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ABSTRACT OF THE DISSERTATION 

 
Investigating the Interactions of Neuromodulators: A Computational Modeling, 

Game Theoretic, Pharmacological, Embodiment, and Neuroinformatics Perspective 
 

By 
 

Andrew Zaldivar 
 

Doctor of Philosophy in Psychology-Cognitive Neuroscience 
 

 University of California, Irvine, 2014 
 

Professor Jeffrey L. Krichmar, Chair 
 
 
 

Neuromodulatory systems originate in nuclei localized in the subcortical 

region of the brain and control fundamental behaviors by interacting with many 

areas of the central nervous system. Much is known about neuromodulators, but 

their structural and functional implications in fundamental behavior remain 

unclear. This dissertation set out to investigate the interaction of neuromodulators 

and their role in modulating behaviors by combining methodologies in 

computational modeling, game theory, embodiment, pharmacological 

manipulations, and neuroinformatics. The first study introduces a novel 

computational model that predicts how dopamine and serotonin shape competitive 

and cooperative behavior in a game theoretic environment. The second study 

adopted the model from the first study to gauge how humans react to adaptive 

agents, as well as measuring the influence of embodied agents on game play. The 

third study investigates functional activity of these neuromodulatory circuits by 
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exploring the expression energy of neuromodulatory receptors using the Allen Brain 

Atlas. The fourth study features a web application known as the Allen Brain Atlas-

Drive Visualization, which provides users with a quick and intuitive way to survey 

large amounts of expression energy data across multiple brain regions of interest. 

Finally, the last study continues exploring the interaction of dopamine and 

serotonin by focusing specifically on the reward circuit using the Allen Brain Atlas. 

The first two studies provide a more behavioral understanding of how dopamine 

and serotonin interacts, what that interaction might look like in the brain, and how 

those interactions transpire in complex situations. The remaining three studies uses 

a neuroinformatics approach to reveal the underlying empirical structure and 

function behind the interactions of dopamine, serotonin, acetylcholine and 

norepinephrine in brain regions responsible for the behaviors discussed in the first 

two studies. When combined, each study provides an additional level of 

understanding about neuromodulators. This is of great importance because 

neuroscience simply cannot be explained through one methodology. It is going to 

take a multifaceted effort, like the one presented in this dissertation, to obtain a 

deeper understanding of the complexity behind neuromodulators and their 

structural and functional relationship with each other.	
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INTRODUCTION 

Neuromodulatory systems, composed of relatively small nuclei of neurons, 

are located in the sub-cortical region of the brain and control fundamental 

behaviors through interactions with board areas of the nervous system (Briand, 

Gritton et al. 2007; Krichmar 2008). When a biological organism experiences an 

important event in the environment, the activation of neuromodulatory systems 

contributes to the organism’s ability to commit an action accordingly. These actions 

include mitigating responses to risks, rewards, attentional effort and novelty. Thus, 

it is important to understand the underlying structures of these neuromodulatory 

systems because they have an important role in higher-order cognition and in an 

organism’s survival. 

The nuclei of each neuromodulatory system contain neurons that produce 

specific neurotransmitters, which then project to broad and extensive areas in the 

nervous system. Serotonin (5-HT, 5-hydroxytryptamine or serotonergic) originates 

in the raphe nuclei of the brainstem, which projects to almost all forebrain areas. In 

particular, the cortex, ventral striatum, hippocampus and amygdala are amongst 

brain areas that are heavily innervated by raphe nuclei efferents (Harvey 2003; 

Meneses and Perez-Garcia 2007). It has been suggested that serotonin influences a 

broad range of decision-based functions such as reward assessment, cost 

assessment, impulsivity, harm aversion, and anxious states (Asher, Craig et al. 

2013). Dopamine (DA or dopaminergic) is produced by two groups of cell bodies in 

the mesencephalon: the substantia nigra and the ventral tegmental area. The 
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ventral tegmental area projects to various subcortical and cortical regions that 

mediate reward related behaviors (Hyman, Malenka et al. 2006). The substantia 

nigra is the source of dopamine in the basal ganglia, which may contribute to their 

diverse roles in reward, addiction and movement (Ungless and Grace 2012). 

