorithms: neural networks, boosted decision
trees, bagged randomized trees and the Fisher classi�er are studied. The
analysis uses simulated data of the ATLAS detector at the Large Hadron
Collider (LHC), where protons will be collided at a center of mass energy of
14 TeV starting from 2009.

The goal of this thesis is to determine the performance and usability of the
various multivariate classi�ers in a realistic study. All relevant background
processes are considered, and the expected signi�cance of the Higgs boson
decay signals for Higgs boson masses of 150 GeV, 170 GeV and 190 GeV is
calculated for each technique. The dependency of classi�er performance on
training parameters is examined, and a consistent system for evaluating and
estimating systematic uncertainties is proposed and demonstrated.

Although slower in analysis, boosted decision trees can be easily trained
to outperform an optimized cut analysis on the same variables. Neural net-
works are also capable of improving upon a classical analysis in many cases,
although more care and manual tuning is necessary. However, systematic
uncertainties a�ect multivariate classi�ers almost always much stronger than
a cut analysis. Additionally, accurate estimates of systematic uncertainties
for multivariate classi�ers can only be obtained if uncertainties are simulta-
neously evaluated: considering each uncertainty individually and then com-
bining them works well for the cut analysis but seriously underestimates the
total uncertainty in the case of multivariate classi�ers.





Zusammenfassung

Diese Diplomarbeit beschreibt eine Suche nach dem Higgs Boson im Zerfalls-
kanal H → W+W− → µ+νµµ

−ν̄µ. Eine übliche schnittbasierte Analyse wird
mit folgenden multivariaten Techniken verglichen: Neuronale Netze, Boosted
Decision Trees, Bagged Randomized Trees und die Fisher-Methode werden
untersucht. Die Analyse verwendet simulierte Daten des ATLAS Detektors
am Large Hadron Collider (LHC), an dem von 2009 an Protonen mit einer
Schwerpunktsenergie von 14 GeV kollidiert werden sollen.

Das Ziel dieser Arbeit ist die E�zienz und Benutzbarkeit der verschie-
denen multivariaten Techniken in einer realistischen Studie zu vergleichen.
Alle relevanten Untergrundprozesse werden berücksichtigt, und die erwar-
tete Signi�kanz der Higgs-Boson-Zerfallssignale für die Higgs-Boson-Massen
150 GeV, 170 GeV und 190 GeV für jede Methode berechnet. Die Abhän-
gigkeit der E�zienz der verwendeten Techniken von Trainingsgegebenheiten
und -parametern wird untersucht, und ein konsistentes System zur Auswer-
tung und Abschätzung systematischer Unsicherheiten wird vorgestellt und
angewendet.

Obwohl Boosted Decision Trees in der Anwendung am langsamsten sind,
können diese leicht so traininert werden, dass sie eine höhere E�zienz als
eine Schnittanalyse aufweisen. Neuronale Netze können ähnliche E�zienz
erreichen, es ist jedoch mehr Sorgfalt und manuelles Tuning nötig. Systema-
tische Unsicherheiten beein�ussen multivariate Techniken jedoch oft deutlich
mehr als eine Schnittanalyse. Auch können systematische Unsicherheiten für
multivariate Techniken nur gut abgeschätzt werden wenn diese gleichzeitig
betrachtet werden: Wenn sie einzeln ausgewertet und dann kombiniert wer-
den wird die gesamte systematische Unsicherheit der multivariaten Techniken
stark unterschätzt.
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1. Introduction

The proposal of the electron by J.J. Thomson in 1897 opened up a new �eld
of physics: the search for sub-atomic particles and the laws that govern them.
During the 20th century, a veritable zoo of particles was discovered in cosmic
rays and at particle accelerators. The quark model proposed and developed
by Gell-Mann, Nishijima, Ne'eman and Zweig [1, 2] explains many of these
particles as composite objects, consisting of quarks of three colours. On
the close of the 20th century, the Standard Model of particle physics with
its three families of quarks and leptons was nearly unanimously accepted
as an excellent description of our current state of knowledge. Its predictions
match experiments extremely well, in some cases exceeding a precision of nine
signi�cant digits [3]. Yet the Standard Model is not completely con�rmed:
the question how the electroweak bosons W+, W− and Z acquire mass is
still open. The most prominent explanation consistent with experiment is
the existence of a Higgs �eld, and it predicts the existence of a spin-0 boson,
remnant of a process of spontaneous symmetry breaking. Since this boson
has not been discovered at previous experiments, the decision what model
best �ts reality can only be decided by new high-energy colliders.

The ATLAS detector at the Large Hadron Collider, where protons will be
collided at a center of mass energy of 14 TeV is a window to this new region of
high energy physics. It is expected that results either con�rm the extremely
successful Standard Model of particle physics by �nding the Higgs boson, or
see signs of new physics beyond it. However, the e�ects of a Higgs boson are
expected to be tiny compared to several Standard Model processes. In this
situation, advanced analysis techniques as used in this thesis can signi�cantly
improve sensitivity to new physics [4].
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In the �rst part of this thesis, an introduction to the matter is given:
The Standard Model of particle physics is shortly described, as well as the
theoretical expectations for the Higgs boson production and the background
processes at LHC. Multivariate classi�ers are presented and explained. The
LHC and the ATLAS Experiment are introduced, as well as the methods to
simulate the detector and to analyze the data.

The main part deals with the analysis of the data obtained by simulation.
Firstly, a coherent statistical treatment of occurring uncertainties, statisti-
cal as well as systematical, is developed. Preparations and procedures for
the analysis are described. Some features of the relevant processes and of
the data used are shown, and experiences in training, application and per-
formance of multivariate classi�ers are presented. Finally, the results of the
optimized cut and mulltivariate analyses are given in detail, the expected
discovery luminosity for each method stated, and the results discussed in
view of practicality, reliability and performance.

The Appendix contains technical details that are important for a practical
implementation of the analysis.
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2. Theory and Methods

2.1 The Standard Model of Particle Physics

The Standard Model of fundamental particles and interactions describes al-
most all readily observable e�ects in nature - apart from gravity - exceedingly
well. In total 24 fermion �elds - six quarks in three colours each, and six lep-
tons - are part of it, manifesting as particles. Twelve boson �elds convey the
di�erent interactions: The massless photons carry the electromagnetic, the
massive W+,W− and Z the weak interaction, and the eight multicoloured
gluons the strong interaction dominant in atomic nuclei [2].

Since the discovery of the last quark �tting into the apparent periodic
structure of the Standard Model at TeVatron in 1995 [5], this remarkable
Theory of particle physics seems to be nearing completion.1. The last missing
piece seems to be the Standard Model Higgs particle, a boson, its predicted
mass being around 91+45

−32 GeV [3], with a mass of 170 GeV already excluded by
TeVatron [7] at 95% con�dence. Why now is the Higgs boson necessary, and
how can we detect it? In the following a short overview over the Standard
Model tries to explain the last two points.

As far as we know, particle physics excluding gravity is described by a
quantized least action principle2.

Least Action Principle: In classical physics, a least action principle can
be described as the following prescription for the �eld φ:

min
φ,∂µφ

∫
L(φ, ∂µφ)d4x (2.1)

From this prescription a set of equations for the Lagrangian L, the Lagrange
equations, can be derived. These determine exactly the evolution of the �eld
φ, given initial values and �rst derivatives3.

1Yet in the same decade, the discovery of neutrino oscillations [6] shook long-held beliefs,
and makes modi�cations to the Standard Model necessary

2Gravity is currently described best by the general theory of relativity, also de�ned
by a least action principle. However, no successful quantized version of this theory is yet
known.

3Actual calculation can of course still be very di�cult
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Quantum Field Theory: A full introduction to Quantum Field Theory
is not in the scope of this thesis, a good introductory textbook is for example
[8]. Still, some points are important for the understanding of accelerator
experiments.

In Quantum Field Theory, the �elds themselves are replaced by oper-
ators. Using a quantization procedure one can extract serveral interesting
features and predictions of the theory4. The usual assumption in high en-
ergy physics is that interactions are weak - an assumption that, except for
bound states of quarks, is very reasonable. This allows us to expand the
theory in a power series of the (dimensionless) interaction strength, and for
each power and each process we obtain several Feynman diagrams, which are
diagrammatical expressions of integrals. These diagrams can be evaluated to
give cross sections depending on the initial and �nal conditions, and the sum
over all powers gives the actual prediction of the Theory.5 Since calculating
corrections at higher orders is very di�cult, most of the time only predictions
to the next to leading and perhaps second to leading order are available for
a given process, and many Monte Carlo generators work only to the leading
order of a process.

The Standard Model: Central to the Standard Model6 is the gauge sym-
metry group SU(3)⊗ SU(2)⊗ U(1) that �generates� the bosonic �elds. For
each symmetry, local gauge invariance demands a gauge �eld to exist.

We have therefore for the Standard Model in total 8 + 3 + 1 gauge �elds,
one for each generator of each of the groups: The eight gluon gauge �elds
Ga

µ, and then the electroweak �elds, a weak isospin triplet �eld W i and a
weak isosinglet �eld B. Additionally to the gauge �elds, we introduce two
kinds of fermionic �elds: Six quark �elds qj which couple to electroweak and
strong gauge �elds, and six lepton �elds that couple only to the electroweak
�elds.

At this point in theoretical development it was proven that unfortunately
there is no way to directly give gauge bosons a mass without making the
theory nonrenormalizable. Fortunately, it is possible to introduce mass indi-
rectly using a two-component complex scalar gauge �eld φ - the Higgs �eld.
The potential of this �eld is symmetric, but with an instability around the
symmetry axis. This enables a spontaneous breaking of the symmetry at
the beginning of (theory) time - this can give gauge bosons a mass without

4It is also possible to discretize the problem and apply evolution equations to a �eld
on a lattice, especially in the study of bound states in Quantum Chromodynamics this is
the only way to make predictions

5This description ignores the fact that to get to the point where actual, second order
predictions can be made, the theory has to be regularized, renormalized and the gauge
�xed, and that calculating even a one one-loop correction is a serious undertaking.

6For a historical overview and a bibliography of original papers, see [9]
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breaking gauge invariance. This mechanism will be explained in more detail
later.

The complete Lagrangian L of the Standard Model is therefore given by:

L = LQCD + LEW + LHiggs (2.2)

The gauge �elds of QCD are the Gα
µ, where α is the group index. The

strong �eld and �eld strength are then de�ned as:

Gµν =∂µGν − ∂νGµ − igs [Gµ, Gν ] (2.3)

Gµ =
8∑

α=1

Gα
µ

λα

2
(2.4)

Using the �elds W and B the electroweak partial derivative Dµ and the
electroweak �eld strengths F j

µν and Bµν are de�ned as follows:

Dµ =∂µ − ig
σ

2
W µ − ig′

Y

2
Bµ (2.5)

F j
µν =∂µW

j
ν − ∂νW

j
µ + gεjklW k

µW
l
ν (2.6)

Bµν =∂µBν − ∂νBµ (2.7)

(2.8)

Using this de�nitions the parts of the Lagrangian can be written as:

LQCD =
∑

j

iq̄jγµ (Dµ − igsG
µ) qj −

1

2
trGµνG

µν (2.9)

LEW =
∑

k

iψ̄kγµD
µψk −

1

4
F jµνF j

µν −
1

4
BµνBµν (2.10)

LHiggs =|Dµφ|2 − V (φ)−
∑

j

cj q̄jφqj −
∑

k

fkψ̄kφψk (2.11)

Each of these parts describes various particles and their interactions, and
will be explained now in more detail.

2.1.1
∑

j iq̄jγµ (Dµ − igsG
µ) qj − 1

2trGµνG
µν

Kinematic term for quarks and their electroweak interaction The
�rst term in this expression is a kinematic term that describes the propaga-
tion of quark �elds - q̄jγµ∂

µqj. It also includes various interaction terms. The
covariant electroweak derivative Dµ includes a full set of electroweak inter-
action. The strength of this electroweak interaction depends on the isospin
σ and weak hypercharge Y of the participating �elds.
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Strong interaction: The term q̄jγµigsG
µqj describes the strong interac-

tion of quarks and gluons, coupled with the strong coupling constant gs. The
peculiarity of the strong interaction now is not only that the coupling con-
stant gs is large, but also that the next term - −1

2
trGµνG

µν - describes a
gluon-gluon self-interaction. At higher energies, this leads to a self-similarity
of quarks and gluons: gluons can be observed to split into virtual quark-
antiquark pairs, and these quarks again contain gluon loops. In this theory,
this self-similarity continues up to in�nite energies -in�nitely small distances
- but it is expected that at the Planck scale Λ, when gravity becomes as
strong as the other interactions, this SU(3) symmetry turns out to be only a
fragment of a spontaneously broken greater group7.

Running coupling constant: One other interesting feature of this part of
the Lagrangian is that - after the process of renormalization, or adapting to
the energy scale of a process - the coupling constant seems to decrease with
increasing energy. This means that the hard part of collisions in particle
accellerators can often be described without taking into account the full
non-perturbative strong interaction and assuming that the coupling is small.
This e�ect is called �asymptotic freedom�8. This of course mostly a�ects
the calculation of cross-sections, since the subsequent �hadronization� of the
colour-charged remnants of the hard interaction can as yet only be described
by empirical models and numerical approximations.

Colour and Con�nement: In the expression of the gluon �eldsGµ we �nd
the λa, the generators of the SU(3) group. SU(3) is the group of rotations of
a three-dimensional sphere, and so the λ terms do not commute. According
to Noethers Theorem, this leads to three separate conserved gauge currents
that can be derived from the Lagrangian - called colloquially the red, green
and blue current. It was discovered that because the coloured gluons interact
with themselves, the above Lagrangian does not allow �naked� color to exist:
If a red and an antired quark are pulled apart, the �eld strength increases
with distance until from the built-up energy an colour-anticolour quark pair
is formed and two colourless parts remain.

2.1.2
∑

k iψ̄kγµD
µψk − 1

4F
jµνF j

µν − 1
4B

µνBµν

Transformation into charge eigenstates On further examination of this
Lagrangian, it turns out that the �elds W and B are not charge eigenstates
and therefore can not really be identi�ed with particles. One can, however,
choose four linear combinations of these �elds that each have distinct proper-
ties and can be identi�ed with particles: The W+ and W− �elds correspond

7This is the domain of Great Uni�ed Theories, or GUTs
8Nobel Prize 2004, F. A. Wilczek, H. D. Politzer and D. Gross
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Figure 2.1: The usual �Mexican Hat� potential of the Higgs �eld

to charged particles, the neutral Z couples to a combination of weak and
electric charge while the well-known photon �eld A couples only to electric
charge.

History and Experiment The electromagnetic part A of the electroweak
force was the �rst part of the Standard Model to be transformed into a quan-
tum �eld theory. James Clerk Maxwell discovered empirically the equations
that govern the electromagnetic �eld, and later Feynman and Schwinger [10]
were the �rst to quantize a classical �eld theory and apply it to reality as
Quantum Electrodynamics, identifying the quantized electric �eld A as the
photon. In the 70s, Glashow, Salam, Weinberg and others developed the
uni�cation of the electromagnetic and the weak interaction and proposed the
W and Z particles [9]. The discovery of these particles at the UA1/UA2 ex-
periments at CERN in 1983 was one of the great successes of this theory, and
the success of the Standard Model is �rmly founded on these experiments.

2.1.3 The Higgs Mechanism

In the last two sections, the question of mass was ignored. Static mass terms
in a Lagrangian have the form −ψ̄mψ or µ2AµA

µ for spin-1/2 and spin-1
particles, respectively. If we now would just add such a mass term for the
massive boson �elds W and Z, gauge invariance would be broken explicitely,
and the theory would not be renormalizable. This means we cannot introduce
mass statically.

The prime method for dynamical mass generation was proposed by Peter
Higgs in 1964 [11]. He introduced an additional two-component complex
scalar quantum �eld that has a so-called �mexican hat� potential (see �gure
2.1)
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Figure 2.2: The Higgs boson production cross-sections for di�erent Higgs boson
masses at the LHC [12]

In the usual model, shortly after the big bang, the temperature fell below
the energy at the origin of the potential. Small �uctuations lead then to the
breaking of the initial symmetry, and the �eld settles after further cooling
at the bottom of the valley. This leads to a scalar �eld that is nonzero
everywhere in space.

Now, a complex scalar �eld with two components has four degrees of
freedom. Three are transformed by a gauge transformation to give the spin-1
particlesW−,W+ and Z a third spin component 9. So there is one component
left, which describes a real scalar �eld, and couples to each particle with a
strength proportional to its mass. The excitation of this Higgs �eld would
manifest itself as a spin-0 particle. This particle, the Higgs boson, is essential
to the theory, and is the only particle of the Standard Model not yet observed.

2.2 Standard Model Processes

2.2.1 Higgs Boson Production

A Standard Model Higgs boson can be produced at LHC in four di�erent
channels (�gures 2.2 and 2.3), most prominently in the gluon-gluon-fusion

9massless particles can only have spin in forward or backward directions
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Figure 2.3: Production channels of the Higgs boson

and the vector boson fusion (VBF) channels. Strongest is gluon fusion via
the top quark loop. In this channel, the decay products of the Higgs boson are
the only objects in the event with high transverse momentum. In contrast,
vector boson fusion is accompanied by the two participating quarks as two
jets with low transverse momentum. This enables us to separately analyze
the VBF channel. In addition to these channels, the Higgs boson can also
be produced in association with quarks and in association to a W boson.
Since these processes have a very small cross-section and need quite di�erent
analysis methods they are ignored in the following.

2.2.2 Higgs Boson Decays

The Higgs boson is an uncharged spin-0 particle. It can decay to vector
bosons, to quarks and - via a top quark loop - to photons. The branching
ratios are strongly dependent on the Higgs boson mass (see �gure 2.4). If
the Higgs boson is light, up to 140 GeV, the decay to bb̄ is strongest. Since
hadronic decays are di�cult to separate from the huge backgrounds with
similar topologies, the decay to two photons is also important in this region.
For higher Higgs boson masses, the decay to vector bosons is dominant, above
200 GeV the decay of ZZ to four leptons provides a very clear signal. Yet in
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Figure 2.4: The Higgs boson decay branching ratios for di�erent Higgs boson masses
Particle Data Group, 2007 Web Update of Review of Particle Physics

the region of 140 GeV to 200 GeV the decay to W+W− and the subsequent
decay of the W s into muons (see �gure 2.5) is a central channel for a Higgs
boson discovery. Additionally, in some theories the Higgs-W coupling is
enhanced, and the W+W− decays are also relevant at lower Higgs boson
masses [13].