Acetylcholine (ACh or cholinergic) originates in the basal forebrain, which sends 

efferent projections to the cortex, amygdala, and hippocampus. Basal forebrain 

cholinergic neurons appear to modulate attention and optimize information 

processing (Baxter and Chiba 1999; Sarter, Hasselmo et al. 2005). Cholinergic 

neurons also originate in the brainstem pedunculopontine and laterodorsal 

tegmental nuclei and have projections to the amygdala, basal forebrain the ventral 

tegmental area (Semba and Fibiger 1992; Holmstrand and Sesack 2011). 

Norepinephrine (NE or noradrenergic) in the central nervous system is produced in 

the locus coeruleus, which projects to virtually all brain regions with the exception 

of basal ganglia (Berridge and Waterhouse 2003). The nucleus of the solitary tract 

(NTS) is another source of norepinephrine. There is a feedback loop in which the 

amygdala affects stress hormones, then the stress hormones act on the NTS, which 

then acts on the locus coeruleus, resulting in the release of norepinephrine in the 

amygdala. Activation of norepinephrine in the amygdala helps to consolidate and 

modulate memory in other brain regions (McGaugh 2004). 

While much is known about the sources of these neurotransmitters, their 

projections and function in fundamental behavior, understanding how these 

neuromodulatory systems interact in order to give rise to decision-making and 
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adaptive behaviors remains elusive. To illuminate the intricacies of 

neuromodulators, a series of studies were conducted to explore the interaction 

between these neuromodulatory systems. This dissertation utilizes a multifaceted 

approach to better understand the interacting neuromodulatory mechanisms that 

give rise to adaptive behaviors.  

Chapter 1 explores the roles of dopamine and serotonin during decision-

making in games of conflict. A computational model of neuromodulation and action-

selection was implemented for this study based on the assumption that dopamine 

activity is linked to incentive salience and “wanting” of a reward (Berridge 2004), 

referred to as expected reward (Schultz, Dayan et al. 1997), and serotonin activity is 

linked to cognitive control of stress, social interactions, and risk taking behavior 

(Millan 2003; Crockett, Clark et al. 2008), referred to as expected cost. With these 

assumptions, an agent, which is an autonomous entity in a simulated model whose 

behavior the neural model guided, played a game called Hawk-Dove, where players 

must choose between confrontational and cooperative actions (Axelrod and 

Hamilton 1981; Maynard Smith 1982). Game theory has had a long and productive 

history of predicting and describing human behavior in cooperative and competitive 

situations (Maynard Smith 1982; Nowak and Sigmund 1993; Nowak, Page et al. 

2000; Skyrms and Pemantle 2000). Game theoretic approaches have also been used 

to illuminate the neural basis of economic and social decision-making (Lee 2008; 

Yamagishi, Horita et al. 2009; Rilling and Sanfey 2011). By building upon these 

dopamine and serotonin assumptions with a game theoretic approach, this 
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computational model can predict how neuromodulatory activity shapes behavior 

under various environmental and competitive situations. 

Building upon this computational model of neuromodulation and action 

selection, Chapter 2 goes a step further by embedding this model in both simulated 

and embodied neural agents to investigate reciprocal social interactions in games of 

cooperation and conflict with human subjects. In this study, alongside Hawk-Dove, 

another game called Chicken (Rapoport and Chammah 1966) was used to analyze 

competitive situations in terms of expected rewards (dopamine activity) and costs 

(serotonin activity). Chicken forced players to decide on an action quickly without 

knowledge of the opponent’s choice, as players do not know the decision their 

opponent has made until the outcome. Besides the addition of having both 

simulated and embodied neural agents play Hawk-Dove and Chicken against 

human subjects, this study also manipulated levels of serotonin in human subjects 

using an acute tryptophan depletion (ATD) procedure. ATD is a dietary reduction of 

tryptophan, an amino acid precursor of serotonin, which causes a rapid decrease in 

the synthesis and release of central serotonin in human brain, thus affecting 

behavioral control (Nishizawa, Benkelfat et al. 1997). Altering serotonin levels via 

ATD has been shown to influence a subject’s ability to resist a small immediate 

reward over a larger delayed reward (Schweighofer, Bertin et al. 2008; Tanaka, 

Shishida et al. 2009), as well as predicting punishment or harm aversion (Crockett, 

Clark et al. 2009; Seymour, Daw et al. 2012). Manipulating levels of serotonin helps 
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test the influence of embodiment and serotonin on decisions where there is a 

tradeoff between cooperation and competition. 

Moving away from computational modeling, game theory and dietary 

manipulation, Chapter 3 takes explores other techniques of investigating 

neurmodulation by surveying receptor gene expression data of neuromodulatory 

systems retrieved from neuroinformatics resources to better understand the 

organization of brain circuitry involved with neuromodulators. Because 

neuromodulatory systems have distinct sources, one can infer connectivity by 

assuming that there are projections from the source to sites where specific 

neuromodulatory receptors are expressed. Gene expression is a molecular process 

where a gene, a segment of DNA, is turned into a protein or RNA structure. Gene 

expression is often visualized through fluorescence in situ hybridization (ISH), a 

technique that uses a labeled complementary RNA strand to localize a specific RNA 

sequence in a section of tissue. With ISH, detecting specific mRNA sequences can 

localize elements important to neuronal processing, such as receptors, transporters 

and growth factors. The ability to identify these essential components of brain and 

behavior encouraged organizations to put together publicly accessible 

neuroinformatics resources that contain massive amounts of gene expression data 

for other researchers to conduct scientific work. Neuroinformatics is an emerging 

field that is concerned with the management and sharing of neuroscience data. The 

Allen Mouse Brain Atlas (ABA) project from the Allen Institute for Brain Science is 

one such neuroinformatics resource that contains public data sets of extensive gene 
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expression and neuroanatomical data with a suite of search and viewing tools 

(Hawrylycz, Lein et al. 2012; Sunkin, Ng et al. 2013). By data mining the ABA, the 

gene expression profile of serotonin, dopamine, cholinergic and adrenergic receptor 

genes were characterized within anatomical origins of these neuromodulatory 

systems, as well as in the amygdala, which is important for cognitive behavior and 

has known interactions with all the neuromodulatory systems (McGaugh 2004; 

Bouret and Sara 2005; Lee, Wheeler et al. 2011).  

Influenced by methodology used in Chapter 3 to retrieve expression data, 

Chapter 4 details a web application created for other researchers to conduct 

analysis on other neural systems with characteristics similar to those discussed in 

Chapter 3, but without dealing with the complexities of interfacing with raw 

neuroinformatics resources. The web application, called the Allen Brain Atlas-

Driven Visualization (ABADV), is a publicly accessible tool created to retrieve and 

visualize expression energy data from the ABA ISH mouse data set across multiple 

genes and brain structures. When studying gene expression, researchers analyze 

changes in the expression of a particular gene or set of genes by quantifying the 

amount of its gene-specific transcript. Researchers use gene expression data in 

various ways, such as investigating profiles or patterns of expression across several 

genes, cross-species comparisons, searching for biomarkers, validating various data 

modalities, correlating gene expression to neuroanatomy, and other large-scale data 

analysis (Jones, Overly et al. 2009). The ability to measure and localize these gene-

specific transcripts in the nervous system enables researchers to investigate a broad 
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range of brain-related phenomena. While the ABA takes care of measuring and 

localizing these gene-specific transcripts, their sophisticated tools to navigate their 

large data set come with a steep learning curve (Hawrylycz, Lein et al. 2012; 