2.2.3 Background Processes

In this section, the four most important Standard Model processes that can
cause similar detector signatures as the H → W+W− → µ+νµµ

−ν̄µ decay
are presented. In �gure 2.6 the relevant Feynman diagrams are shown.

Drell-Yan process The di-muon (and di-tau) production via Z/γ∗ as
shown in �gure 2.6(a) is the dominant background of this analysis chan-
nel, even though the �nal state lacks the neutrinos of the Higgs boson decay.
Since the expected total initial cross-section in this channel with an invariant
mass above 15 GeV is 3.35 nb a good understanding of this background is cru-
cial to detect Higgs boson production with a cross-section of approximately
1 pb. Luckily, good separation of signal and backround is possible, since the
kinematic properties of Drell-Yan as a direct µµ decay di�er markedly from
a decay where each muon originates from a W boson.
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Figure 2.5: Feynman diagram for the H → W+W− → µ+νµµ−ν̄µ decay examined
in this thesis

QCD W+W−: The direct QCDW+W− production is the most challenging
background to this analysis: The kinematic properties as seen in the Feynman
diagram 2.6(b) are very similar to the Higgs boson decay. Yet there is one
separation criterion: Since the two W bosons of the Higgs boson decay are
produced at one vertex with very little transverse momentum and the Higgs
boson has spin 0, their spins are preferentially antiparallel. Since the neutrino
emitted by the W+ must be left-handed the muon from the W+ is emitted
preferentially in the direction of its spin, and since the antineutrino emitted
byW− must be right-handed the muon from theW− is emitted preferentially
in the opposite direction of its spin. This means that the opening angle
between the two muons is tending to smaller angles. This will be exploited
in the analysis [14].

QCD ZZ: Direct di-Z production as shown in �gure 2.6(c) has much less
in�uence on the analysis than W+W− production. This is the case since the
two muons originate from one Z, and their distribution is therefore similar
to the Drell-Yan background.

QCD tt̄ production Top quark decays pose a problem mostly for the
vector boson fusion channel. According to the Standard Model, top quarks
decay almost exclusively to Wb (see �gure 2.6(d)). If then both W decay
to muons, the signature is quite similar to the VBF Higgs boson production
channel: The two b-jets from the top decays mimic the two jets seen in the
Higgs boson production process. Also, the NLO prediction for the total tt̄
cross-section at the LHC is 833 pb, and the cross-section for decays which
include at least one lepton is 450 pb, still much more than the predicted
Higgs boson cross section of approximately 1 pb. One possibility is the use
of the b−tagging technique, where secondary vertices arising from the �long�
lifetimes of the b-mesons are identi�ed. While this could reduce background
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Figure 2.6: Feynman diagrams for main background processes

signi�cantly, the e�ciency of the technique is very di�cult to estimate by
simulations, and will have to be determined by actual data. Therefore, the
technique is ignored in the following.

2.2.4 Monte Carlo Event Generators

The exact Standard Model di�erential cross sections including hadronization
and radiative corrections can not be calculated analytically. The same holds
for the exact response of the detector to each possible event. Therefore, a
study must use Monte-Carlo event generators to simulate virtual collisions.
This is not a simple task: several approximations, parametrisations and aux-
iliary models have to be introduced [15].

In table 2.1 an overview to the datasets used for this analysis is given:
the Monte Carlo generator used for each process, the corresponding cross
section times branching ratio σ ×BR after initial �lters and the numbers of
events simulated are given. The event numbers in the columns �full events�
and �fast events� refer to the degree of detail of the detector simulation (see
3.3). The dataset number in the table refers to unique number given to the
corresponding ATLAS con�guration �le.

One of the most versatile generators is named Pythia [16]. Its predecessors
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are in development since 1978, and it can generate almost all processes out of
the box. Processes are simulated to tree level and corrections for initial and
�nal state radiation as well as for renormalization are applied. Also, models
for hadronization of �nal-state quarks and gluons are included. To improve
the modeling of more complicated, non-tree level contributions of certain
processes it is possible to use AcerMC [17] to simulate the hard process before
using Pythia for further decays.

Another general-purpose tree-level generator is Herwig [18]. It is used
for hadronization for the next-to-leading order generator MC@NLO [19, 20]
and for the generator Alpgen [21] specialized on multi-parton processes in
hadronic interactions.

13



p
ro
ce
ss

d
at
as
et

n
r.

ge
n
er
at
or

fu
ll
ev
en
ts

fa
st

ev
en
ts

sa
m
p
le
cr
os
s-
se
ct
io
n

σ
×

B
R
[p
b
]

Z
/γ

∗
→

µ
+
µ
−
(m

µ
µ

>
60

G
eV
)

51
45

P
y
th
ia

42
59
00

40
00
00

17
93

Z
/γ

∗
→

µ
+
µ
−
(1

5
G
eV

<
m

µ
µ

<
60

G
eV
)

-
P
y
th
ia

88
50

52
12
63

11
92

Z
/γ

∗
→

τ
+
τ
−

51
46

P
y
th
ia

14
96
00

0
77

tt̄
52
00

M
C
@
N
L
O

40
35
80

0
45
0

H
→

W
+
W

−
(1

70
G
eV

)
53
20

P
y
th
ia

25
70
0

0
1.
24

H
→

W
+
W

−
(1

50
G
eV

)
-

P
y
th
ia

19
00
0

0
1.
16

H
→

W
+
W

−
(1

90
G
eV

)
-

P
y
th
ia

20
00
0

0
0.
88

W
t

55
00

A
ce
rM

C
13
95
0

0
26
.7

W
+
W

−
→

e+
e−

59
21

M
C
@
N
L
O

13
62
4

0
1.
4

W
+
W

−
→

e+
µ
−

59
22

M
C
@
N
L
O

13
62
6

0
1.
4

W
+
W

−
→

e+
τ
−

59
23

M
C
@
N
L
O

12
80
8

0
1.
4

W
+
W

−
→

µ
+
µ
−

59
24

M
C
@
N
L
O

10
22
0

0
1.
4

W
+
W

−
→

µ
+
e−

59
25

M
C
@
N
L
O

13
86
8

0
1.
4

W
+
W

−
→

µ
+
τ
−

59
26

M
C
@
N
L
O

10
39
0

0
1.
4

W
+
W

−
→

τ
+
τ
−

59
27

M
C
@
N
L
O

13
53
4

0
1.
4

W
+
W

−
→

τ
+
e−

59
28

M
C
@
N
L
O

12
26
2

0
1.
4

W
+
W

−
→

τ
+
µ
−

59
29

M
C
@
N
L
O

13
74
0

0
1.
4

Z
Z

59
86

H
er
w
ig

48
00
0

0
2.
81

W
Z

59
87

H
er
w
ig

44
50

0
13
.8
6

W
(µ

)
+

je
ts
,
0
p
ar
to
n
s

61
07

A
lp
ge
n

16
50
0

99
50
0

81
9

W
(µ

)
+

je
ts
,
1
p
ar
to
n
s

61
08

A
lp
ge
n

10
00
0

30
00
00

16
30

W
(µ

)
+

je
ts
,
2
p
ar
to
n
s

61
09

A
lp
ge
n

99
50

62
00
0

58
8

W
(µ

)
+

je
ts
,
3
p
ar
to
n
s

61
10

A
lp
ge
n

10
45
0

10
00
00

17
4

W
(µ

)
+

je
ts
,
4
p
ar
to
n
s

61
11

A
lp
ge
n

95
00

22
00
0

50
.4

W
bb
→

lν
bb̄

63
66

A
lp
ge
n

19
50
0

0
29

T
ab
le
2.
1:

M
on
te

C
ar
lo
sa
m
p
le
in
fo
rm

at
io
n
.
A
ll

σ
×

B
R
ar
e
in

N
L
O
,
N
N
L
O
or

L
O
+
k
-f
ac
to
r
co
rr
ec
tr
io
n
s
to

N
L
O

14



2.3 Multivariate Classi�ers

In general, multivariate classi�ers are mathematical algorithms that sort data
points into di�erent categories. In the case of �supervised learning� used in
this analysis a pre-classi�ed set of data �events� is provided, and the classi�er
trained to perform well on the training set. The e�ciency of the classi�ers
is then tested on an independent testing sample. In the high energy physics
case, only two categories are used: signal and background. In this case,
a multivariate classi�er is simply a scalar function f of the input variables.
Higher values correspond to �signal-like� events, whereas lower values indicate
background. A clearly de�ned �signal region� can then be de�ned as the
region in input variable space where for which f (x) > c for the input variable
vector x, with c as a constant.

2.3.1 Training and Testing samples

The available Monte Carlo data is �rst split into training and testing sam-
ples: The classi�ers as well as the analysis cuts are trained and optimized,
respectively, on the training sample, whereas all results are only derived from
the testing sample. This increases the uncertainty due to Monte Carlo statis-
tics, but it is essential to get correct results: multivariate classi�ers tend to
perform much better on the training sample than on the testing sample.
This �overtraining� is especially visible in classi�ers with many parameters.
However, as long as the testing sample is statistically independent from the
training sample the derived results are accurate, even if the classi�er is over-
trained.

2.3.2 The Toolkit for Multivariate Analysis: TMVA

The correct implementation of a multivariate classi�er and its training algo-
rithm is a non-trivial task. To compare the results from di�erent classi�ers
consistently is often also very di�cult [22]. To simplify the procedure, the
Toolkit for Multivariate Analysis (TMVA, [22], version 3.9.4) was used in
this thesis for all multivariate methods. In the following, a short description
of the classi�ers and their parameters is given.

2.3.3 Boosted Decision Trees

Boosted decision trees (BDT) are a popular tool for event classi�cation in
high energy physics [23]. Firstly, a decision tree is simply a binary tree of
cuts on one variable with �signal� and �background� baskets at the end as
illustrated in �gure 2.7. In training or growing a decision tree, one starts with
a root node. Then a variable and cut is searched that maximizes the sum of
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Figure 2.7: One Decision Tree: Binary Tree of Cuts

the signi�cances S/
√
S +B of each new subsample weighted by the number

of events in it; for each variable 20 possible cuts between the minimum and
the maximum are tried out. Two leaf nodes, one for each subsample are
added and the process repeated for each node. This leads quickly to a tree
where each training event is classi�ed perfectly, so a �pruning� method is used
to cut the most statistically insigni�cant nodes. Such a tree is very easy to
interpret, yet is extremely sensitive to slight changes in the training sample
- if at one node a di�erent variable is chosen, the whole tree below it has a
di�erent structure.

AdaBoost: A boosting procedure promotes one classi�er optimized to one
training sample to many classi�ers derived from reweighted training samples.
The result of the now �boosted� classi�er is the number of votes of the sin-
gle classi�ers. In the used �AdaBoost� algorithm, the weight of previously
misclassi�ed events is multiplied by the common �boost weight�

α =
1− ε

ε

Here ε is the misclassi�cation rate of the previous tree. The output of the
boosting algorithm is the weighted sum over all trees:

∑
i∈trees lnαihi(x),

where h(x) is +1 if x is classi�ed as signal by the ith tree and −1 otherwise.
The boosting reduces the dependence on the choice of the training sample,

yet the easy interpretation of decision trees is lost. Additionally, many addi-
tional degrees of freedom are introduced, and most boosted decision trees are
overtrained. This makes it imperative that the selection e�ciency is deter-
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Figure 2.8: Example for a neural network: this network is a two-layer perceptron
trained to identify Higgs decays with a Higgs boson mass of 170 GeV

mined on an independent control sample. On the other hand, the boosting
method makes the decision tree a classi�er that performs well �out-of-the-
box�, with little tuning required.

Bagging: An alternative way to increase the power of decision trees is
�bagging�: Reweighted training samples are constructed by randomly picking
events from the training sample according to their weight, and also allowing
an event to be picked more than once. The constructed samples then have
the same probability distribution as the parent sample, and the combination
of the di�erent trees then gives a more statistically stable classi�er. An
additional possibility is to only use a random set of variables to choose at
each split. This can in some cases increase the strength of splits further on.
The decision tree classi�er using bagging and a random choice of variables
at each node is named �bagged randomized trees� (BRT) in this thesis.

2.3.4 Multilayer Perceptrons

The �eld of neural networks is wide, yet the multilayer perceptron (MLP)
commonly used in high energy physics is one of the simplest examples: Each
neuron of each layer is wired with each neuron of the preceding layer: in
�gure 2.8 one such wiring is depicted. Each neuron applies a sigmoid (tanh)
function on the sum of its weighted input signals, the result is passed on to
the next layer.

A neural network with N layers can therefore be described by N + 1
matrices: Let x be the input variables, and Wi the matrix of the ith layer,
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then the output of a neural net is

W2 · tanh (W1 · tanh (W0 · x))

Here the tanh function is understood to apply elementwise to each vector.
Training a neural network is achieved by setting the inputs to known

(classi�ed) events and then adjusting the strength of the network connections.
This is done using the back-propagation algorithm [24]. A properly trained
neural network then maps a score to each point in phase space that is high
in signal-like regions.

The advantage of neural networks is that they are less susceptible to
overtraining than boosted decision trees. Also, their output is more contin-
uous with changes in the input variables. However, neural networks need
large training sets to obtain good performance, a major problem for many
applications.

2.3.5 The Fisher Classi�er

The Fisher Classi�er or Fisher method is simple: its output is the scalar
product between the vector of variables - minus its training mean - and a
coe�cient vector w [25]. It can be visualized as a line in variable space onto
which each event is projected. One end of the line corresponds to signal,
the other to background. The method is trained by maximizing the Fisher
criterion J(w) over di�erent coe�cient vectors w, where J(w) is

J(w) =
|m1 −m2|2

s2
1 + s2

2

Here m1 and m2 are the means of the signal and background samples, and
s1, s2 their variances. This optimization problem can be solved in closed
form, this yields a fast training algorithm.

Since the number of free parameters is rather small, it is impossible to
overtrain the Fisher classi�er. And despite its obvious shortcomings, it still
gives surprisingly good results, expecially when other classi�ers fail because
of small training samples. It is therefore a good indicator of such problems -
if a more sophisticated classi�er yields worse results than Fisher on the test
sample and a better performance would be expected, some aspect of training
probably has to be improved.

2.3.6 Other Classi�ers

Other classi�ers tested in this thesis have been Support Vector Machines,
gaussian maximum Likelihood estimators and probability density estima-
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tors [22]. Since these classi�ers yielded worse results than either BDTs or
MLPs in several tries, they are not listed in the analysis and the results. 10

10This of course does not exclude that for data unlike the examined samples, these
classi�ers may be better.
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3. Experimental Setup

The ATLAS experiment is situated at the Point 1 of the Large Hadron Col-
lider Ring. In the center of the detector protons are collided with protons at
high luminosity every 25 ns. The resulting fragments and particles are then
measured by the ATLAS Detector, the data written to tape, processed, and
analyzed.

3.1 The Large Hadron Collider

The Large Hadron collider is a synchrotron 27 km in circumference that accel-
erates protons from injection energies of 450 GeV to 7 TeV in both directions.
It is the last stage of a chain of pre-accelerators (�gure 3.1). The protons
are kept on course and focussed by superconducting magnets. At the exper-
iment site of ATLAS, the two beams are brought to collision with a center
of mass energy of 14 TeV and an instantaneous luminosity of 1034cm−2s−1,
approximately a factor of 100 more than the TeV atron accelerator [27, 28].

The protons in LHC are kept in 2808 �bunches� of about 1011 particles.
This leads to one bunch crossing each 25 ns at the experiment, each of which
leads to several interactions. The LHC �nished its cooldown phase in August
2008, and injected the �rst beam on September 10. First physics data is
expected in Spring 2009.

3.2 The ATLAS Experiment

3.2.1 Design

The ATLAS experiment is layered around the LHC beam interaction point.
Each layer measures di�erent properties of the created particles, and by com-
bination of the layers particle types and momenta can be reconstructed. For
detailed technical references, see [27].

The layers of ATLAS follow the traditional outline (see �gure 3.2):

• Inner tracker

• Electromagnetic calorimeter
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Figure 3.1: Overview over the CERN Accelerator Complex [26].

• Hadronic calorimeter

• Muon spectrometer

The inner detector with a radius of 1.15m is enclosed by a solenoid mag-
net, creating a homogenous �eld of 2T. This curves the tracks of charged
particles, the radius of curvature then being proportional to the transverse
momentum of the particle. The inner detector itself consists of three lay-
ers: First silicon pixels 50µm×300µm large for good vertex resolution, then
longer silicon strip detectors 80µm×12cm for further tracking, and �nally
straw-tubes with a resolution of approx. 200µm for tracking and transition
radiation measurement. The inner detector can resolve the transverse mo-
mentum of a 20 GeV muon �ying ortogonal to the beam in good conditions
to 1.4%.

The electromagnetic calorimeter is built using liquid argon technology,
the hadronic calorimeter is a scintillator-tile structure. In the endcaps, the
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Figure 3.2: Overview of the ATLAS Detector.

hadronic calorimetry is as well taken on by liquid argon. Only muons can
transverse the calorimeter mostily unhindered, all other particles are stopped
and their energy is measured. The combined uncertainty on jet energy mea-
surements is di�cult to estimate without collision data, and is conservatively
given [29] at 67%/

√
Ejet[GeV] for resolution uncertainty and 10% for system-

atic scale uncertainty.

The whole calorimeter structure, with a radius of 4.25m, is surrounded
by the muon spectrometer. The muon spectrometer at ATLAS consists of
an air-�lled toroid magnet system, in which there are three layers of tracking
stations in every direction. Muons are tracked in the barrel and endcap
using monitored drift tubes. Triggering is achieved by fast-acting resistive
plate chambers in the barrel region and thin gap chambers in the endcaps.
The open structure of the muon spectrometer reduces multiple scattering,
and helps improving muon momentum resolution. The total radius of the
muon spectrometer and therefore of ATLAS is about 11m. The combined
muon resolution of the inner detector and the muon system is estimated [30]
to be about 3% in the region of interest to this analysis (10− 100 GeV).
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Figure 3.3: The ATLAS Trigger Levels and approximate rates.

3.2.2 Trigger

Since there are approximately 40 million bunch crossings per second, and an
electronic record of one event takes several megabytes, recording every bunch
crossing is far beyond current technology. Therefore, three levels of event
triggers are used (�gure 3.3). The �rst level is built into the calorimeter and
muon system hard- and �rmware. If an event seems su�ciently interesting,
this system de�nes �regions of interest�. The level two trigger system - still
underground, close to the detector - fetches the readout bu�ers from these
regions and checks the event for a second time. Then, it is passed topside to a
computing farm where a preliminary reconstruction of particles is performed.
After the last trigger, the event rate is reduced to approximately 100 events
per second, translating to about 500 MB/s.

3.2.3 Event reconstruction

To reconstruct the track of a charged particle, detector hits must be con-
nected. For muons, tracks from the inner detector and the muon spectrom-
eter must be matched, and the output of several reconstruction algorithms
are available. For this analysis, a recommended algorithm, the �STACO�
algorithm (for an evaluation see [31]) has been used.

Still, there are two other possibilities to consider: A stable hadron, car-
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rying most of the momentum of a hadronic jet, can in rare cases �sneak�
through the hadronic calorimeter and register as a muon. Also, if a jet has
high enough energy, it can �punch through� the hadronic calorimeter and
cause enough hits in the muon chambers to fake a muon. Since especially
the �rst case is di�cult to detect, in an analysis on real data an additional
matching with QCD data must be done to model these backgrounds.

Missing Transverse Energy During event reconstruction, the missing
transverse energy, the negative vector sum of all measured (and estimated)
transverse momenta in the calorimeter is calculated and corrected for known
e�ects. The transverse momenta in the calorimeter are calculated using the
location and amount of the deposited energy. The missing transverse energy
is is a quantity extremely sensitive to detector e�ects. The current estimate
on the accuracy in very good conditions is about 5 GeV [32].

3.3 Detector Simulation

The complex nature of the physics events and the multitude of subdetectors
in ATLAS makes an accurate simulation of the detector indispensable. The
simulation for ATLAS is built using GEANT4 [33] and an accurate geomet-
ric model of the ATLAS detector. This simulation tracks particles through
matter, incorporates a wide range of interactions and simulates the detector
response. The full simulation of the detector with GEANT4 also takes a large
amount of CPU time: simulating an average event on a current CPU (AMD
Opteron 275) takes about half an hour. Since millions of simulated events are
necessary for a full study, the CPU time necessary is in the order of decades.
The solution is the use of the resources of the LHC Community Grid (LCG),
a large network of computing centres dedicated to the LHC experiments. On
the Grid many physics samples for ATLAS are already centrally produced.
For this study, approximately 330000 events were simulated in full simulation
in addition to the o�cially produced samples, this is the equivalent of about
19 years of CPU time. Without the resources of the LCG this would not
have been possible.

Fast Simulation: Even with the resources of the LCG it is impractical to
obtain samples of a reasonable size for some processes. One option to speed
up the simulation is to use ATLFAST II [34], where the exact simulation of
the calorimetetry with GEANT4 is replaced by a fast parametrized version.
This reduced processing time considerably, and allowed an additional 1.5
million events to be produced for this analysis.
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4. Statistical Methods for

Uncertainties

In experimental statistics there are two di�erent approaches to statistical
analysis, the Frequentist and the Bayesian [35]. For more than a hundred
years the question which method to use under which circumstances has been
controversial. Since both are used in particle physics analyses, a careful
examination of the di�erences of the methodologies is in order.

Firstly, the two approaches are presented. Then the actual statistical
questions relevant to the analysis are clearly stated, and the answers pro-
posed by the two schools of thought are examined. Finally the systematic
uncertainties arising from imperfect knowledge of the detector are integrated
into the statistical analysis method, and a concise prescription for evaluating
an analysis is given.

4.1 Frequentists and Bayesian Approaches to

Probability

4.1.1 Frequentist Probability

The frequentist probability of an event e is de�ned as the frequency of e in an
ensemble of identical random experiments. This means one can only assign
probabilites to outcomes of random experiments - assigning a probability to
the event �it will rain tomorrow� is not possible. This means that one also
can not assign probabilities to possible values of theory parameters.

To interpret an experiment measuring the (parameter) X, a frequentist
can now give a 95% con�dence level interval with the property: �No matter
what the true value of X is, the probability that the con�dence interval that
will be obtained by this experiment covers it should be 95%�. This means
that if the experiment is repeated, in the limit 95% of the con�dence intervals
will cover the true value.[36]

There are several possibilities to construct such a con�dence interval, and
for the frequentist method to be accurate it is absolutely imperative that the
method is chosen before the experiment. If the method can be chosen after
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looking at the data, the probability of covering the true value, the �coverage�,
can be smaller than intended: the method can �undercover�. This is especially
important if it is not known beforehand if only an upper or also a lower limit
will be given. In this case, a �uni�ed method� which avoids this problem,
proposed by Feldman and Cousins [37] is recommended [3].

The most common conceptual problem arising from a frequentist con�-
dence interval concerns the interpretation of a single measurement. A 95%
con�dence interval does not mean that the true value lies in this particular
interval at 95% probability. Connected with this is the fact that the choice
of method can also lead to very di�erent con�dence intervals for the same
con�dence level, or con�dence levels for the same intervals. One other prob-
lem also inherent in the �uni�ed method�, is that in experiments with known
background there are cases where one can know that the obtained 95% con-
�dence interval is probably in the 5% that do not cover the true value, and
too optimistic limits are set. [36]

The frequentist construction does have the advantage of relative simplic-
ity, at least applied to one-dimensional problems. The construction of a
con�dence belt can be performed in advance and the results tabulated.

4.1.2 Bayesian Probability

In strong conceptual contrast, Bayesian probability is a mathematical de-
scription of subjective beliefs. Its origins can be traced to questions about
gambling, and the odds that are �fair� in a given betting situation.

The central tool of Bayesian Statistics is Bayes Theorem

P (A|B) =
P (B|A)

P (B)
P (A) (4.1)

Here P (A|B) denotes the conditional probability of A subject to B, the
probability of A given that B is true.

This formula allows a Bayesian observer to adjust its prior belief about A,
speci�ed by P (A), according to the observation B. The multiplicative factor
P (B|A)
P (B)

is called the �belief updating ratio�. This is an extremely powerful tool,
yet since every physicist can have a di�erent prior belief about, for example,
the existence of the Higgs boson and limits on its mass, it is di�cult to give
a consensus number for P (A|B). On the other hand, Bayesian probability is
not bound to the limits of frequentist statistics: Probabilities can be given
for one-o� events (like if it will rain tomorrow), decisions can be subjected
to mathematical comparison, and uncertainties in measurement can easily
be incorporated into the result. To summarize an experiment, a Bayesian
observer can give a subjective �95% credibility interval�: He would think a
bet with the odds 20:1 for the value to be in this interval is fair. Also, in
cases where the prior belief of di�erent physicists di�ers greatly, one could
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additionally publish the belief updating ratio, and enable everyone to draw
their own conclusions. [36]

To summarize, in cases where we have clearly de�ned random experiments
it is often advantageous to use frequentist statistics - we do not need any
more prior information1. Several reasonable schemes exist to remove some
of the problems of the uni�ed method, for example the CLs method used by
the LEP experiment [38]. Also, some mixed approaches exist to incorporate
systematic uncertainties into frequentist statistics [3], yet most of them rely
on a Bayesian understanding of the problem.

4.2 Statistical Questions

A search at a particle accelerator in channels where no mass can be directly
reconstructed relies heavily on Monte Carlo simulation of events and their
detector response. Simulated Standard Model processes are used as model
background, and several signal samples are considered. Then signal regions
with a good signal signi�cance are speci�ed, and real events falling into these
regions are counted and compared to the Monte Carlo background prediction.

To correctly estimate the background in a signal region, each Monte Carlo
sample has to be split in half between training and testing data. The train-
ing data is used for training classi�ers and optimizing cuts, and the testing
data - statistically independent of the training data - is used for the esti-
mation. This is absolutely necessary, since the choice of signal region can
depend on statistical �uctuations, and the signi�cance can be considerably
overestimated, especially in cases where background statistics are low.

The �rst statistical question concerns this estimation of the �Monte Carlo
background�. Since each background sample is �nite, we do not know the
probability distribution of the event generator exactly. Disregarding other
uncertainties, we have to answer: how can we set a credible limit on back-
ground events in the signal region?

In addition to using the test data directly to estimate the background,
several detector uncertainties are parametrized and the estimation repeated
with accordingly distorted test data. The second question is twofold: how
and how often do we distort the test data, and how can we credibly estimate
the in�uence of the detector uncertainties on the analysis from the results?

In this analysis it is additionally assumed that the absolute normalization
of the various backgrounds is kept under control by careful evaluation of
sidebands, and these two sources of uncertainty are the only relevant ones to
the estimation, then the third question is: how can I determine if I can claim

1Of course we have to know with �absolute certainty� that our description of the random
experiment is correct
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evidence, discovery or exclusion, and at what luminosity do I expect to do
so if a signal is present?

To summarize:

• Monte Carlo Uncertainty: How can we set a credible limit on the back-
ground events?

• Systematic Uncertainty: How can we get from a parametrization of e.g.
detector uncertainties to an uncertainty of the analysis result?

• Measurement Signi�cance: When can we say to have found evidence,
discovered, or excluded a signal?

It is interesting to note that the �rst two uncertainties do not intrinsi-
cally depend on the integrated luminosity if the analysis remains unchanged,
although of course the understanding of sytematic uncertainties will increase
with longer run time of the detector. Yet, this means that with a speci�c set
of Monte Carlo samples and a speci�c uncertainty on detector parameters
one can only reach a limit signi�cance that is independent on run time of
the detector. At the end of the analysis, this limit signi�cance will be given
for statistical and systematical uncertainties seperately as well as combined.
For an extended analysis with real data, the �rst uncertainty will hopefully
be much smaller than in this analysis

4.2.1 Estimating Statistical Uncertainty on Background

Setting limits on the expected background is particularly important for dis-
coveries. If we want to estimate the probability density in a region R of
phase space, the straightforward estimate of the integral of the probability
density is

∫
R
ρ = NR

N
, where NR is the number of Monte Carlo events in R

and N is the total number of events in the sample2. This leads directly to
the uncertainty statistics: In case of large NR one can easily use Gaussian
uncertainties, while for small NR Poisson statistics must be used.

Setting limits to Poisson processes is traditionally a frequentist domain.
The basis for all frequentist methods is the Neyman construction of a con�-
dence belt [39].

The Neyman Construction

Firstly, for each possible �true� value one constructs a range of possible mea-
sured values that include the actually measured values with N% probability,
with N% as the con�dence level. This region is called the �acceptance re-
gion�. Then one can obtain a con�dence interval by drawing a line through

2This estimate is based on a discrete probablity density: One δ-function at each Monte
Carlo event
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Figure 4.1: Example for construction and use of a frequentist con�dence belt: the
measurement of a theory parameter µ given the experimental (uncertain) result
x for the value of µ. For each possibly true value of µ an acceptance region is
constructed. This region must cover a fraction of possible experimental outcomes
at least equal the con�dence level in probability. On an experimental outcome
one then draws a vertical line, the region of intersection then being the con�dence
interval

the actually measured value: Each true value for which the line lies in the
acceptance region is not excluded at N% con�dence.

This construction must be done in advance of seeing the data, and in
this form is not fully speci�ed: An acceptance region can be constructed
to �nd an upper limit, a lower limit or a two-sided limit. Yet, also this
decision must be made before seeing the data, since changing your mind and
choosing between several con�dence belts after looking at the data destroys
the frequentist properties of the published con�dence interval. [37]

The most popular form of actual implementation of the Neyman con-
struction, the Feldman-Cousins method, avoids this, as it constructs only
one con�dence belt that can give one- or two sided limits, depending on the
data. This method is also recommended by the Particle Data Group for
setting limits [3].
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The uni�ed approach of Feldman and Cousins

The Neyman construction leaves out the construction of the acceptance re-
gion. Feldman and Cousins now propose [37] to order possible outcomes
Nobserved by the fraction P (µ|Nobserved)/P (µbest|Nobserved) for a given �truth�
µ, where µbest is the truth that best �ts Nobserved. Then the acceptance region
is determined by the set of top ranked Nobserved, with a cut-o� determined
by the fact that the sum of P (µ|Nobserved) should be at least the desired
con�dence level.

Yet one extension is missing: since we have several background samples,
each with events representing di�erent cross-sections, we have to put limits
not on the individual backgrounds but on the sum of all background samples.

Multidimensional Extensions of the Frequentist Methods

In the case of several background samples - especially if no or only a few
Monte Carlo events remain after selection - it would be interesting to set
a combined limit, a limit on the sum of all backgrounds. It is not really
interesting for us if a certain event is from one background or another.

Multidimensional Neyman construction Firstly, one must exted the
framework of the Neyman construction to n dimensions, so that we can
handle n background samples. Now we have to construct an acceptance
region for each n-tuple of true background strengths, given the observed
number of Monte Carlo events, the n-tuple Nobserved. We can calculate the
sum of backgrounds v by scalar multiplication of the true background n-tuple
with the n-dimensional weight vector. Now we are done: the con�dence
interval is the set of all v for which there exists an n-tuple of true values that
sum up (by weight) to v and are in the acceptance region for the Nobserved.
This construction is completely analogous to the one-dimensional Neyman
construction. It evidently gives a frequentist con�dence interval, yet is as the
original Neyman construction not fully speci�ed.

Multidimensional Feldman-Cousins To extend the approach of Feld-
man and Cousins to more than one dimension is straightforward: The ranking
of possible Nobserved given the true µ is still done as before, only with multi-
dimensional N and µ. This has been implemented using the one-dimensional
implementation of ROOT [40] as a starting point.3.

Yet if we look at the example (a) in �gure 4.2, there are some inconsisten-
cies. In the �gure, each point represents a �true� value, its colour indicating
if it would be included in an acceptance region with a given con�dence in-
terval in the case where twice zero events were selected (Nobserved = (0, 0)).

3Source code available on request
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(a) multidimensional likelihood ordering (b) multidimensional Neyman construc-
tion - only upper limit

Figure 4.2: Comparison in two dimensions: The con�dence belts for di�erent con�-
dence levels for two Poisson processes without background, with no event measured
for each process.

For example, one notices that in the case of an 90% CL (the regions below
the pink region being the acceptance region), the tuple (2.5, 0.2), lying in the
pink region, would be considered �accepted�, yet the tuple (2.45, 0.1), lying
in the green region, would be excluded! Although this is not critical in this
case, it raises doubts about the ordering principle adopted, and questions its
application in more than one dimensions.

Multidimensional Poisson Upper Limit The problem of combining
background limits can also be solved by an easier frequentist construction:
Since we are exclusively interested in upper limits, the complex construction
required by the ranking of Feldman and Cousins can be replaced by a simple
integration: Instead of choosing the top ranked �observed� values until we
reach the con�dence limit, we sum up from the minimum weighted sum of
backgrounds. This can further be simpli�ed by not requiring the full n-tuple
as �truth�, but only the weighted sum v, and calculating the probability of
v occurring directly via Poisson statistics. This method was implemented
as well, the resulting con�dence belts can be seen in 4.2 (b). It seems that
this method handles the extension to more than one dimension much better,
although it is of course less general.

For the simple case of the combination of two Poisson processes with
equal weight and no observed events, the limit behaves as expected: the
limit for the combined process is the same as for the single process. This is
the case, since by superimposing two poisson processes with intensity x and y
we get another poisson process of intensity x+y, and we can refer to the one-
dimensional case. If we extend this case to poisson processes with di�erent
weights, still for simplicity assuming no events were found, the result is that
the upper limit is determined solely by the background with the greatest
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weight. This is mathematically correct, the method does never �undercover�.
Although, one would expect the limit to increase if additional backgrounds
are added.

Bayesian Upper Limits

An additional approach would be to use a Bayesian technique for estimating
the background from the background Monte Carlo.

Choice of prior: To obtain a posterior probability distribution we need a
prior for the background estimate. One sensible option would be a uniform
prior in the number N of expected events, cut of at the number of events in
the sample. One other prior, recommended for its objectivity, is the Je�reys
prior; in this case it is P (N) ∼ 1/

√
N [41]. This prior is unfortunately not

applicable in cases where no events are found, since the posterior found by
application of Bayes theorem can not be normalized. Since in addition the
Je�reys prior would always be less conservative than a uniform prior in N ,
the uniform prior was chosen.

Convolution: We now have for each background i found ni events in the
signal region. Bayes law together with a uniform prior gives us then the
posterior distributions

P (λi|ni) ∼
1

ni!
e−λiλni

i

We now have to get the distribution of the sum of the backgrounds. Let now
λ be the sum, w1, w2 the weights and λ1, λ2 the strengths of two backgrounds.

P (λ = w1λ1 + w2λ2|n1, n2) =

=

∫ ∫
δ(λ− w1λ1 − w2λ2)P1 (λ1|n1)P2 (λ2|n2) dλ1dλ2

=
1

w1

∫
P1

(
λ− w2λ2

w1

|n1

)
P2 (λ2|n2) dλ2

=
1

w1w2

∫
P1

(
λ− x

w1

|n1

)
P2

(
x

w2

|n2

)
dx

=
1

w1w2

(
P1

(
·
w1

|n1

)
∗ P2

(
·
w2

|n2

))
(λ)

In the last line the convolution operator ∗ is used, the two places where the
corresponding convolution variable has to be put in is denoted by a · dot.
It follows that we can simply convolve the individual distributions together,
normalize and obtain the �nal distribution. This seems computationally
di�cult, but the convolution operation can be sped up considerably by fast
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Figure 4.3: Example for combining �ve backgrounds with di�erent weights. The
weights of the backgrounds- the ratio of Monte Carlo to predicted events - were
1
8 , 1

4 , 1
2 , 1 and 2, and the respective numbers of Monte Carlo events were 14, 1, 4 and

twice 0. The posterior probability distributions from the individual backgrounds
using a uniform prior are plotted in solid blue, and the resulting probability distri-
bution for the predicted events is dotted.

fourier transformation, and a package for this purpose (RooFit) is already
available in ROOT [40].

This method is guaranteed to give consistent results in the framework
of Bayesian reasoning, and the resulting posterior distribution can easily be
used for combination with systematic uncertainties. An example is given in
�gure 4.3.

Choice of Method: Both the newly presented frequentist multidimen-
sional Poisson upper limit and the Bayesian method would be suitable for
the analysis. Since, however, the Bayesian method allows direct combination
of the systematic with the statistical uncertainties and also provides a simple
method of combining two analysis channels the Bayesian method is chosen
for this thesis. Additionally, it is slightly more conservative, and is therefore
a sensible choice if avoiding false positives is a priority.

4.2.2 Estimating Systematic Uncertainties

To accurately determine the sensitivity of an analysis, many classes of sys-
tematical uncertainties have to be considered. They can be separated in
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detector-bound systematic uncertainties and theoretical systematic uncer-
tainties:

Theoretical Systematic Uncertainties

• uncertainty on process cross-sections

• uncertainty in parton distribution functions

• correctness and technical accuracy of the Monte Carlo generator

In this thesis the theoretical uncertainty on cross-sections is for simplicity
assumed to be under control by auxiliary measurements in sidebands. In case
of an analysis with real data, the uncertainties of the auxiliary measurements
can be combined with the other uncertainties following the process for the
detector systematic uncertainties.