Sunkin, Ng et al. 2013). Using the ABA application programming interface (API), 

ABADV programmatically retrieves mouse gene expression data across brain 

structures specified by users and generates visualizations using Data-Driven 

Documents (D3), a programming library that uses data to drive the creation and 

control of visualizations in web browsers (Bostock, Ogievetsky et al. 2011). To 

demonstrate the effectiveness of ABADV, a query was performed using both 

ABADV and Brain Explorer 2, which is a desktop application the Allen Institute for 

Brain Science created for viewing their reference atlases and gene expression data 

(Sunkin, Ng et al. 2013). A comparison of these tools highlighted the ease of 

visualization through ABADV. 

Using ABADV, Chapter 5 continues to explore the comprehensive ABA ISH 

mouse data set, this time surveying genes that encode dopamine and serotonin 

receptors within brain structures associated with the reward processing (Nakamura 

2013; Russo and Nestler 2013). The reward circuit, which is comprised of several 

subcortical and cortical brain structures forming a network responsible for 

mediating various aspects of reward processing, is a key component for driving 

incentive-based learning and developing goal-directed behaviors (Haber and 

Knutson 2010). Reward not only refers to a pleasant stimulus, but also the active 

processes in the brain that responds to a stimulus rather than the stimulus itself. 
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These responses include the ‘liking’ or the actual pleasure component of a reward, 

the ‘wanting’ or the motivation for acquiring a reward, and the ‘learning’ or the 

associations about future rewards based on experience. (Berridge and Kringelbach 

2008). Though studies have identified dopamine neurons originating in the ventral 

tegmental area having a primary role in modulating learning and activity in reward 

processing (Hyman, Malenka et al. 2006), other studies also suggest that serotonin 

neurons of the dorsal raphe nucleus have a pivotal role in the emotional, 

motivational and cognitive aspects of reward representation, in addition to its role 

in modulating the behavioral response to threats and risks (Nakamura, Matsumoto 

et al. 2008; Kranz, Kasper et al. 2010). Understanding the complex interactions 

between dopamine and serotonin continues to pose a hurdle in understanding 

reward mechanisms, one that the comprehensive ABA may help in illuminating the 

underlying mechanisms of the reward circuit by profiling dopamine and serotonin 

receptor genes. 

By using computational modeling, game theory, embodiment, 

pharmacological manipulation and neuroinformatics in novel ways, these studies 

have contributed to clarifying the interaction of neuromodulatory systems and their 

role in modulating fundamental behaviors. Using multiple techniques, instead of a 

single approach, to draw conclusions about the neuromodulatory system may enable 

the research community to make stronger predictions about the neuroscience that 

ties together these neuromodulators to brain behavior. 
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CHAPTER 1: Simulation of Dopamine, Serotonin and Their 

Influences on Cooperative and Competitive Behavior 

This study explores the research question of how the interplay between cost 

and reward could lead to appropriate decision-making under varying conditions in a 

game theoretic environment. To test this question, several predictions as to how the 

activity of a reward and cost function leads to appropriate action selection in 

competitive and cooperative environments were computationally modeled. This 

computational model was based on the assumptions that dopaminergic activity 

increases as expected reward increases, and serotonergic activity increases as the 

expected cost of an action increases. 

Game Theory and Hawk-Dove 

Game theory is a toolbox utilized in a multitude of disciplines for its ability to 

quantitatively measure and predict behavior in situations of cooperation and 

competition (Maynard Smith 1982; Nowak, Page et al. 2000; Skyrms 2001). It 

operates on the principle that organisms will balance reward with effort while 

acting in self-interest to obtain the optimal result in a given situation. Game theory 

is especially valuable as a way to study human behavior because it provides a 

replicable, predictable, and controlled environment with defined boundaries. These 

elements are essential when introducing computer agents as opponents. 

The computational model created for this study played a game called Hawk-

Dove, where players must choose between confrontational and cooperative tactics 

against a computer algorithm with fixed strategies (Maynard Smith and Parker 
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1973; Axelrod and Hamilton 1981). In this study’s variant of Hawk-Dove (Figure 

1.1), players were contesting over a resource in an area referred to as the territory 

of interest (TOI). 