Detector Systematic Uncertainties The systematic uncertainties most
relevant to this analysis are:

• measurement uncertainty on total luminosity

• resolution of particle momentum

• calibration of momentum scale

• calorimeter resolution and/or noise

• missing transverse energy calculation

For the total luminosity of the data good estimates will be available.
Also, the Z peak can be used as a standard candle of normalization, although
this introduces dependencies on theoretical extrapolations and on the muon
resolution and reconstruction e�ciency. Still, it is expected that these un-
certainties are either small or easily detectable. For further discussion on Z
peak normalization, see [42].

The systematic uncertainties on the momentum resolutions will also de-
crease once the resolutions are measured, however, the analysis as it stands
has still to incorporate these uncertainties. When improved estimates of the
resolution parameters are available, the analysis will have to be repeated
using the updated resolution, and the systematic error will decrease accord-
ingly.
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Calculating the Systematic Uncertainty: The usual approach would
now be to consider each systematic uncertainty individually, �smear� the
data by ±σ and then take as the total uncertainty the root of the sum of
squares of individual cross-section shifts. But since uncertainties are not
independent - the muon scale, for example, a�ects both muon momentum
and missing transverse energy - this approach does in general not give correct
estimates [43]. In order to obtain a better estimate, additionally the following
combined approach was carried out:

Combined Systematic Uncertainties: Firstly, each systematic uncer-
tainty was parametrized using available ±σ values (see section 3.2 and ta-
ble 4.1). The magnitudes of the d systematic uncertainties then span a
d-dimensional �uncertainty space�. Secondly, the analysis was repeated for
400 points in this uncertainty space randomly chosen according to a normal
distribution around zero, with the events accordingly distorted. For each
such point and each cut �ow entry this gives a distribution of event num-
bers. This procedure corresponds to Bayesian numerical �marginalization�, a
numerical evaluation of

P (x) =

∫
θ

P (x|θ)P (θ)

Here θ represents the parameters for the systematic uncertainty. This means,
the resulting distribution approximates the probability distribution of the
event count, if we assume that the detector systematic uncertainties are dis-
tributed as described.

Using this distribution, we have two possibilities: we can either directly
derive con�dence intervals from this distribution, which can only be used to
a con�dence level of about 90% since we have only 400 sample points, or we
can assume for simplicity the total systematic uncertainty can be described
by a Gaussian. In the latter case, we can take the standard deviation of
the distribution to be the estimate of the systematic uncertainty. To achieve
approximately 5% accuracy in the resulting standard deviation 400 points
were chosen, since a Monte Carlo integration with N points has the asymp-
totic error of 1/

√
N in any number of dimensions, in this case this yields

1/
√

400 = 5%. This uncertainty is small enough to be disregarded in this
case.

In the results section, these two methods for estimating systematic un-
certainties will be compared.

4.2.3 Signi�cance

An experiment at a collider takes data, the relative statistical uncertainty of
a �nite data sample decreases. Thus, if enough data statistics are available,
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systematic uncertainty 1σ value reference
muon resolution 3% [30]
muon scale 3% [30]
jet resolution 67%/

√
E[GeV] [29]

jet scale 10% [29]
missing transverse energy resolution 5 GeV [32]

Table 4.1: 1σ values of systematic uncertainties used for �smearing�

systematic uncertainties can as well be a limiting factor. For a particular
analysis with a speci�c set of Monte Carlo samples we therefore have an
�expected maximal signal signi�cance� for all types of uncertainties, which is
the expected signi�cance of the signal in case of in�nite detector statistics.
These expected signi�cances can be read o� from the background probabil-
ity distribution function: the integral from the expected signal+background
value to positive in�nity.

To obtain a combined probability density function (p.d.f.) for the back-
ground we convolute the statistical and systematical uncertainties together,
and then evaluate the integral. Also, for combining the two channels we
can convolute the background estimates and add the signal estimates - it is
actually not possible to reliably combine experiments or uncertainties if a
p.d.f. or a likelihood function is not available. Having followed a Bayesian
approach, this integral can now easily be interpreted: it is the probability
of the observed excess being caused by background, in light of the known
uncertainties included in the analysis.

For the estimate of the �nal expected signi�cance a multitude of good
tools and approaches is available. In this thesis the ScP signi�cance [44] has
been used, which calculates the signi�cance statement using Poisson statistics
and takes an uncertainty term on the background. This method is widely
used, and yields sensible results. However, in cases with high systematic
uncertainty on the background, the value returned is negative.
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5. Search for the Higgs Boson

In this section the search for a standard model Higgs Boson in the HiggsH →
W+W− channel is described. Only the events where both W bosons decay
into muons are considered. Both a classical cut analysis and multivariate
techniques are used and compared, and several systematical uncertainties
are considered.

5.1 Procedure

To �nd a weak signal in the presence of strong background is challenging, and
care is needed not to overestimate the power of the analysis. To determine
the sensitivity correctly all Monte Carlo samples have been split into training
and testing parts. For the training of multivariate classi�ers and even for the
optimization of the analysis cuts, only the training samples have been used:
�rst tests have indicated that not only multivariate classi�ers but also normal
analysis cuts can be �overtrained�.

In the following, preparations for the analysis are given: the event model
is described, the relevant topologies and features of the Monte Carlo data
are shown. The preselection for both cuts and multivariate classi�ers is
presented, as well as the splitting into the gluon-gluon and VBF channels.

Both multivariate classi�ers and cuts are optimized to select a �signal
region� with maximal discovery signi�cance

# of signal events√
# of background events

=
S√
B

(5.1)

As an additional tool for optimization of the cuts the ScP signi�cance [44] has
been used, which corrects the signi�cance statement using Poisson statistics.
In cases where only low Monte Carlo statistics for B is available this method
reduces fake �statistical peaks� in the signi�cance if B falls close to zero
and S is small as well. The training, visualisation and initial performance
evaluation of the multivariate classi�ers is shown, and the dependence of the
performance on parameters tested.

After the training, the multivariate classi�ers as well as the cuts are eval-
uated using the test data. The numerical results of all analyses are given,
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together with the statistical, systematical and combined uncertainties, the
expected maximal signi�cance and, if applicable, the expected discovery lu-
minosity.

5.2 Event description

In the case an event is triggered in the ATLAS Detector, the full detector is
read out and processed in many steps to analysis data. This analysis data is
then converted to ROOT [40] trees, and for each event several variables are
de�ned to describe the event.

• four-momentum of the dimuon system pµµ = pµ,1 + pµ,2

• invariant mass of the dimuon system mµµ =
√
p2

µµ

• opening angle of the muons in the transverse plane ∆φµµ, the pseu-
dorapidity ∆ηµµ and the distance of the muons in the φµµ-ηµµ plane
∆Rµµ =

√
∆φ2

µµ + ∆η2
µµ

• angle between the dimuon system and the missing transverse energy
∆φµµ,/ET

in the transverse plane

• transverse mass of the dimuon/missing transverse energy system
m

T,E/T /µµ
=

√
2/ETpT,µµ(1− cos(∆φµµ,/ET

))

•
∑

jet pT =
∑

jet,pT,jet>15 GeV pT,jet; the transverse momentum of a jet is
the summed transverse momenta of the particle tracks associated with
the jet. This de�nition was chosen to match the usage in [45]

• the number of jets with transverse energy ET > 30 GeV. This is also
chosen so the 0 jet analysis is equivalent to [45].

• the number of electrons with transverse momentum pT > 30 GeV

5.3 Process Topologies

In the following, the most important features of the signal and background
samples are presented.

5.3.1 Signal Structure

In H → W+W− decays the most interesting kinematic feature is the spin
correlation between the W+ and the W− as mentioned in section 2.2.3: the
opening angle of the two muons from the Higgs boson decay tend to small
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H → W+W−→ µ+νµµ
−ν̄µ
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Figure 5.1: Histograms of H → W+W− → µ+νµµ−ν̄µ decays with mH =
150, 170, 190 GeV after preselection.
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values. In �gure 5.1c one can see that the correlation is strongest for a Higgs
boson mass of 170 GeV and is reduced as the W s get virtual, or respectively
have higher momenta.

5.3.2 Background Processes

In the following the most important background processes and their most
relevant features are described.

Z/γ∗ → µ+µ−: The dimuon production via Z/γ∗ is the dominant back-
ground of this analysis channel, with a very high cross-section of 3.35 nb
after selecting two reconstructed muons and restricting the invariant mass
to mµµ > 15 GeV. Luckily, good separation of signal and backround seems
possible, since the kinematic properties of Drell-Yan decays as direct µ+µ−

decays di�er markedly from W+W− decays. The most signi�cant distinc-
tion is the missing transverse energy (�gure 5.2e). As Higgs boson decays
produce two neutrinos there should be a signi�cant amount of missing trans-
verse energy, whereas in the Drell-Yan process there is only a small value of
missing transverse energy expected. Secondly, the Drell-Yan spectrum of the
dimuon mass is quite distinctive with the Z peak as seen in �gure 5.2b, yet
there is still a signi�cant overlap, since the cross-section is so much larger.
Thirdly, the muons from the Z tend to be emitted back-to-back, so the same
separation criterion as in direct W+W− production can be used (see �gure
5.2c).

QCD gg/qq → W +W −: The direct QCDW+W− production is the most
challenging background to this analysis: The kinematic properties ofW+W−

decays are very similar to the Higgs boson decay. Yet, there are still some
detectable di�erences. For one, if the Higgs boson mass is close to twice
the W mass, the W s tend to be closer to the mass shell than the W s pro-
duced directly. This leads to a peak of the muon transverse momenta at
approximately 40 GeV (see �gure 5.1a). In the case of the VBF channel the
W+W− background is less important, since the two characteristic high η jets
are absent. Finally, strongest separation is given by the opening angle of
the muons, since the spin correlation is absent in direct W+W− production
(�gures 5.1c, 5.3c).

Other diboson productions likeWZ and ZZ are also considered, yet their
contribution is small compared to the major backgrounds.

QCD tt̄ production: Top quark decays pose a signi�cant problem to this
channel. The NLO prediction for the total tt̄ cross-section at the LHC is
833 pb, and the cross-section for decays which include at least one lepton
is 450 pb. This is much less than the Drell-Yan background, yet it is much
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Figure 5.2: Histograms of Z/γ∗ → µ+µ− decays after preselection.
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Figure 5.3: Histograms of QCD direct W+W− production after preselection.
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Figure 5.4: Histograms of QCD tt̄ production after preselection.
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more di�cult to separate, since the signature can be quite similar to the VBF
Higgs boson production channel. As already mentioned, the b-jets resulting
from t decays could still be detected using b-tagging, yet this will probably
remain di�cult until much more experience with actual data has been made.

W+jets There is a multitude of QCD processes that also produce a W
boson. Most important for this analysis are those also producing a muon,
namely single top W + t and Wbb̄ production. However, the cross-sections
of these processes are rather small. More signi�cant is the probability of
fake muons from QCD multijet events, as mentioned in section 3.2.3. In
this analysis, several samples from Monte Carlo were used as a baseline, but
the number of Monte Carlo events passing the preselection cut is still very
small, therefore no plots of this background are shown. For an analysis with
real data it would be essential to use data to estimate the shape of this
background, and then use a �tting procedure to estimate the strength of this
background in the signal region.

5.4 Preselection

To reduce the amount of data processed and to limit the in�uence of sys-
tematic uncertainties that only a�ect events far from the signal region a
preselection is applied to the data as follows:

• We require two well-reconstructed oppositely charged muons tracked
both in the inner detector and the muon system, reconstructed by the
STACO algorithm.

• The muons have to have a minimal transverse momentum of pT >
20 GeV for the leading and pT > 15 GeV for the trailing muon.

• The muons have to be measured in the muon detector acceptance re-
gion: |η| < 2.5.

• The muons have to be isolated: the amount of energy measured in the
calorimeter in a cone of 0.4 radius around the muon in the η-φ plane
must not exceed 5 GeV

• Since the studied Higgs processes have only two muons in the �nal
state, a muon veto for additional muons above 10 GeV is introduced.
This cut has an 98% e�ciency for the signal, yet rejects 21% of the tt̄
background.

Since a bug in the used software version made it impossible to evaluate
trigger decisions, these limits ensure that the events are triggered with high
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Figure 5.5: Histogram of the leading muon transverse momentum for
H → W+W− → µ+νµµ−ν̄µ decays with mH = 170 GeV: blue events are re-
moved by the η and pT cuts, red events are removed by quality and isolation cuts,
and green events are removed by a veto of a third muon. The white events pass
the preselection cuts.

probability, since we can combine the trigger for a muon higher than 20 GeV
with the trigger on two muons greater than 10 GeV. Therefore, the trigger
is ignored in the following.

In �gure 5.5 the e�ects of the preselection cuts on the momentum of the
leading muon can be seen. The signal is not signi�cantly reduced, yet the
con�dence in the reconstructed particles is much increased. For comparison,
the e�ect of preselection on the Drell-Yan background is given in �gure 5.6.

Limited Monte Carlo events: At this point it is necessary to consider
the �nite amount of Monte Carlo statistics available. The number of events
seems su�cient to make well-founded statements, yet in the later stages of
the analysis small numbers of Monte Carlo events are often encountered.
In table 5.1 two numbers are given: �rst the total σ × BR for the used
sample after preselection, and second the fraction f = σ×BR

#of MC events
. This

fraction is evidently constant throughout the analysis, and can be seen as
the cross-section represented by one Monte Carlo event. An estimate for the
statistical error for a cross-section is therefore f ·

√
NMC , and will be given

in the following. A more accurate estimate of the statistical error is done for
the results as described in section 4.2.1. Uncertainties on the total sample
cross-section are disregarded for this analysis, since they a�ect all compared
classi�ers and cuts equally.
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Figure 5.6: Histogram of the cut e�ects on the leading muon transverse momentum
for the Drell-Yan background. It is clearly visible that the low-momentum part of
the spectrum is mostly removed by the cuts on the muon transverse momenta.

process σ ×BR[pb] f [fb/event]
H → W+W−(150 GeV) 186.3 0.061
H → W+W−(170 GeV) 198.8 0.048
H → W+W−(190 GeV) 142.4 0.044
Z/γ∗ → µ+µ− 8.227 · 105 2.2 - 2.9
Z/γ∗ → τ+τ− 4984 0.52
tt̄ 4996 1.1
W+W− 773.1 0.10 - 0.14
ZZ 430.4 0.059
WZ 831.6 3.1
W + jets 252.8 1.5 - 8.2

Table 5.1: Cross section times branching ratio of the di�erent processes after pre-
selection, estimated from Monte Carlo data
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σ× BR [fb] preselection 0 jet 2 jet
Z/γ∗ → µ+µ− (8.227± 0.014) · 105 (6.588± 0.012) · 105 (1.414± 0.006) · 105

Z/γ∗ → τ+τ− 4984 ± 50.7 3880 ± 44.7 951.7 ± 22.1
tt̄ 4996 ± 74.6 402.5 ± 21.2 4552 ± 71.2
W+W− 773.1 ± 10.2 549.4 ± 8.56 203.8 ± 5.23
WZ 831.6 ± 50.9 230.5 ± 26.8 579.3 ± 42.5
ZZ 430.4 ± 5.02 148.3 ± 2.95 275.7 ± 4.02
W+QCD 252.8 ± 38.8 130.3 ± 27.6 122.4 ± 28.8
All Background (8.350± 0.014) · 105 (6.642± 0.012) · 105 (1.481± 0.006) · 105

S, mH = 150 GeV 186.3 ± 3.37 94.51 ± 2.40 83.95 ± 2.26
S, mH = 170 GeV 198.8 ± 3.10 94.33 ± 2.13 96.74 ± 2.16
S, mH = 190 GeV 142.4 ± 2.50 66.75 ± 1.71 69.83 ± 1.75

Table 5.2: Cross section times branching ratio of the di�erent processes after pre-
selection, estimated from Monte Carlo data. Only statistical errors are given.

5.5 Signal Decay Channels

In this analysis two distinct �regions� or �channels� corresponding to the
Higgs production processes of vector boson and gluon fusion are de�ned:

• The �0 jet� region, where no jet may have a larger transverse energy
than 30 GeV,

• The �2 jet� region, where there must be at least one jet with transverse
energy greater than 30 GeV and at least two reconstructed jets.

This improves the individual selection: if we would look at the data
directly after preselection, a good selection cut would be to remove all events
with high jet activity. This would remove most of the tt̄ background, yet also
discard almost all VBF events. In the 2 jet region we can deal with the tt̄
background separately using di�erent variables.

The overlap between the regions so de�ned is zero, and the loss of signal
due to events with one high-ET jet and no additional jet is with about 4%
very small (see table 5.2). Now the 0 jet region or �channel� can be optimized
for the search for Higgs bosons from quark/gluon production and the 2 jet
�channel� can be used to search for Higgs bosons from Vector Boson Fusion.
In later stages, this split approach could be used to measure the Higgs boson
couplings of quarks (in qq/gg fusion) separately from the the coupling of the
Higgs boson to Vector bosons.

It can be noted that the number of events in the 2 jet channel is signi�-
cantly greater than expected just from vector boson fusion. This means that
also a substantial fraction of gluon-gluon fusion events radiate hard gluons
and produce jets. Further study, perhaps on generator level, would be needed
for a better separation of the two production channels.
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5.6 Selection Cuts

To evaluate sophisticated multivariate classi�ers, a baseline for comparison
is needed. For this reason, a traditional analysis that determines a signal
region as a hypercube in variable space using cuts was set up. The cuts were
optimized for maximum signal signi�cance S/

√
B for both channels and for

all three examined Higgs boson masses.
In both channels the following properties of the two leading muons are

used: their invariant mass, their transverse momentum, their distance in the
η-φ plane and the transverse mass of the two leading muons combined with
the missing transverse energy m

T,E/T /µµ
. Additionally, the missing transverse

energy E/T , the sum of the jet transverse momenta
∑

Jet pT and the number of
electrons with more than 30 GeV transverse momentum are used to suppress
various backgrounds.

5.6.1 0-Jet Channel

In the 0 jet channel - the quark/gluon fusion channel - no additional variables
are used for cuts, since all other jet activity should be background.
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Figure 5.7: Histogram of the number of electrons with a transverse momentum
pT > 30 GeV. The plot is shown as overlay of three processes in the 0 jet channel.

• The �rst cut removes all events with a reconstructed electron with
a transverse momentum pT > 30 GeV. In �gure 5.7 the number of

48



hard electrons in the 170 GeV signal is compared to the tt̄ and WZ
backgrounds.