 

Figure 1.1. Game Diagram for Hawk-Dove. In Hawk-Dove, two players must compete for a 
territory, deciding either to be submissive (display) or aggressive (escalate), avoiding or risking 
injury in hopes of a larger payoff, respectively. The game board included a 5 × 5 grid of squares, upon 
which a territory was marked and the human and neural agent players were placed. The color of the 
territory reflected the state of the players’ actions. 
 

At the start of every game of Hawk-Dove, each player and the TOI were 

randomly placed inside an environment. Once a player reached the TOI, the player 

had to choose between two actions: escalate (an aggressive, confrontational tactic) 

or display (a nonviolent, cooperative tactic). If both players chose to escalate, they 

fought, resulting in an injury or penalty, which could either be serious or mild. If 

Display!

Escalate!
(Neural)!

Escalate!
(Opponent)!N!

O!

N/O!

Open!

Agent!
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only one player chose to escalate, then the escalating player received the total value 

of the TOI, and the other player received nothing. If both players chose to display, 

then there was a tie, and both players split the value of the TOI. The variant of 

Hawk-Dove used in this study also modified the harshness of the environment in 

certain experimental conditions by increasing the likelihood of receiving a serious 

injury when escalating. Thus, players must choose between a high-risk, high-payoff 

option, and a low-risk, low payoff option. 

Two agents played this study’s variant of Hawk-Dove: one agent was a 

computer model, whose actions were guided by either a rigid strategy or 

probabilities (Opponent), the other agent was a neural network model that 

mimicked the effects of serotonin and dopamine on action selection and learning 

(Neural). After each game, payoff was calculated and plastic connections were 

updated based on outcome (Table 1.1). The computational model played a total of 

100 series, where each series consisted of 100 games.  

Table 1.1 Payoff Matrix for Hawk-Dove. V is the value of the resource and is set to 0.60. D is the 
damage incurred when both players escalate. D is set to 1.60 for serious injury and 0.62 for a scratch. 
The probability of a serious injury is 0.25 or 0.75. 
 

 B. Escalate B. Display 
A. Escalate A: (V–D)÷2, B: (V–D)÷2 A: V, B: 0 
A. Display A: 0, B: V A: V÷2, B: V÷2 

 
At the start of each series, the neural network was initialized and the Neural 

agent was considered “naïve”, that is, the weights of the network were set to their 

initial values. For each series, the two agents played Hawk-Dove with a randomly 

selected parameter set that dictated which of one the three opponents the Neural 

was going to play against or the harshness of the environment (e.g., whether the 
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probability of serious injury or escalation from the Opponent agent was going to be 

low, which is 0.25, or high, which is 0.75). 

Opponent Agent 

The Opponent agent followed one of three strategies. In one strategy, referred 

to as the Statistical model, the agent had a probability of escalation independent of 

the Neural agent’s tactics, which was set at the beginning of the game to 0.25 or 

0.75. In the second strategy, referred to as Tit-For-Tat (TT), the computer model 

repeated the Neural agent’s previous action. The only exception to this rule was if 

the Opponent agent reached the TOI first in the opening game, in which the 

Opponent agent opened with a Display. TT is a straight-forward, yet effective 

strategy in game theory, which has shown to be successful in game playing 

tournaments (Axelrod and Hamilton 1981). In the third strategy, referred to as 

Win-Stay, Lose-Shift (WSLS), the Opponent agent would win and stay with the 

same action in the following situations: the Opponent agent’s Escalate is met with 

the Neural agent’s Display or the Opponent agent’s Display is matched by a Neural 

agent’s Display, otherwise the Opponent agent resorted to a lose and shift action 

(Nowak and Sigmund 1993). As with the TT strategy, the WSLS opponent would 

open with a Display action if it arrived at the TOI first on the first game. 