• Secondly, a window in the invariant mass distribution of the two leading
muons is chosen. Since the signal is spread from 10 to 80 GeV the
borders will be determined by the background - Drell-Yan decays still
absolutely dominating. A minimal lower border of 15 GeV is required
by the in�uence of the strong J/ψ and Υ resonances. The optimized
upper border depends on the Higgs boson mass, and lies between 51
and 73 GeV. Figure 5.8 shows this invariant mass.
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Figure 5.8: Histogram of the invariant mass of the two leading muons mµµ

on a logarithmic scale with backgrounds after preselection and hard electron
veto. Z/γ∗ → µ+µ− events have been simulated only with mµµ > 15 GeV.

• Another cut that works well against most of the backgrounds is a cut on
the transverse momentum of the second muon. Since theW bosons are
approximately on the mass shell and ideally at rest at mH = 170 GeV
the second muon momentum is approximately evenly distributed be-
tween 0 and 35 GeV, then falls o� quickly. In �gure 5.9 this is shown
for all three Higgs signals, compared to background. The optimization
of this cut for signi�cance, in context of the other cuts, gives 14 GeV
for mH = 150 GeV, 26.5 GeV for mH = 170 GeV and no cut for
mH = 190 GeV.

• The next cut exploits the spin correlation of the W bosons from the
Higgs boson decay. The opening angle of the two muons, corresponding
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Figure 5.9: Histogram of the transverse momentum of the trailing muon in
the 0 jet channel after previous cuts for mH = 170 GeV

to ∆Rµµ, their distance in the φ-η plane, is a very e�cient separator
suppressing the Drell-Yan background to 3% at a signal e�ciency of
80%. In �gure 5.10 one can see that also theW+W− background is also
slightly reduced. Additionally cutting on the angle in the transverse
plane ∆φ is also advantageous in most cases.

At this point, considering mH = 170 GeV, using only cuts on muon mo-
mentum and direction measurements, all but two backgrounds are strongly
suppressed: Drell-Yan decays with approximately 310 fb, and QCD W+W−

decays with 36.5 fb. The Higgs signal for mH = 170 GeV is at this point
31.2 fb. If there was no uncertainty on these numbers1 they would correspond
to an expected 1.6σ signal at 1 fb−1. Still, we can do much better if we now
add the missing transverse energy and derived variables like the transverse
mass of the missing transverse energy and the dimuon systemm

T,E/T /µµ
. This

of course assumes that the detector is well-understood and well calibrated.

• Requiring the value for the missing transverse energy E/T
>∼ 40 GeV

reduces the Drell-Yan background to almost zero - There is a 1.9%
e�ciency at 86% signal e�ciency for mH = 170 GeV (see �gure 5.11)

1Needless to say, this is not the case: the �signi�cances� given in this section are only
for the orientation of the reader and comparison. Accurate estimates of the resulting
signi�cance will be given in later sections.
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Figure 5.10: Histogram of the opening angle of the muons in the η-φ plane
in the 0 jet channel after previous cuts for mH = 170 GeV
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Figure 5.11: Histogram of the missing transverse energy in the 0 jet channel
after previous cuts for mH = 170 GeV
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• The other signi�cant background, QCD W+W− decays, is very similar
to the Higgs boson decays in both the missing transverse energy E/T and
the transverse massm

T,E/T /µµ
(see �gure 5.12). Not much can be gained

there. But still, the �nal cut on the transverse mass m
T,E/T /µµ

reduces

some remnants of other backgrounds, and we get - for mH = 170 GeV
- a signal that is expected to be 3.8σ over the expected background at
1 fb−1, again without considering uncertainties.
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Figure 5.12: Histogram of the transverse mass of the two muon system and the
missing transverse energy m

T,E/T /µµ
in the 0 jet channel after previous cuts for

mH = 170 GeV.

In table 5.6 the optimized cut parameters for the 0 jet channel are sum-
marized. Shortened cut �ows of the respective analyses for each Higgs boson
mass containing only the backgrounds most important to this channel, the
QCD W+W− and Drell-Yan µ+µ− decays, are given in tables 5.3, 5.4 and
5.5. The cut �ows with all background processes included can be found in
Appendix B.
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cut 150 GeV 170 GeV 190 GeV
min mµµ 15 GeV < mµµ 15 GeV < mµµ 15 GeV < mµµ

max mµµ mµµ < 51.3 GeV mµµ < 73.5 GeV mµµ < 69 GeV
trailing muon pT pT > 15 GeV pT > 26.5 GeV pT > 15 GeV
∆Rµµ ∆Rµµ < 1.8 ∆Rµµ < 1.8 ∆Rµµ < 1.8
∆φµµ ∆φµµ < 1.8 - ∆φµµ < 1.65
E/T E/T < 44 GeV E/T < 48 GeV E/T < 40 GeV
min mT,µµ 100 GeV < mT,µµ 100 GeV < mT,µµ 148 GeV < mT,µµ

max mT,µµ mT,µµ < 140 GeV mT,µµ < 170 GeV mT,µµ < 210 GeV

Table 5.6: Cut parameters for the 0 jet channel. The parameters have been in-
dividually optimized for each Higgs boson mass. The strong correlation between
the ∆φµµ and ∆Rµµ cuts lead to the situation that the ∆φµµ cut is sometimes not
necessary (denoted by - ).

5.6.2 2-Jet Channel

In the 2 jet channel additional variables are necessary: the sum of the jet
transverse momenta

∑
jet pT , and the η directions of the leading jet. At the

beginning, however, we start by noting that in this channel the cut on hard
electrons removes 12% of the signal compared to 7% in the 0 jet channel,
presumably because of electrons occurring in the jets. This makes this cut
ine�cient, and it is dropped.

• The next cut, as in the 0 jet channel, a window in the dimuon mass
distribution is chosen (see �gure 5.13), the lower limit being 15 GeV
for mH = 150 GeV and 170 GeV and 22 GeV for mH = 190 GeV and
the upper limit between 56.5 GeV and 70.5 GeV.

• Now the minimum transverse momentum of the trailing muon is raised:
in �gure 5.14 one can see that a cut from 20 to 30 GeV can remove a
great amount of background, especially in the case of mH = 170 GeV.

• The ∆R and ∆φ cuts are in this channel not very e�ective, since the
W+W− background is not as relevant in this channel (see �gure 5.15).
During optimization only the mH = 150 GeV analysis showed an in-
crease in signi�cance.

• The next cut limits the sum of the jet transverse momenta (see �gure
5.16). This cut removes most of the Drell-Yan ττ decays as well as
some of the µµ decays and tt̄ background.

• Subsequently a central jet veto is applied: the leading jet must not
lie in an area that is transverse to the beam axis, the value of |η|
must be greater than a certain value (see table 5.7 for a summary of
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Figure 5.13: Histogram of the invariant mass of the two leading muons mµµ

on a logarithmic scale with backgrounds after preselection in the 2 jet chan-
nel.
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invariant mass cuts in the 2 jet channel.
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cut parameters). In �gure 5.17 this quantity is histogrammed directly
after preselection, since the lack of good Monte Carlo statistic after the
previous cuts makes it hard to see the structure. Here we can clearly
see that this cut suppresses tt̄ more than Higgs boson decays.
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Figure 5.17: Histogram of η of the leading jet in the 2 jet channel. For better
visibility only preselection cuts are applied.

• After these cuts speci�c to the 2 jet channel we continue to apply the
cuts already used in the 0 jet channel. The missing transverse energy
E/T and the transverse mass of the missing transverse energy combined
with the two leading muons m

T,E/T /µµ
are shown (after preselection) in

the �gures 5.18 and 5.19. The corresponding cuts are very similar to
the 0 jet channel.

In table 5.7 the cuts for the 2 jet channel for each Higgs boson mass are
summarized. Again, shortened cut �ows of the respective analyses for each
Higgs boson mass containing only the backgrounds most important to this
channel, the QCD tt̄ and Drell-Yan µ+µ− decays, are given in tables 5.8, 5.9
and 5.10. The full cut �ows are given in the appendix.
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Figure 5.18: Histogram of the missing transverse energy E/T in the 2 jet
channel. For better visibility only preselection cuts are applied.
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cut 150 GeV 170 GeV 190 GeV
min mµµ 15 GeV < mµµ 15 GeV < mµµ 22 GeV < mµµ

max mµµ mµµ < 68 GeV mµµ < 56.5 GeV mµµ < 70.5 GeV
trailing muon pT pT > 20 GeV pT > 32.5 GeV pT > 20.5 GeV
∆Rµµ - - -
∆φµµ ∆φµµ < 2 - -∑

jet pT < 230 GeV < 230 GeV < 190 GeV
leading jet η |η| > 1.55 GeV |η| > 0.65 GeV |η| > 1.45 GeV
E/T E/T < 42 GeV E/T < 45 GeV E/T < 42 GeV
min mT,µµ 100 GeV < mT,µµ 100 GeV < mT,µµ 95 GeV < mT,µµ

max mT,µµ mT,µµ < 150 GeV mT,µµ < 190 GeV mT,µµ < 185 GeV

Table 5.7: Cut parameters for the 2 jet channel. The parameters have been indi-
vidually optimized for each Higgs boson mass.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

2j (4.55± 0.07) · 103 204 ± 5.2 (1.48± 0.01) · 105 84 ± 2.3 0.22 0.22
mµµ range (1.48± 0.06) · 103 72 ± 4.4 (1.72± 0.03) · 104 65.2 ± 2.8 0.50 0.49

pT,trailingµ 685 ± 39 34.1 ± 3.1 (6.06± 0.17) · 103 43.1 ± 2.3 0.55 0.55
max ∆Rµµ 584 ± 36 27.4 ± 2.8 (4.84± 0.16) · 103 39.7 ± 2.2 0.57 0.56P

jet pT 504 ± 34 26.3 ± 2.7 (4.57± 0.16) · 103 33.8 ± 2.0 0.50 0.49

cjv 167 ± 19 10.0 ± 1.8 (1.60± 0.09) · 103 21.7 ± 1.6 0.54 0.53
min E/T 114 ± 16 8.42 ± 1.6 154 ± 34 13.9 ± 1.3 1.12 1.08

mT,µµ range 58 ± 11 4.11 ± 1.2 62.3 ± 31 9.16 ± 1.1 1.16 1.09

Table 5.8: Cut �ow table for mH = 150 GeV cut analysis, 2 jet channel. Only
statistical errors are given.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

2j (4.55± 0.07) · 103 204 ± 5.2 (1.48± 0.01) · 105 96.7 ± 2.2 0.25 0.25
mµµ range (1.06± 0.05) · 103 53.2 ± 3.8 (1.41± 0.03) · 104 66.5 ± 2.5 0.56 0.56

pT,trailingµ 84.7 ± 14 4.11 ± 1.2 951 ± 77 24.2 ± 1.5 0.79 0.77
max ∆Rµµ 84.7 ± 14 4.11 ± 1.2 951 ± 77 24.2 ± 1.5 0.79 0.77P

jet pT 80.3 ± 13 3.83 ± 1.2 809 ± 72 20.6 ± 1.4 0.72 0.71

cjv 51.3 ± 11 2.47 ± 1.0 481 ± 58 16.6 ± 1.3 0.76 0.74
min E/T 31.2 ± 8.3 1.64 ± 0.91 43.1 ± 30 11.6 ± 1.1 1.76 1.65

mT,µµ range 22.3 ± 7.0 1.10 ± 0.83 23.6 ± 30 9.94 ± 0.98 2.04 1.86

Table 5.9: Cut �ow table for mH = 170 GeV cut analysis, 2 jet channel. Only
statistical errors are given.
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σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

2j (4.55± 0.07) · 103 204 ± 5.2 (1.48± 0.01) · 105 69.8 ± 1.8 0.18 0.18
mµµ range (1.46± 0.06) · 103 74.1 ± 4.5 (1.56± 0.03) · 104 42.4 ± 1.9 0.34 0.34

pT,trailingµ 676 ± 39 35 ± 3.1 (5.75± 0.17) · 103 31.3 ± 1.7 0.41 0.41
max ∆Rµµ 676 ± 39 35 ± 3.1 (5.75± 0.17) · 103 31.3 ± 1.7 0.41 0.41P

jet pT 406 ± 30 30.4 ± 2.9 (4.93± 0.16) · 103 23.1 ± 1.4 0.33 0.32

cjv 125 ± 17 13.1 ± 1.9 (1.95± 0.10) · 103 13.8 ± 1.1 0.31 0.30
min E/T 80.3 ± 13 8.90 ± 1.6 130 ± 33 10.7 ± 0.97 0.93 0.89

mT,µµ range 49.1 ± 10 6.50 ± 1.4 61.7 ± 31 8.01 ± 0.84 1.02 0.96

Table 5.10: Cut �ow table for mH = 190 GeV cut analysis, 2 jet channel. Only
statistical errors are given.
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5.7 Multivariate Classi�ers

This thesis examines the following multivariate methods:

• boosted decision trees

• boosted randomised trees

• multilayer perceptrons (neural networks)

• the Fisher classi�er

Two di�erent approaches have been tried out:

• each classi�er is trained against all background processes together

• the background is split into three groups: background containing Z,
QCD W+W− production and other QCD events. For each group, a
neural network and a �sher classi�er is trained. Then, cuts on the
classi�er output are optimized for maximal signi�cance as in the cut
analysis.

The last approach is tried to see if improvement can be made if each neural
network has only to adapt to a few background topologies.

5.7.1 Training

Training settings: The multivariate classi�ers are trained using TMVA
with the following settings:

• Boosted Decision Tree: Number of Trees: 1000,
Strength of Pruning: 8

• Boosted Randomised Tree: Use Randomized Bagged Trees with 3 vari-
ables per node, Number of Trees: 1000

• Multilayer Perceptron: Default number of Hidden Layers; for N input
variables there are N neurons in the �rst layer and N − 1 neurons in
the second layer.

• Fisher Classi�er: Default settings

The pruning strength of the boosted decision tree was increased from the
default 4.5 to reduce the amount of overtraining. The number of trees was
increased from 400 since evaluation speed was not a critical factor in this
analysis.
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Additional preselection: To reduce the number of training events to rea-
sonable numbers the following loose preselection cuts were applied in addition
to the full preselection:

• no hard electrons (pT > 30 GeV) in the 0 jet channel, the same as the
�rst cut in the cut analysis

• an invariant mass window of 15 GeV < mµµ < 70 GeV

Input variables: The following variables have been used for training in
both the 0 jet and the 2 jet channel:

• invariant mass of the dimuon system mµµ

• missing transverse energy E/T

• transverse momentum of the system of the two leading muons pT,µµ

• transverse momentum of the trailing muon

• opening angle of the muons in the transverse plane ∆φµµ

• distance of the muons in the φµµ-ηµµ plane ∆Rµµ

• transverse mass of the missing transverse energy and the system of the
two leading muons m

T,E/T /µµ

In the 2 jet channel these variables were added to characterize the increased
jet activity:

• sum of transverse momenta of the jets
∑

jet pT

• η of the leading jet

• η of the trailing jet

5.7.2 Neural Net Architecture

The number of nodes and layers of a neural network has a big in�uence on
the performance of the neural net. The default architecture in TMVA is
N neurons in the �rst, and N − 1 neurons in the second layer, N being
the number of input variables. This is a good choice for many applications,
yet the number of nodes and especially the number of weights to be trained
increases with N2. This leads to serious limitations in cases where only
limited training statistics are available: for the QCD background in the 0
jet channel and the W+W− background in the 2 jet channel the number of
Monte Carlo events was apparently not enough to e�ectively train the neural
network: the response detoriated to a random response. In these cases the
Fisher classi�er was used for the respective cut. A more detailed look at the
in�uence of the architecture of the neural network is given in appendix A.3.
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5.7.3 Visualization

A multivariate classifer maps a score to each point of the multidimensional
variable space. Since more than two input variables are used here, a direct
visual representation is not possible. Therefore, several methods are used to
visualize the classi�ers, thus gaining a better understanding of their perfor-
mance.

Variation of the �Mean Signal Event�

This method is used to examine the e�ect of one input variable on the clas-
si�er response. For both channels and all examined Higgs boson masses the
�mean Higgs boson decay� is determined by taking the mean of the distri-
bution of the Higgs boson decay sample after the channel cuts. These mean
events are listed in table 5.11. Since η of the leading jets is approximately
symmetric around 0, it is set to −3 for the leading to +3 for the trailing jet
to mimic a �typical� vector boson fusion event.

These mean events are taken as a baseline, and each input variable is
varied and the respective classi�er responses are plotted (�gures 5.20-5.27).
The most important information that can be seen from these plots is which
variable values the classi�er deems to be most �Signal-like�, by looking at each
curve indivudually. These plots can therefore show which features of each
variable distribution is picked up or ignored by the classi�er, and perhaps
what prevents a certain classi�er from doing better. The absolute o�set on
the y axis is not really important in these plots, since the distribution of the
classi�er response to background can be di�erent for each classi�er, even one
of the same type2.

This method does not completely characterize a classi�er, but it gives
impressive insights to its nature. In �gures 5.20 and 5.21 one can see the
jagged edges resulting from the binary nature of the decision trees, while
�gure 5.22 shows the continuous nature of neural networks. In �gure 5.23
the linearity of the Fisher classi�er is evident.

Boosted Decision Trees Sharp edges and spikes characterize the plots for
the boosted decision trees (�gures 5.20 and 5.24). The shapes suggest that
the method can pick out several regions with high signal signi�cance, and
reject small sections with high background probability. This is evidenced by
sudden dips in classi�er response, for example in the invariant massmµµ. The
curves for the 0 jet channel seem to indicate that the training statistics were
not completely su�cient to provide enough information to the method, and
that statistical �uctuations have in�uenced the result. In the 2 jet channel,

2However, one can compare the values on the absolute scale with the classi�er output
distributions in section 5.7.3.
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the classi�er seems more regular. Yet in both cases many of the distinctive
features of the signal are captured: a preference for smaller ∆Rµµ, the distri-
butions of the transverse mass m

T,E/T /µµ
for the di�erent Higgs boson masses

and some missing transverse energy E/T . Also, in the plot for the leading jet η
one can see a preference for jets in the positive η direction, since the trailing
jet is �xed at η = −3.

Bagged Randomized Trees The randomized trees show a similar be-
haviour to the boosted decision trees, yet in the 0 jet channel seem to have a
�plateau�, where all trees classi�y the event as signal. This is most probably a
consequence of the training process: since each tree is trained independently
of the other, the background events that are very close to the signal and are
�costly� to remove are never actually separated.