Neural Agent 

 To control the behavior of the Neural agent playing Hawk-Dove, a neural 

network-based computational model inspired by an organisms’ central nervous 

system was implemented. The neural network comprised of three areas: TOI-State, 
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Action, and Neuromodulatory (Figure 1.2). The TOI-State included three neurons 

that corresponded to the possible states of the TOI the Neural agent may observe: 1) 

Open. The Neural agent reached the TOI first. 2) Escalate. The opponent reached 

the TOI first and escalated a conflict. 3) Display. The opponent reached the TOI 

first but did not start a conflict. 

 

Figure 1.2. Neural Network Architecture for Hawk-Dove. The thick arrows represent all-to-all 
connections. The dotted arrows with the shaded oval represent modulatory plastic connections. 
Within the Action area, neurons with excitatory reciprocal connections are represented as arrow-
ended lines, and neurons with reciprocal inhibitory connections are represented as dot-ended lines 
overlaid by a shaded oval, which denotes plasticity. 
 

The equation for the activity of each of these neurons (ni) was set based on 

the current state of the TOI: 

𝑛! =
0.75+ 𝑟𝑛𝑑(0.0,0.25), 𝑖 = TOI-State

𝑟𝑛𝑑(0.0,0.25), Otherwise
 

where 𝑟𝑛𝑑 0.0,0.25  was a random number uniformly distributed between 0.0 and 
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0.25. The Action area included two neurons: 1) Escalate. The Neural agent escalated 

a conflict. 2) Display. The Neural agent did not start a conflict or retreated if the 

opponent escalated. The neural activity was based on input from TOI-State and 

neuromodulation. Lastly, the Neuromodulatory area included two neurons: 1) 

Raphe. A simulated raphe nucleus, which is the source of serotonergic 

neuromodulation. 2) VTA. A simulated ventral tegmental area, which is the source 

of dopaminergic neuromodulation. The synaptic connectivity of the network is 

shown in Figure 1.2 and in Table 1.2, and is all-to-all. Some of these connections 

were subject to synaptic plasticity and phasic neuromodulation, where the activity 

of Neuromodulatory neurons affected the synaptic efficacy. 

Table 1.2. Synaptic Connections Between Neural Areas for Hawk-Dove. 
 

From To 
Initial 
Weight 

Plastic 
Phasic 

Neuromodulation 
TOI-State Action 0.1 Y Y 
TOI-State Neuromodulator 0.1 Y N 

Action Action 0.1 N N 
Action Action -0.1 N Y 

 
The neural activity was simulated by a mean firing rate neuron model, where 

the firing rate of each neuron ranged continuously from 0 (quiescent) to 1 (maximal 

firing). The equation for the mean firing rate neuron model was: 

𝑠! 𝑡 = 𝜌!𝑠! 𝑡 − 1 + (1− 𝜌!)
1

1+ exp  (−5𝐼! 𝑡 )
 

where t was the current time step, 𝑠! was the activation level of neuron i, 𝜌! was a 

constant set to 0.1 and denoted the persistence of the neuron, and 𝐼! was the 

synaptic input. The synaptic input of the neuron was based on pre-synaptic neural 
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activity, the connection strength of the synapse, and the amount of 

neuromodulatory activity: 

𝐼! 𝑡 = 𝑟𝑛𝑑 −0.5, 0.0 + Σ!𝑛𝑚(𝑡 − 1)𝑤!"(𝑡 − 1)𝑠!(𝑡 − 1)  

where 𝑤!"was the synaptic weight from neuron j to neuron i, and nm was the level 

of neuromodulator at synapse ij. Phasic neuromodulation had a strong effect on 

action selection and learning. During phasic neuromodulation, synaptic projections 

from sensory systems and inhibitory neurons are amplified relative to recurrent or 

associational connections (Hasselmo and McGaughy 2004). In this computational 

model, the TOI-State to Action neurons represented sensor connections and the 

excitatory Action-to-Action neurons represented the associational connections. To 

simulate the effect of phasic neuromodulation, inhibitory and sensory connections 

were amplified by setting nm to ten times the combined average activity of the 

simulated Raphe and VTA neurons. Otherwise, nm was set to 1 for recurrent or 

association connections. The last column of Table 1.2 lists connections amplified by 

phasic neuromodulation. In simulation studies (Krichmar 2008) and robotic 

experiments (Cox and Krichmar 2009), this mechanism was shown effective in 

making the network exploitive when neuromodulation levels were high and 

exploratory when neuromodulation levels were low. 

 Action selection depended on the summed activity of the Action neurons after 

the Neural agent reached the TOI. When the Neural agent reached the TOI, neural 

activities of the Action and Neuromodulator neurons were calculated for ten time-

steps. The Action neuron with the largest total activity during those ten time-steps 
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dictated the action taken (e.g., if the total Display activity was greater than 

Escalate, then the Neural agent displayed). 

 After both the Neural agent and the opponent chose a tactic, a learning rule, 

which depended on the current activity of the pre-synaptic neuron, the post-

synaptic neuron, the overall activity of the neuromodulatory systems and the payoff 

from the game, was applied to the equation for the plastic connections (Table 1.2): 

∆𝑤!" = 𝛼 ∗ 𝑛𝑚 𝑡 − 1 𝑠! 𝑡 − 1 𝑠! 𝑡 − 1 ∗ 𝑅 

where 𝑠! was the pre-synaptic neuron activity level, 𝑠! was the post-synaptic neuron 

activity level, 𝛼 was a learning rate set to 0.1, 𝑛𝑚 was the average activity of all 

neuromodulatory neurons, and 𝑅 was the level of reinforcement based on payoff and 

cost. The pre-synaptic neuron was the most active TOI-State neuron. The post-

synaptic neuron could either be the most active Action, Raphe, or VTA neuron. 

Weights were normalized by the square root of sum of squared weights. The level of 

reinforcement was: 

𝑅 =
𝑅𝑒𝑤𝑎𝑟𝑑 − 𝑉𝑇𝐴 − (𝐶𝑜𝑠𝑡 − 𝑅𝑎𝑝ℎ𝑒), TOI-State→Action

𝑅𝑒𝑤𝑎𝑟𝑑 − 𝑉𝑇𝐴, TOI-State→VTA
𝐶𝑜𝑠𝑡 − 𝑅𝑎𝑝ℎ𝑒, TOI-State→Raphe

 

where the Reward was the payoff the Neural agent received as specified in Table 

1.1 divided by the maximum possible reward. It was assumed that serotonin 

plasticity was based on the predicted cost of an action and dopamine plasticity was 

based on the predicted reward of an action. If there was an error in this prediction, 

weights changed according to the plastic connections and level of reinforcement. If 

Raphe or VTA accurately predicted the respected cost or payoff of an action, then 
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learning ceased. The cost was 1 if the Neural agent received a serious injury, the 

ratio of scratch to serious injury (0.3875, Table 1) if scratched, or zero otherwise. 

The reward received when the Neural agent won the resource is 1, 0.5 if split, and 

zero otherwise. 

Neural Agent’s Performance in Simulations 

During the course of a series, the Neural agent learned to adopt various 

strategies depending on the chance of serious injury and its opponent’s strategy. To 

ensure that these strategies did not occur by chance, 100 randomly behaving agents 

played against all three Opponent agents. The random Neural agents had lesions 

(i.e., activity set to zero) of both the simulated VTA and Raphe, which resulted in no 

learning occurring. The 95% confidence interval was used as the cutoff for gauging 

non-random behavior in the random agents. This cutoff corresponded to the 

probability of selecting a particular action in response to a given TOI-State greater 

than 65% or less than 35% of the time. 