Neural Networks The neural network response is easily distinguished
from the jagged boosted decision trees. Since we assume that the �real�
distributions of signal and background probabilities should not have sudden
jumps, the smooth response of a neural network seems to approximate reality
much better. Yet this smooth nature makes also two things very di�cult:
�rstly, in contrast to the boosted decision trees, small features of the data
can be smoothed out, and the performance diminished. Secondly the neural
net extrapolates its response into areas where no or little training statistic is
available, which is visible for example in the trailing muon pT in �gures 5.20
and 5.22. In contrast the boosted decision tree starts to return a constant
value if one leaves the trained area. This can be especially unfortunate if
unknown systematic uncertainties push events into regions where little train-
ing statistics are available, and where the neural network still classi�es the
events as signal.

Fisher classi�er The responses of the Fisher classi�er are linear, as ex-
pected. Still, many important features of the variables can be captured:
m

T,E/T /µµ
, E/T , ∆Rµµ. Yet for example in �gure 5.27 we can see that the op-

posite VBF jets can not be well used by this method, in contrast to the other,
nonlinear methods: most of the lines in the plots for leading and trailing jet
η indicate no preference, and therefore no separation power.
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Figure 5.20: Visualization of the boosted decision trees trained in the 0 jet channel.
The blue line represents the classi�er trained for mH = 150 GeV, red is for mH =
170 GeV and green for mH = 190 GeV
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Figure 5.21: Visualization of the bagged randomized trees trained in the 0 jet
channel. The blue line represents the classi�er trained for mH = 150 GeV, red is
for mH = 170 GeV and green for mH = 190 GeV
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Figure 5.22: Visualization of the neural networks trained in the 0 jet channel. The
blue line represents the classi�er trained for mH = 150 GeV, red is for mH =
170 GeV and green for mH = 190 GeV
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Figure 5.23: Visualization of the Fisher classi�ers trained in the 0 jet channel.
The blue line represents the classi�er trained for mH = 150 GeV, red is for mH =
170 GeV and green for mH = 190 GeV
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Figure 5.24: Visualization of the boosted decision trees trained in the 2 jet channel.
The blue line represents the classi�er trained for mH = 150 GeV, red is for mH =
170 GeV and green for mH = 190 GeV
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Figure 5.25: Visualization of the bagged randomized trees trained in the 2 jet
channel. The blue line represents the classi�er trained for mH = 150 GeV, red is
for mH = 170 GeV and green for mH = 190 GeV
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Figure 5.26: Visualization of the neural networks trained in the 2 jet channel. The
blue line represents the classi�er trained for mH = 150 GeV, red is for mH =
170 GeV and green for mH = 190 GeV
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Figure 5.27: Visualization of the Fisher classi�ers trained in the 2 jet channel.
The blue line represents the classi�er trained for mH = 150 GeV, red is for mH =
170 GeV and green for mH = 190 GeV
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channel 0 jet 2 jet
mH [GeV] 150 170 190 150 170 190
m

T,E/T /µµ
[GeV] 92.6 106 108 83.8 100 98.9

mµµ [GeV] 41.2 42.0 52.8 41.5 43.0 52.5
E/T [GeV] 50.6 57.0 58.7 62.6 68.3 71.3
pT,µµ [GeV] 51.9 57.8 58.4 67.8 74.3 75.1
pT,µtrail [GeV] 24.2 27.0 26.6 28.0 31.7 32.9
∆Rµµ 1.52 1.40 1.70 1.35 1.29 1.54
∆φµµ 1.20 1.08 1.36 1.07 0.98 1.24∑

jet pT [GeV] - - - 118 118 123

Table 5.11: Means of the Higgs boson decay sample distributions in the respective
channels
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ROC Curve

The �Receiver Operation Characteristics� or ROC curve is a tool for visu-
alizing and comparing the performance of several methods. In it the signal
e�ciency and the background rejection are plotted against each other. Points
with high signal e�ciency and high background rejection are desirable, the
optimal point depends on the de�nition of the desired signi�cance. Figure
5.28 shows the ROC curve for mH = 170 GeV in the 0 jet channel. This
particular example shows that the classi�er performance depends on the op-
erating region: above a signal e�ciency value of 0.6 the Fisher and bagged
randomized trees classi�ers are best, in the lower region the boosted decision
trees outperform the other classi�ers. For this Higgs boson mass and chan-
nel, the BDT working point is at 51% signal e�ciency, and the MLP working
point at 82%, as can be calculated using table 5.13.
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Figure 5.28: ROC Curves for classi�ers trained for mH = 170 GeV, 0 jet channel

Output Distributions

To estimate the expected data distribution, the distributions of the classi-
�er response for signal and background test data are histogrammed. In �g-
ures 5.31-5.54 the response of all trained classi�ers is given: all background
samples are scaled to their expected cross section and stacked. The signal
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Figure 5.29: ROC Curves for classi�ers trained for mH = 150 GeV, 0 jet channel

distribution is then superimposed. These distributions are the most impor-
tant indicators of classi�er performance: ideally, the signal and background
should be well separated.

Boosted Decision Trees The most distinctive feature of the boosted de-
cision tree histograms is the almost constant distribution of the signal (see
�gure 5.31). This is a consequence of the boosting procedure: since every
new tree is trained with events reweighted according to the misclassi�cation
rate, the new tree does not have to include previously well-classi�ed events.
This leads to the situation where only events in an extremly �signal-like�
region without much background are classi�ed as signal by virtually every
tree, and are thus on the right hand side of the histogram.

Bagged Randomized Trees The BRT classi�er uses another boosting
procedure, described in section 2.3.3. Each decision tree is trained individu-
ally. This leads to the situation where a signal event is classi�ed as a signal
by most trees, and therefore the signal distribution peaks strongly at 1 (�g-
ure 5.32). This obviously also leads to increased background at high classi�er
output values, since cuts that remove weak background are not �locally good�
for any decision tree trained on a reweighted sample. This is most evident at
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Figure 5.30: ROC Curves for classi�ers trained for mH = 190 GeV, 0 jet channel
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Figure 5.31: Boosted decision tree response in the 0 jet channel, mH = 150 GeV.
Most background processes peak at −0.4 and do not extend over 0, QCD W+W−

decays being the exception. However, the signal is more widely spread as in the
other classi�ers. The optimal cut value is close to 0.
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Figure 5.32: Bagged randomized trees response in the 0 jet channel, mH =
150 GeV. Only the well-separable Drell-Yan decays peak at −1, the diboson and
Higgs distributions peak at +1. The optimal cut value is at 0.995.

the example of the diboson ZZ background in �gure 5.32 compared to �gure
5.31.

Neural Networks The smooth nature of the response of neural networks
is mirrored in the output distribution. Background-like events peak at −1,
while signal-like events peak at 1. The extrapolation seen in the previous
visualization causes some background events to be classi�ed above +1, a
behaviour that indicates that these events were not encountered in training.

Fisher classi�er The Fisher classi�er responses for each background closely
resemble a skewed Gaussian. This is not surprising, since the classi�er sums
up several seemingly �random� variables to arrive at the score, and the cen-
tral limit theorem then suggests a gaussian output distribution. In the 0
jet channel this separation works quite well, yet in the 2 jet channel the tt̄
background is obviously too similar to the signal in the variables used by this
linear classi�er (see �gure 5.50)
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Figure 5.33: Neural network response in the 0 jet channel, mH = 150 GeV. Most
backgrounds show a primary peak at −1 and a weaker, secondary peak at +1.
Some background events are classi�ed higher than +1, as discussed in the text.
The optimal cut value is at 0.97.
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Figure 5.34: Fisher classi�er response in the 0 jet channel, mH = 150 GeV. Most
backgrounds could be described by a skewed normal distribution. Much of the
W+W− background can not e�ectively be separated. The optimal cut value is at
0.31.
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mH = 170 GeV, 0 jet channel
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Figure 5.35: Boosted decision tree response in the 0 jet channel, mH = 170 GeV.
Very similar to the mH = 150 GeV distribution. The optimal cut value is at −0.08.
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Figure 5.36: Bagged randomized trees response in the 0 jet channel, mH =
170 GeV. The optimal cut value is at 0.995.
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Figure 5.37: Neural network response in the 0 jet channel, mH = 170 GeV. In this
case, even more events are classi�ed above +1 as in �gure 5.33. The optimal cut
value is at 0.97.
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Figure 5.38: Fisher classi�er response in the 0 jet channel, mH = 170 GeV. The
classi�er here performs much better than at mH = 150 GeV. The optimal cut
value is at 0.41.
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mH = 190 GeV, 0 jet channel
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Figure 5.39: Boosted decision tree response in the 0 jet channel, mH = 190 GeV.
The optimal cut value is at −0.25.
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Figure 5.40: Bagged randomized trees response in the 0 jet channel, mH =
190 GeV. The optimal cut value is at 0.995.
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Figure 5.41: Neural network response in the 0 jet channel, mH = 190 GeV. At
this Higgs boson mass, almost no background events are classi�ed higher than +1.
The optimal cut value is at 0.97.

Fisher Response
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

 B
R

 [p
b]

× σ

-310

-210

-110

1

Fisher Response
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

 B
R

 [p
b]

× σ

-310

-210

-110

1

-µ+µ→*γZ/
-τ+τ→*γZ/

tt
-

W+W

WZ

ZZ
=190GeV

H
,m

-
W+W→H

Figure 5.42: Fisher classi�er response in the 0 jet channel, mH = 190 GeV. This
classi�er is particularly e�cient at this Higgs boson mass, scoring just below bagged
randomized trees and better than boosted decision trees (see table 5.14). The
optimal cut value is at 0.29.
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mH = 150 GeV, 2 jet channel
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Figure 5.43: Boosted decision tree response in the 2 jet channel, mH = 150 GeV.
The di�erent conditions of the 2 jet channel are visible: tt̄ decays are much more
dominant. In comparison to the cut analysis however this classi�er performs ex-
ceedingly well (see table 5.15). The optimal cut value is at −0.11.
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Figure 5.44: Bagged randomized trees response in the 2 jet channel, mH =
150 GeV. Only the signal peaks around +1: the dominant tt̄ is widely spread
with the tail above the optimal cut value of 0.84 approximately the same strength
as the signal.
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Figure 5.45: Neural network response in the 2 jet channel, mH = 150 GeV. The
neural network still has background events classi�ed above +1 in this channel, and
the tt̄ is approximately six times stronger than the signal above 0.8, the position
of the optimal cut value.
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Figure 5.46: Fisher classi�er response in the 2 jet channel, mH = 150 GeV. This
channel shows the disadvantage of a linear classi�er: the tt̄ background is virtually
not suppressed. The optimal cut value is at 0.61.
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mH = 170 GeV, 2 jet channel
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Figure 5.47: Boosted decision tree response in the 2 jet channel, mH = 170 GeV.
Also at this Higgs boson mass the boosted decision trees separate signal and back-
ground very well: capturing the more complex dynamics of tt̄ using a cut analysis
seems more di�cult (see table 5.16). The optimal cut value is at 0.12.
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Figure 5.48: Bagged randomized trees response in the 2 jet channel, mH =
170 GeV. The optimal cut value is at 0.952.
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Figure 5.49: Neural network response in the 2 jet channel, mH = 170 GeV. The
optimal cut value is at 0.84.
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Figure 5.50: Fisher classi�er response in the 2 jet channel, mH = 170 GeV. The
optimal cut value is at 0.50.
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mH = 190 GeV, 2 jet channel
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Figure 5.51: Boosted decision tree response in the 2 jet channel, mH = 190 GeV.
This is the most di�cult separation problem in this thesis. It is problematic for
every classi�er. Additionally, the signal is weaker than at the other Higgs boson
mass points. The optimal cut value is at −0.16.
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Figure 5.52: Bagged randomized trees response in the 2 jet channel, mH =
190 GeV. The optimal cut value is at 0.898.
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Figure 5.53: Neural network response in the 2 jet channel, mH = 190 GeV. The
optimal cut value is at 0.68.
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Figure 5.54: Fisher classi�er response in the 2 jet channel, mH = 190 GeV. The
optimal cut value is at 0.34.
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5.7.4 Single Classi�er Results

In tables 5.12 - 5.17 the results of an optimized cut on the respective classi�er
output are given. As in the cut analysis, only the numbers for the most
important backgrounds are given: Drell-Yan and W+W− decays in the 0 jet
and tt̄ and W+W− decays in the 2 jet channel. The full results are given in
Appendix B.

0 jet channel: The �rst observation to make is that for mH = 150 GeV
the cut analysis has actually the best ScP signi�cance (see tables 5.3 and
5.12). This is somewhat surprising since multivariate classi�ers should be
able to improve on simple cut analysis by taking advantage of correlations.
One simple explanation is that for this case the exploitable correlations are
more than compensated by the limited training statistics3.

Another interesting feature seen not only to the 0 jet channel is that
using the optimal working point the boosted decision trees select less signal
events than the other classi�ers: the bagged randomized trees at mH =
170 GeV select more than twice, the other two classi�ers approximately 2.5
times the number of signal events. However, this increase in signal events is
counterbalanced by the increase in background.

For mH = 170 GeV apparently more useable information could be ex-
tracted by most multivariate classi�ers: Compared to an ScP = 3.5 for the
cut analysis the boosted decision trees reached ScP = 4.43, a 26% increased
signi�cance. Also, the bagged randomized trees and the Fisher classi�er ob-
tain a better signi�cance than the simple cut analysis. The neural network
is lagging behind, presumably because of insu�cient training data - neural
networks as more general classi�ers need more information to accurately �t
to the background distribution.

Only bagged randomized trees and the Fisher classi�er showed a better
performance than the cut analysis for mH = 190 GeV (see table 5.5 and
5.14). This again points at a situation similar to mH = 150 GeV: the Fisher
classi�er, for one, can easily be well-trained even with very little training
data, in great contrast to neural networks. If it can �t the problem well
the performance even exceeds that of complicated multivariate classi�ers like
boosted decision trees.

2 jet channel: In this channel the advantage of nonlinear combinations of
input data becomes evident: the nonlinear classi�ers boosted decision trees,
bagged randomized trees and neural networks improve upon the cut analysis
signi�cance by 272%, 188% and 80%, respectively, for mH = 150 GeV (see

3A typical multivariate classi�er has many more parameters to train than a cut analysis.
Therefore the number of training Monte Carlo events should be greater than necessary for
a cut analysis, especially in the case of neural networks
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σ× BR [fb] Z/γ∗ → µ+µ− WW All Backgrounds Signal S/
√

B ScP

Preselection (1.02± 0.01) · 105 253 ± 5.8 (1.06± 0.01) · 105 75.4 ± 2.1 0.23 0.23
BDT 5.87 ± 7.3 27.6 ± 2.8 38.1 ± 29 20.6 ± 1.6 3.34 3.05
BRT 58.7 ± 19 82.4 ± 4.7 171 ± 35 43.8 ± 2.3 3.35 3.20
MLP 133 ± 27 134 ± 6.0 351 ± 41 52.9 ± 2.5 2.82 2.74
Fisher 92.2 ± 22 130 ± 5.9 298 ± 39 49.2 ± 2.5 2.85 2.76

Table 5.12: Cut �ow table for mH = 150 GeV multivariate classi�ers, 0 jet channel.

σ× BR [fb] Z/γ∗ → µ+µ− WW All Backgrounds Signal S/
√

B ScP

Preselection (1.02± 0.01) · 105 253 ± 5.8 (1.06± 0.01) · 105 74.7 ± 1.9 0.23 0.23
BDT 5.87 ± 7.3 46.8 ± 3.6 60.4 ± 29 37.9 ± 1.9 4.88 4.43
BRT 41.1 ± 16 87.0 ± 4.9 165 ± 33 51.6 ± 2.2 4.02 3.81
MLP 150 ± 27 150 ± 6.4 366 ± 42 61.2 ± 2.4 3.20 3.10
Fisher 22 ± 11 83.3 ± 4.8 150 ± 31 47.9 ± 2.1 3.91 3.70

Table 5.13: Cut �ow table for mH = 170 GeV multivariate classi�ers, 0 jet channel.

σ× BR [fb] Z/γ∗ → µ+µ− WW All Backgrounds Signal S/
√

B ScP

Preselection (1.02± 0.01) · 105 253 ± 5.8 (1.06± 0.01) · 105 45.1 ± 1.4 0.14 0.14
BDT 26.3 ± 12 44 ± 3.5 95.1 ± 31 22.5 ± 1.4 2.31 2.19
BRT 17.6 ± 11 69.2 ± 4.3 110 ± 31 28.4 ± 1.6 2.71 2.57
MLP 118 ± 25 150 ± 6.4 328 ± 39 38.5 ± 1.8 2.12 2.07
Fisher 26.3 ± 12 100 ± 5.2 176 ± 32 33.8 ± 1.7 2.55 2.45

Table 5.14: Cut �ow table for mH = 190 GeV multivariate classi�ers, 0 jet channel.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

Preselection (1.45± 0.04) · 103 77.5 ± 3.2 (2.14± 0.02) · 104 63.3 ± 2 0.43 0.43
BDT 0± 2.2 1.10 ± 0.83 1.33 ± 29 8.06 ± 0.99 6.99 4.41
BRT 53.5 ± 11 8.61 ± 1.6 68.2 ± 31 18.3 ± 1.5 2.22 2.09
MLP 154 ± 18 15.9 ± 2.1 235 ± 36 23.1 ± 1.7 1.51 1.46
Fisher 355 ± 28 19.0 ± 2.3 410 ± 42 11.7 ± 1.2 0.58 0.56

Table 5.15: Cut �ow table for mH = 150 GeV multivariate classi�ers, 2 jet channel.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

Preselection (1.45± 0.04) · 103 77.5 ± 3.2 (2.14± 0.02) · 104 73.0 ± 1.9 0.50 0.50
BDT 8.92 ± 4.5 1.37 ± 0.87 10.5 ± 29 16.0 ± 1.2 4.94 4.06
BRT 29 ± 8.0 4.38 ± 1.3 33.8 ± 30 20.2 ± 1.4 3.47 3.14
MLP 172 ± 20 15.3 ± 2.1 280 ± 39 33.9 ± 1.8 2.02 1.96
Fisher 355 ± 28 18.5 ± 2.3 410 ± 42 27.0 ± 1.6 1.33 1.30

Table 5.16: Cut �ow table for mH = 170 GeV multivariate classi�ers, 2 jet channel.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

Preselection (1.45± 0.04) · 103 77.5 ± 3.2 (2.14± 0.02) · 104 45.2 ± 1.4 0.31 0.31
BDT 20.1 ± 6.7 4.38 ± 1.3 36.7 ± 30 8.80 ± 0.88 1.45 1.35
BRT 66.9 ± 12 5.48 ± 1.4 79.1 ± 31 13.4 ± 1.1 1.50 1.43
MLP 330 ± 27 32.6 ± 3.0 480 ± 44 27.4 ± 1.6 1.25 1.22
Fisher 466 ± 32 24.6 ± 2.6 554 ± 46 23.9 ± 1.4 1.01 0.99

Table 5.17: Cut �ow table for mH = 190 GeV multivariate classi�ers, 2 jet channel.
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tables 5.8 and 5.15). This becomes especially visible in the tt̄ suppression:
boosted decision trees almost completely suppress this background with a
signal slightly smaller than in the cut analysis, the bagged randomized trees
manage to double the signal while maintaining approximately the same level
of background. Neural networks increase the signal even further, but pay with
a much increased background. The linear Fisher classi�er can not compete
in this situation.

Much the same situation is present at mH = 170 GeV, at mH = 190 GeV
the signi�cance of all classi�ers drops, the separation problem becomes ap-
parently more di�cult. Yet still, the nonlinear classi�ers provide a 22%−43%
improvement on the cut analysis (see table 5.17).

5.7.5 Combined Neural Network Results

In this section the results for the approach of combined neural networks is
presented. This approach separates the backgrounds into three groups, Drell-
Yan, QCD andW+W−, as described in section 5.7. Against each background
group a neural network is trained, and then the cuts on the outputs of the
three classi�ers are jointly optimized. The classi�er for the QCD background
including tt̄ was replaced by a Fisher classi�er in the 0 jet channel, since
the number of training events were not su�cient to train an e�cient neural
network. In the 2 jet channel the training statistics for the QCD background
were su�cient, but for the W+W− decays a Fisher classi�er was used for
the same reason. In the cut �ows �rst the cut on Drell-Yan, then the cut on
QCD and �nally the cut on W+W− is performed.

0 jet channel: In the 0 jet channel this method gives excellent perfor-
mance, except for mH = 190 GeV, where a statistical �uctuation in the
training data probably indicated that a very strong cut on the output of
the W+W− classi�er has been advantageous, in contrast to the test data.
However, for mH = 150 GeV and mH = 170 GeV the combination of multi-
ple classi�ers improved the signi�cance respective to the neural nets by 25%
respective 34%.

2 jet channel: In the two-jet channel this combined classi�er actually has
a worse performance than the directly trained neural network. It seems
therefore that the signal region in this channel can better be selected by the
training algorithms if all backgrounds are used for training together. This
can also be seen as positive: a neural network can be trained against the total
background, and seperate training is not necessary to improve the classi�er
in this situation.
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σ× BR [fb] Z/γ∗ → µ+µ− WW All Backgrounds Signal S/
√

B ScP

Preselection (7.90± 0.07) · 104 213 ± 7.5 (8.30± 0.07) · 104 68.1 ± 2.9 0.24 0.24
Drell-Yan Cut 86.6 ± 22 118 ± 5.7 273 ± 38 52.3 ± 2.5 3.16 3.05

QCD Cut 74.8 ± 21 115 ± 5.6 234 ± 36 50.2 ± 2.5 3.28 3.15
W+W− Cut 23.5 ± 12 57.8 ± 4 94.3 ± 31 35.8 ± 2.1 3.69 3.45

Table 5.18: Cut �ow table for mH = 150 GeV combined neural networks, 0 jet
channel. Only statistical errors are given.

σ× BR [fb] Z/γ∗ → µ+µ− WW All Backgrounds Signal S/
√

B ScP

Preselection (7.90± 0.07) · 104 213 ± 7.5 (8.30± 0.07) · 104 70.3 ± 2.6 0.24 0.24
Drell-Yan Cut 216 ± 34 152 ± 6.4 461 ± 47 62.5 ± 2.5 2.91 2.84

QCD Cut 73.0 ± 20 72.7 ± 4.5 173 ± 35 42.6 ± 2.0 3.24 3.10
W+W− Cut 5.87 ± 7.3 35.9 ± 3.2 49.3 ± 29 32.2 ± 1.8 4.59 4.15

Table 5.19: Cut �ow table for mH = 170 GeV combined neural networks, 0 jet
channel. Only statistical errors are given.

σ× BR [fb] Z/γ∗ → µ+µ− WW All Backgrounds Signal S/
√

B ScP

Preselection (7.90± 0.07) · 104 213 ± 7.5 (8.30± 0.07) · 104 38.9 ± 1.9 0.14 0.13
Drell-Yan Cut 178 ± 31 146 ± 6.3 415 ± 45 34.3 ± 1.7 1.69 1.65

QCD Cut 98.1 ± 23 95.7 ± 5.1 229 ± 37 27.2 ± 1.6 1.80 1.74
W+W− Cut 0± 7.3 9.52 ± 1.7 12 ± 29 7.66 ± 0.82 2.21 1.94

Table 5.20: Cut �ow table for mH = 190 GeV combined neural networks, 0 jet
channel. Only statistical errors are given.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

Preselection (1.53± 0.06) · 103 76.0 ± 4.5 (1.78± 0.03) · 104 66.7 ± 2.9 0.50 0.50
Drell-Yan Cut 430 ± 31 25.8 ± 2.7 525 ± 43 26.4 ± 1.8 1.15 1.13

QCD Cut 20.1 ± 6.7 3.69 ± 1.1 25.1 ± 30 7.94 ± 0.98 1.58 1.45
W+W− Cut 15.6 ± 5.9 2.19 ± 0.95 19.2 ± 29 7.45 ± 0.95 1.70 1.54

Table 5.21: Cut �ow table for mH = 150 GeV combined neural networks, 2 jet
channel. Only statistical errors are given.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

Preselection (1.53± 0.06) · 103 76.0 ± 4.5 (1.78± 0.03) · 104 79.7 ± 2.8 0.60 0.59
Drell-Yan Cut 321 ± 27 18.3 ± 2.3 368 ± 40 26.2 ± 1.6 1.37 1.34

QCD Cut 8.92 ± 4.5 3.01 ± 1.1 17.9 ± 29 8.30 ± 0.90 1.96 1.76
W+W− Cut 8.92 ± 4.5 1.10 ± 0.83 16.0 ± 29 7.33 ± 0.84 1.83 1.64

Table 5.22: Cut �ow table for mH = 170 GeV combined neural networks, 2 jet
channel. Only statistical errors are given.

σ× BR [fb] tt̄ WW All Backgrounds Signal S/
√

B ScP

Preselection (1.53± 0.06) · 103 76.0 ± 4.5 (1.78± 0.03) · 104 46.6 ± 2.0 0.35 0.35
Drell-Yan Cut (1.03± 0.05) · 103 48.4 ± 3.6 (1.26± 0.06) · 103 36.1 ± 1.8 1.02 1.00

QCD Cut 51.3 ± 11 4.65 ± 1.3 68.6 ± 31 8.27 ± 0.85 1.00 0.94
W+W− Cut 51.3 ± 11 4.65 ± 1.3 68.6 ± 31 8.27 ± 0.85 1.00 0.94

Table 5.23: Cut �ow table for mH = 190 GeV combined neural networks, 2 jet
channel. Only statistical errors are given.
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5.8 Monte Carlo Statistical Uncertainty

The statistical uncertainty of the Monte Carlo data is relatively high in this
study, making an accurate estimate important. However, for an extended
study with real data this uncertainty would very probably be smaller, because
more Monte Carlo events will be available. For this reason this uncertainty
is discussed separately from the other systematic uncertainties, where the
treatment would be much the same in an analysis with more Monte Carlo
data.

Doing a counting experiment using Monte Carlo background subtraction
is a daunting and di�cult task. Using the procedure described in section 4.2.1
one can derive a posterior probability distribution function (p.d.f.) from the
number of background Monte Carlo events in the signal region. This was
done for each method. The main characteristics of the resulting p.d.f.s are
summarized in tables 5.24 to 5.29 by using several values:

• the mean of the p.d.f. B̂ (this is the expected background σ ×BR)

• the root mean square width of the p.d.f., σstat.

For a gaussian p.d.f. this information would be su�cient, and the maximal
signal signi�cance would be Ŝ/σstat. The tails of the actual distribution
are, however, much heavier than those of a gaussian. Therefore additional
information is given:

• the maximal signi�cance of the expected signal Ŝ, given by the integral∫∞
B̂+Ŝ

p(x)dx of the background p.d.f. p(x)

• the 3σ and 5σ upper limits for the background from the p.d.f. in fb

• and for comparison: the ScP of the expected signal at an integrated
luminosity of 1 fb−1 for the given background uncertainty σstat

4

4The ScP method can at the moment only treat gaussian systematic errors

method B̂ ± σstat Ŝ ± σstat Ŝ signi�cance B upper limit
[fb] [fb] limit [σ] ScP @1 fb−1 3 σ 5 σ

Cuts 110 ± 30 23.1 ± 1.7 1.29 0.728 221 366
BDT 114 ± 30 20.6 ± 1.6 1.23 0.648 225 370
BRT 244 ± 37 43.8 ± 2.3 1.56 1.08 371 520
MLP 422 ± 43 52.9 ± 2.5 1.58 1.10 563 716

Comb MLP 162 ± 32 35.8 ± 2.1 1.51 1.03 277 423
Fisher 370 ± 41 49.2 ± 2.5 1.56 1.07 508 661

Table 5.24: Monte Carlo statistical uncertainty in the 0 jet channel for mH =
150 GeV. Signi�cance is given in equivalent standard deviations (σ).
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method B̂ ± σstat Ŝ ± σstat Ŝ signi�cance B upper limit
[fb] [fb] limit [σ] ScP @1 fb−1 3 σ 5 σ

Cuts 122 ± 31 26.1 ± 1.6 1.32 0.783 236 382
BDT 136 ± 30 37.9 ± 1.9 1.61 1.17 247 393
BRT 239 ± 36 51.6 ± 2.2 1.74 1.32 362 510
MLP 440 ± 44 61.2 ± 2.4 1.70 1.24 584 739

Comb MLP 119 ± 30 32.2 ± 1.8 1.49 1.00 230 375
Fisher 224 ± 34 47.9 ± 2.1 1.71 1.27 344 491

Table 5.25: Monte Carlo statistical uncertainty in the 0 jet channel for mH =
170 GeV. Signi�cance is given in equivalent standard deviations (σ).

method B̂ ± σstat Ŝ ± σstat Ŝ signi�cance B upper limit
[fb] [fb] limit [σ] ScP @1 fb−1 3 σ 5 σ

Cuts 90.6 ± 29 9.33 ± 0.91 0.982 0.303 200 345
BDT 171 ± 32 22.5 ± 1.4 1.22 0.644 286 432
BRT 184 ± 33 28.4 ± 1.6 1.33 0.789 303 450
MLP 400 ± 41 38.5 ± 1.8 1.37 0.831 537 689

Comb MLP 83.5 ± 29 7.66 ± 0.82 0.943 0.250 193 338
Fisher 250 ± 35 33.8 ± 1.7 1.41 0.878 371 519

Table 5.26: Monte Carlo statistical uncertainty in the 0 jet channel for mH =
190 GeV. Signi�cance is given in equivalent standard deviations (σ).

method B̂ ± σstat Ŝ ± σstat Ŝ signi�cance B upper limit
[fb] [fb] limit [σ] ScP @1 fb−1 3 σ 5 σ

Cuts 139 ± 31 9.16 ± 1.1 0.951 0.275 251 397
BDT 78.6 ± 29 8.06 ± 0.99 0.954 0.260 188 333
BRT 144 ± 31 18.3 ± 1.5 1.15 0.541 258 403
MLP 308 ± 37 23.1 ± 1.7 1.15 0.555 434 582

Comb MLP 90.1 ± 29 7.45 ± 0.95 0.933 0.241 200 345
Fisher 485 ± 43 11.7 ± 1.2 0.895 0.242 622 773

Table 5.27: Monte Carlo statistical uncertainty in the 2 jet channel for mH =
150 GeV. Signi�cance is given in equivalent standard deviations (σ).

method B̂ ± σstat Ŝ ± σstat Ŝ signi�cance B upper limit
[fb] [fb] limit [σ] ScP @1 fb−1 3 σ 5 σ

Cuts 100 ± 30 9.94 ± 0.98 0.986 0.315 211 356
BDT 87.6 ± 29 16.0 ± 1.2 1.13 0.519 197 342
BRT 110 ± 30 20.2 ± 1.4 1.21 0.631 221 367
MLP 354 ± 40 33.9 ± 1.8 1.31 0.758 486 635

Comb MLP 86.8 ± 30 7.33 ± 0.84 0.926 0.233 198 343
Fisher 485 ± 43 27.0 ± 1.6 1.15 0.559 622 772

Table 5.28: Monte Carlo statistical uncertainty in the 2 jet channel for mH =
170 GeV. Signi�cance is given in equivalent standard deviations (σ).

method B̂ ± σstat Ŝ ± σstat Ŝ signi�cance B upper limit
[fb] [fb] limit [σ] ScP @1 fb−1 3 σ 5 σ

Cuts 138 ± 31 8.01 ± 0.84 0.922 0.239 251 397
BDT 113 ± 31 8.80 ± 0.88 0.946 0.269 226 371
BRT 155 ± 32 13.4 ± 1.1 1.03 0.389 269 415
MLP 554 ± 45 27.4 ± 1.6 1.13 0.536 697 850

Comb MLP 137 ± 32 8.27 ± 0.85 0.922 0.242 252 398
Fisher 628 ± 47 23.9 ± 1.4 1.05 0.447 775 928

Table 5.29: Monte Carlo statistical uncertainty in the 2 jet channel for mH =
190 GeV. Signi�cance is given in equivalent standard deviations (σ).
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These numbers, especially the upper limits, clearly show that counting
events without using actual data to constrain certain backgrounds is abso-
lutely futile even when one only looks at the uncertainty of Monte Carlo
statistics. However, some information on the classi�ers can still be extracted
from these numbers.

One observation is that the signi�cance numbers increase with increas-
ing signal cross-section: methods with very hard cuts are penalized. This is
actually a valid concern: hard cuts lead to less background statistics, which
means the background in the respective area is statistically less well under-
stood. This favors especially the neural networks, and shows their strong
point.

Another interesting point can be seen for example in table 5.27 comparing
the bagged randomized trees and the neural networks. Both have the same
limit signi�cance, although the background for the neural network is almost
doubled compared to the BRT, and the signal is not very much stronger for
the neural networks. The reason is that the tt̄ background that contributes to
the bulk of the increase has comparatively good Monte Carlo statistics, and
the increase in signal for the neural network compensates for the increased
statistical uncertainty.

Finally one can note that the cut analysis is a�ected strongest by this
uncertainty, since the optimal cuts tend to be relatively strict. The same
applies to a lesser degree to the combined neural networks, and even less to
the boosted decision trees. Bagged randomized trees and especially neural
networks show the best performances, if only this uncertainty was important.

5.9 Systematic Uncertainties

Now leaving out the uncertainty by limited Monte Carlo statistics we can
examine systematic uncertainties from detector resolution and scale uncer-
tainties: on muon resolution and scale, jet resolution and scale, and the
resolution of the missing transverse energy. Using the method described in
4.2.2 and the values in table 4.1 the systematical shifts have been calculated
for every method. The results are summarized in tables 5.30 to 5.35. The
tables contain the expected background and signal values together with two
sets of uncertainties. σS,ssq and σB,ssq are calculated using the traditional
method (sum of squares): each individual uncertainty is varied by ±1σ and
the squares of the shifts are summed up and the square root is taken. This
would be accurate for systematic uncertainties that are linearly increasing
and not correlated in the directions of variation. σS,mc and σB,mc however
are calculated by taking 400 random �distortion� points and evaluating the
analysis with the chosen systematic uncertainties. The mean square of the
distances to the undistorted result is then taken as the the uncertainty on the
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result (see section 4.2.2). The limit of the expected signal Ŝ signi�cance has
the same meaning as in the tables for the Monte Carlo statistical uncertain-
ties: the probability in equivalent standard deviations that the background
B with uncertainty σB,mc is actually as large as Ŝ + B̂. The ScP for 1 fb−1 is
calculated with σB,mc as systematical uncertainty on the background.

Already in table 5.30 one can see that these two methods can strongly
di�er - the uncertainty on the background by Monte Carlo is double that
given by ±1σ variation for the cut analysis, bagged randomized trees, and
combined neural networks, even �ve times higher for neural networks. If one
also looks at the other tables, one can see that the two methods roughly
agree for the cut analysis. Since the traditional method is used widely to
estimate systematic uncertainties in cut analyses, this is a reassuring result.
However, looking especially at the neural network results, one can see that
the traditional method is not favorable to estimate systematic uncertainties
for nonlinear classi�ers: In the 0 jet channel, the uncertainty on the neural
network response is underestimated by a factor of �ve.

Looking at the systematic values producing the greatest shift in neural net
output reveals that a decrease in missing transverse energy resolution coupled
with other systematic uncertainties causes a large number of background
events to be classi�ed as signal. This is probably due to the extrapolating
nature of the neural network, where events can be assigned high scores even
though they are not in the region where the network has been well trained. A
similar e�ect can be seen in �gure 5.37, where several test events are assigned
a score higher than one.

If only these systematic uncertainties from the detector would be consid-
ered, and no constraints by side-bands imposed, the traditional cut analysis
gives consistently the best results. This result con�rms a common expec-
tation: by using sophisticated classi�ers, high signi�cance under good con-
ditions is traded against robustness. However, the boosted trees also show
a very robust behaviour. The combined neural networks also show a more
robust behaviour than the network trained against all backgrounds. The
Fisher classi�er and the neural network however show very great sensitivity
to these systematic uncertainties in both channels at all Higgs boson masses.

method B̂ σB,ssq σB,mc Ŝ σS,ssq σS,mc Ŝ signi�cance
[fb] [fb] [fb] [fb] [fb] [fb] limit [σ] ScP @1 fb−1

Cuts 33.8 7.05 14.9 23.1 1.96 2.0 1.53 1.38
BDT 38.1 11.5 9.34 20.6 4.52 2.51 2.14 1.70
BRT 171 50.9 106 43.8 4.14 3.13 0.415 0.364
MLP 351 93.5 497 52.9 5.58 3.46 0.106 -0.246

Comb MLP 94.3 41.4 97.8 35.8 3.87 2.53 0.366 0.184
Fisher 298 77.6 277 49.2 5.16 3.59 0.178 0.00858

Table 5.30: Uncertainty due to systematics in the 0 jet channel for mH = 150 GeV.
Negative ScP values indicate high systematic uncertainties on the background
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method B̂ σB,ssq σB,mc Ŝ σS,ssq σS,mc Ŝ signi�cance
[fb] [fb] [fb] [fb] [fb] [fb] limit [σ] ScP @1 fb−1

Cuts 45.8 10.7 10.0 26.1 3.99 2.76 2.50 1.99
BDT 60.4 25.4 27.7 37.9 6.0 3.35 1.36 1.29
BRT 165 39.4 65.5 51.6 6.37 3.97 0.787 0.767
MLP 366 167 786 61.2 7.37 4.57 0.0779 -0.477

Comb MLP 49.3 9.45 13.3 32.2 5.69 3.64 2.34 1.99
Fisher 150 35.5 49.2 47.9 5.58 3.90 0.970 0.939

Table 5.31: Uncertainty due to systematics in the 0 jet channel for mH = 170 GeV.
Negative ScP values indicate high systematic uncertainties on the background

method B̂ σB,ssq σB,mc Ŝ σS,ssq σS,mc Ŝ signi�cance
[fb] [fb] [fb] [fb] [fb] [fb] limit [σ] ScP @1 fb−1

Cuts 13.7 4.09 4.93 9.33 2.65 1.63 1.80 1.34
BDT 95.1 17.8 23.7 22.5 2.43 1.71 0.949 0.866
BRT 110 30.4 40.8 28.4 2.68 1.89 0.695 0.668
MLP 328 128 703 38.5 4.30 2.70 0.0547 -0.515

Comb MLP 12 3.54 3.03 7.66 1.99 1.18 2.36 1.04
Fisher 176 27.7 86.1 33.8 2.82 2.10 0.392 0.370

Table 5.32: Uncertainty due to systematics in the 0 jet channel for mH = 190 GeV.
Negative ScP values indicate high systematic uncertainties on the background

method B̂ σB,ssq σB,mc Ŝ σS,ssq σS,mc Ŝ signi�cance
[fb] [fb] [fb] [fb] [fb] [fb] limit [σ] ScP @1 fb−1

Cuts 62.3 14.9 9.01 9.16 1.39 0.979 1.01 0.749
BDT 1.33 6.19 11.0 8.06 2.01 0.950 0.729 0.143
BRT 68.2 34.1 43.3 18.3 1.40 1.06 0.423 0.362
MLP 235 108 114 23.1 1.40 1.15 0.202 0.182

Comb MLP 19.2 9.40 12.9 7.45 1.09 0.704 0.576 0.481
Fisher 410 93.3 81.8 11.7 3.62 2.60 0.143 0.139

Table 5.33: Uncertainty due to systematics in the 2 jet channel for mH = 150 GeV.
Negative ScP values indicate high systematic uncertainties on the background

method B̂ σB,ssq σB,mc Ŝ σS,ssq σS,mc Ŝ signi�cance
[fb] [fb] [fb] [fb] [fb] [fb] limit [σ] ScP @1 fb−1

Cuts 23.6 11.6 9.37 9.94 1.61 0.979 1.06 0.898
BDT 10.5 13.9 23 16.0 2.23 1.28 0.697 0.353
BRT 33.8 16.1 19.3 20.2 2.20 1.44 1.04 0.955
MLP 280 135 158 33.9 1.96 1.86 0.215 0.177

Comb MLP 16.0 12.7 11.7 7.33 1.59 0.943 0.623 0.505
Fisher 410 72.2 69.9 27.0 4.80 3.59 0.386 0.370

Table 5.34: Uncertainty due to systematics in the 2 jet channel for mH = 170 GeV.
Negative ScP values indicate high systematic uncertainties on the background

method B̂ σB,ssq σB,mc Ŝ σS,ssq σS,mc Ŝ signi�cance
[fb] [fb] [fb] [fb] [fb] [fb] limit [σ] ScP @1 fb−1

Cuts 61.7 13.8 11.3 8.01 0.821 0.434 0.706 0.567
BDT 36.7 29.7 49.2 8.80 1.59 1.26 0.179 -0.131
BRT 79.1 18.1 23.5 13.4 1.31 1.01 0.568 0.525
MLP 480 154 214 27.4 2.35 1.33 0.128 0.115

Comb MLP 68.6 9.68 20.6 8.27 0.835 0.523 0.402 0.372
Fisher 554 131 105 23.9 3.31 2.16 0.227 0.222

Table 5.35: Uncertainty due to systematics in the 2 jet channel for mH = 190 GeV.
Negative ScP values indicate high systematic uncertainties on the background
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5.10 Result Overview

Finally, we can include all uncertainties into one total uncertainty and then
calculate the signi�cance of the expected signal at 1 fb−1. This is done by
using the ScP formalism with the square root of the sum of squares of the
considered uncertainties, detector systematics and Monte Carlo statistics, as
the background uncertainty. The results are given in given in tables 5.36
to 5.39, where also the ScP results considering no uncertainties (naive), only
considering Monte Carlo statistical uncertainty (stat) and only considering
the detector systematical uncertainty (syst) are repeated.

The resulting numbers do not look very promising, but one has to take
into account that in the absence of real data neither background nor system-
atic uncertainties can be constrained.

In the 0 jet channel, boosted decision trees and bagged randomized trees
are consistently among the best classi�ers. The combined neural networks
give best performance for mH = 170 GeV, yet perform poorly at the other
Higgs boson masses. Still, tuning the number of neurons in the network would
probably increase the performance in these channels. For neural networks
trained against the whole background the bad performance in the systematic
study causes an overall bad result - improvements in this region could for
example include training the network also with events distorted using models
of the systematic uncertainties.

For the 2 jet channel the picture changes: the boosted decision trees
are strongly a�ected by the systematical uncertainties, and trail all other
classi�ers. One reason is the extremely small signal region and the small
cross-section of the selected signal that is then easily swamped by the combi-
nation of statistical and systematic uncertainties. The randomized version,
however, even increases its relative performance, and performs much better
than most other classi�ers: only the cut analysis atmH = 150 GeV, relatively
untouched by the systematic uncertainties, shows better results. The Fisher
classi�er, despite trailing in the performace without uncertainties performs
well in the total signi�cance. The neural net, yielding always the largest
signal cross-section, also does well in the �nal comparison.

method Ŝ [fb] B̂ [fb] naive ScP stat ScP syst ScP total ScP

Cuts 23.1 33.8 3.57 0.728 1.38 0.538
BDT 20.6 38.1 3.04 0.648 1.70 0.541
BRT 43.8 171 3.20 1.08 0.364 0.328
MLP 52.9 351 2.74 1.10 -0.246 -0.248

Comb MLP 35.8 94.3 3.45 1.03 0.184 0.148
Fisher 49.2 298 2.76 1.07 0.00858 0.00194

Table 5.36: Overview over ScP with di�erent kinds of uncertainties included, in
the 0 jet channel for mH = 150 GeV
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method Ŝ [fb] B̂ [fb] naive ScP stat ScP syst ScP total ScP

Cuts 26.1 45.8 3.52 0.783 1.99 0.714
BDT 37.9 60.4 4.43 1.17 1.29 0.854
BRT 51.6 165 3.81 1.32 0.767 0.669
MLP 61.2 366 3.10 1.24 -0.477 -0.479

Comb MLP 32.2 49.3 4.15 1.00 1.99 0.898
Fisher 47.9 150 3.70 1.27 0.939 0.777

Table 5.37: Overview over ScP with di�erent kinds of uncertainties included, in
the 0 jet channel for mH = 170 GeV

method Ŝ [fb] B̂ [fb] naive ScP stat ScP syst ScP total ScP

Cuts 9.33 13.7 2.22 0.303 1.34 -0.126
BDT 22.5 95.1 2.19 0.644 0.866 0.540
BRT 28.4 110 2.57 0.789 0.668 0.515
MLP 38.5 328 2.07 0.831 -0.515 -0.514

Comb MLP 7.66 12.0 1.94 0.250 1.04 -0.251
Fisher 33.8 176 2.45 0.878 0.370 0.334

Table 5.38: Overview over ScP with di�erent kinds of uncertainties included, in
the 0 jet channel for mH = 190 GeV

method Ŝ [fb] B̂ [fb] naive ScP stat ScP syst ScP total ScP

Cuts 9.16 62.3 1.09 0.275 0.749 0.250
BDT 8.06 1.33 4.41 0.260 0.143 -0.707
BRT 18.3 68.2 2.09 0.541 0.362 0.238
MLP 23.1 235 1.46 0.555 0.182 0.167

Comb MLP 7.45 19.2 1.54 0.241 0.481 -0.141
Fisher 11.7 410 0.558 0.242 0.139 0.125

Table 5.39: Overview over ScP with di�erent kinds of uncertainties included, in
the 2 jet channel for mH = 150 GeV

method Ŝ [fb] B̂ [fb] naive ScP stat ScP syst ScP total ScP

Cuts 9.94 23.6 1.86 0.315 0.898 0.0504
BDT 16.0 10.5 4.06 0.519 0.353 -0.102
BRT 20.2 33.8 3.15 0.631 0.955 0.393
MLP 33.9 280 1.97 0.758 0.177 0.164

Comb MLP 7.33 16.0 1.64 0.233 0.505 -0.227
Fisher 27.0 410 1.30 0.559 0.370 0.319

Table 5.40: Overview over ScP with di�erent kinds of uncertainties included, in
the 2 jet channel for mH = 170 GeV

method Ŝ [fb] B̂ [fb] naive ScP stat ScP syst ScP total ScP

Cuts 8.01 61.7 0.957 0.239 0.567 0.207
BDT 8.80 36.7 1.35 0.269 -0.131 -0.235
BRT 13.4 79.1 1.43 0.389 0.525 0.307
MLP 27.4 480 1.22 0.536 0.115 0.111

Comb MLP 8.27 68.6 0.940 0.242 0.372 0.176
Fisher 23.9 554 0.994 0.447 0.222 0.204

Table 5.41: Overview over ScP with di�erent kinds of uncertainties included, in
the 2 jet channel for mH = 190 GeV
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6. Summary and Outlook

In table 6.1 the major results of this thesis are summarized in a ranking of
classi�ers. From the results presented and the ranking, the following conclu-
sions can be made:

• Any discovery via event counting needs strong constraints on all sys-
tematic uncertainties. Methods for using real data to constrain back-
ground contributions are therefore essential and a topic for further stud-
ies.

• Multivariate classi�ers can improve signi�cance (without considering
uncertainties) especially in situations where nonlinearities can be ex-
ploited, which here is the case for the 2 jet channel. Boosted and
randomized decision trees are particularly e�cient.

• Some multivariate classi�ers select a greater signal cross-section at the
optimal working point, especially neural networks and to a lesser ex-
tent bagged randomized trees. This leads to reduced uncertainty from
Monte Carlo statistics.

• Multivariate classi�ers increase the uncertainty resulting from system-
atic uncertainties. This negates their initial advantage if the systematic
uncertainties can not be otherwise constrained. Neural networks are
particularly susceptible: event types that did not occur in the training
sample could be classi�ed as signal-like resulting from the extrapolating
nature of the neural network.

• In total, the bagged randomized trees classi�er is the most robust and
best-performing classifer, not always outperforming the classical cut
analysis. It increases the selected signal cross-section on average by a
factor of two, and therefore is more resistant to statistical uncertainties.

The di�erent classi�ers have shown very di�erent strengths and weak-
nesses during the course of this analysis:

• The traditional cut analysis has shown that it is still a viable and robust
method compared to multivariate classi�ers, especially if the systematic
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method performance performance considering uncertainties
statistical systematical all uncertainties

0 jet 2 jet 0 jet 2 jet 0 jet 2 jet 0 jet 2 jet
Cuts o − −− − + ++ o o
BDT + ++ o o + − + −−
BRT + + + + o + + +
MLP −− o + ++ −− − −− o
Comb. MLP + − − − o o o −
Fisher o − + o o − o +

Table 6.1: Ranking of the examined classi�ers by performance considering di�erent
uncertainties. The rank is given relative to the mean m and root mean square σ
of the mean over the Higgs boson masses of the ScP signi�cances. A result more
than 1.5σ from the mean is given a ++ or −− respectively, a result more than
0.5σ from the mean a + or − respectively.

uncertainty is high. Usually the optimization results in only a small
fraction of the signal events being selected.

• Boosted decision trees obtain the best performance if uncertainties are
not considered, but their performance in di�cult situations decreases
rapidly in the presence of systematic uncertainties. The fraction of
signal events selected is slightly better than in the cut analysis, but
often comparable.

• Bagged randomized trees are not as performant as boosted decision
trees, but much more robust. The examined classi�ers had on average
double the selected signal cross-section than the simple cut analysis.

• Neural networks need high training statistics. The neural network clas-
si�er consistently selected two to three times the signal cross-section
compared to the cut analysis, and especially in the nonlinear 2 jet chan-
nel outperformed it as well. The neural networks used were extremely
sensitive to systematic uncertainties - additional study to reduce this
e�ect is necessary.

• The combination of multiple neural networks improved upon the neural
network performance in the 0 jet channel, the resulting combined classi-
�er was one of the best. However, in the 2 jet channel the performance
was not nearly as good as the single neural network.

• In situations where it can be applied, the Fisher classi�er performs well.
It can be trained very easily, and selects almost as much signal cross-
section as neural networks. To improve its performance also squares
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or other nonlinear forms of variables could be used as inputs, this,
however, would have to be separately investigated.

It is of course possible to improve the relative performance of multivari-
ate classi�ers by providing more variables. However, since this thesis was
intended to be a �rst comparison, only the variables used in the cut analysis
were made available to the classi�ers.
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A. Datasets and Methods

A.1 Datasets

Table 2.1 lists the datasets used for this study. When available, the o�cial
ATLAS dataset number is given. The low-mass Drell-Yan sample has been
generated using a modi�ed high-mass Pythia con�guration �le, setting the
invariant mass to a range of 15 GeV < mµµ < 60 GeV. The Higgs signal
samples ahve been generated using modi�ed 5320 sample con�guration �les.
All samples have been simulated and reconstructed using the Athena software
version 13.0.30. Except for the Drell-Yan and Higgs samples, all generated
events were from o�cial production.

The fast simulation was performed using ATLFAST II [34], using Athena
version 13.0.40. These samples have been compared to fully simulated sam-
ples, and up to statistical accuracy no signi�cant di�erence was observed in
the relevant variables.

A.2 Analysis Methods

In this section, the software and methods used for the analysis are described.

A.2.1 Deriving Physics Data from AOD

To obtain plain ROOT NTuples from Analysis Object Data the HighPtView
tool from the Athena 13.0.40 release has been used. The default settings
were changed to not require a minimum muon transverse momentum pT to
include muons with pT < 20 GeV. Apart from this, the default settings were
not modi�ed.

A.2.2 Preprocessing

From these NTuples an additional physics ntuple has been constructed by
only including events with at least two reconstructed muons, removing un-
used variables and adding additional variables as described in section 5.2.
These ntuples are the basis for further MVA and cut analysis.
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A.2.3 Analysis Framework

To quickly set up, extend and execute an analysis a set of ROOT classes has
been written: the �rst part (selectors) makes it possible to easily specify an
analysis including cuts, multivariate classi�ers, splits into training and test
data and systematic shifts. An analysis so de�ned can be applied to the
each NTuple individually, making easy local and distributed parallelization
possible. The output of this analysis is then summarized, inspected and
visualized by another set of ROOT classes (analysis).

Selectors

A helper class �MySelector� has been derived from a modi�ed TSelector cre-
ated by the ROOT MakeClass feature. This helper class can process each
event several times in a �smearing loop� where events can be modi�ed ac-
cording to models of systematic shifts. Histograms for all cuts and smearing
loops can easily be created. Cuts are not de�ned in this class, they can be
de�ned in derived classes which can be very small. Also, the automated �ll-
ing of optimization histograms and the creation of a tree of boolean values
that holds the results of the individual cuts is supported.

From this class a �SmearSelector� has been derived that de�nes the num-
ber of smearing loops, which modi�es each event for each loop, and stores
the corresponding nuisance parameter values for each set of loops in the out-
put ROOT �le. For the initial optimization of cuts smearing can be easily
deactivated in the derived classes as needed.

The preselection classes for both channels are then derived from �SmearS-
elector�. The preselection and channel cuts are de�ned there, together with
many common histograms. These are then automatically �lled for each cut
de�ned, even for cuts de�ned only in further derived classes.

Therefore, the HiggsCuts class is rather short: it only has to de�ne the
parametrized cuts. In the speci�c HiggsCuts170 class that de�nes the corre-
sponding analysis for the Higgs boson mass of 170 GeV only these parameters
have to be set, so it only consists of 15 lines, 10 of which are parameter set-
tings.

This construction allows the user to quickly de�ne and change a compre-
hensive analysis. The output ROOT �les of these classes can now be used as
input for the analysis classes.

Analysis

The analysis classes have the following structure:

• Sample: this class encapsulates one sample that can be spread over
multiple �les, but shares one physical cross-section. All classes that
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build on this class do not have to interact with the ROOT �les on disk
anymore.

• Process: this class represents a physical process as a collection of several
samples. The Drell-Yan decays, for example, are combined from the
sample for mµµ > 60 GeV and mµµ < 60 GeV. This class can be
used to get combined histograms and cross-sections of the samples,
error propagation is automatically handled. Processes can be signal,
background or data processes.

• Channel: here the processes are combined to one channel, and many
presentation and analysis functions are de�ned. It can also create nec-
essary processes from speci�cations in a con�guration �le.

Additionally, a graphical user interface to the analysis class has been im-
plemented. There many di�erent types of histograms can be plotted with
di�erent processes after di�erent cuts. All histograms in this thesis were
created by this tool with only slight modi�cations.

A.3 Neural Net Architecture Optimization

To visualize the dependence of the neural net performance on the architec-
ture, a series of networks with di�erent architectures were trained against the
W+W− background in the 0 jet channel, where good training statistics are
available. In �gure A.1 one can see the results for a one-layer neural network,
scaled to the performance of a boosted decision tree trained with the same
data. In �gure A.2 several two-layer con�gurations starting with 1 neuron
in the �rst and 2 neurons in the second layer to 20 neurons in the �rst and
20 neurons in the second layer are tested. As one can see, the dependency of
performance versus number of neurons is not necessarily increasing, and the
optimal point is di�cult to determine.
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Figure A.1: Plot of the quality of a one-layer neural network trained versus QCD
W+W− background versus number of nodes. As quality the signal e�ciencies
at background e�ciencies of 1%, 10% and 30% are given, normalized to the
corresponding e�ciency for a boosted decision tree trained on the same data:
signal e�. of MLP
signal e�. of BDT . The plus signs can be understood as the �tail performance� for
high background rejection, the cross for intermediate and the star for high signal
e�ciency. Since the shape of the signal region can be more complex in the last
case, more variation in the performance depending on the number of neurons is
observed.
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Figure A.2: Plot of the quality of a two-layer neural network trained versus QCD
W+W− background, scanned over many di�erent numbers of nodes in the two
layers. The symbols are the same as in �gure A.1.
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B. Detailed Cut Flow Tables
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