The Neural agent adapted its behavior depending on its opponent’s strategy 

and environmental conditions (Figure 1.3). In response to a given TOI-State, the 

Neural agent could respond randomly (i.e., within the 95% confidence), or 

significantly tend toward escalation or displaying. There are a total of 27 possible 

outcomes the Neural agent can take with respect to the three different states of the 

TOI. Only a few of these outcomes emerged in the simulations, and these outcomes 

are represented in Figure 1.3 as a triplet pairing (i.e., EEE, DDE, UDE, etc.). The 

first value in the triplet pairing corresponds to the expected action when the TOI-
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State was Open. The second represents the anticipated action when the TOI-State 

was Escalate. The third value denotes the expected outcome when the TOI-State 

was Display. These triplets are associated with a color spectrum, where aggressive 

outcomes (‘E’ in the triplet) are denoted red, passive outcomes (‘D’ in the triplet) are 

denoted in blue, and values that do not fall within either outcome (‘U’ in the triplet) 

are denoted in yellow. 

 

Figure 1.3. Proportion of Probable Neural Agent Actions. There are three TOI-State areas 
(Open, Escalate, and Display), and three outcomes the Neural agent can commit to: Escalate (E), 
Display (D) or Undecided (U). Undecided represents random choice between ‘E’ and ‘D’. The labels 
represent the Neural agent’s response to the three TOI-State areas. Strategies that are Dove-like are 
displayed in blue, Hawk-like are displayed in red, and arbitrary strategies displayed in yellow. 
 

Against all three opponents, the Neural agent adopted Hawk-like behavior in 

“safe” environments, where the probability of serious injury was 0.25 (top row, 

Figure 1.3), and Dove-Like behavior in “harsh” environments, where the probability 

of serious injury was 0.75 (bottom row, Figure 1.3). As the probability of serious 
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injury or an opponent escalating increases, the adoption of ‘DDE’ strategy (Neural 

agent displayed when the TOI-State was Open and Escalate, and escalated when 

the TOI-State was Display) increases as well (Figure 1.3). In situations where the 

Neural agent was in a competitive, antagonistic environment, the Neural agent 

tended to behave in a Dove-like way (displaying a large proportion of the games in a 

series). Conversely, as the probability of serious injury or opponent escalating 

decreases, aggressive strategies (escalating when the TOI-State is Open, Escalate or 

Display) increases (Figure 1.3). In circumstances where the Neural agent was in a 

cooperative, forgiving environment, it tended to adopt more Hawk-like behavior 

(escalating in a larger proportion of the games in a series). 

Simulated lesion experiments were carried out to test the effect of 

neuromodulation on behavior. An intact neuromodulatory system was necessary for 

appropriate behavior (Table 1.3). When the simulated Raphe area was lesioned, the 

Neural agent’s behavior became more Hawk-like, even when the chance of serious 

injury was high (Harsh column in Table 1.3). When the simulated VTA area was 

lesioned, the Neural agent’s behavior became more Dove-like (fewer escalations) in 

all environments. 

Table 1.3. Percentage of Escalation for the Neural Agent. 
 

 Control   Raphe Lesion VTA Lesion 
 Safe Harsh Safe Harsh Safe Harsh 

Statistical 97.65% 10.00% 99.06% 92.86% 34.79% 7.14% 
TT 34.15% 13.64% 81.82% 81.82% 24.74% 12.50% 

WSLS 93.22% 9.09% 96.88% 96.88% 20.93% 8.22% 
 
 

The Neural agent adapted its behavior to its opponent’s strategy. Against the 

TT opponent, the Neural agent oscillated between escalating and displaying in 
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successive games. In essence, the Neural agent learned to adopt a TT strategy 

against this opponent, which yielded approximately equal reward to both agents. 

The oscillating neuromodulatory activity corresponded to the alternating actions 

taken by both agents (Figure 1.4A). Against the WSLS opponent, the Neural agent 

created opportunities for high payoffs. The high-expected cost and reward were 

reflected in the serotonergic and dopaminergic activity when both agents escalated 

(see Figure 1.4B: bottom plot, games 79, 82, or 86). In these examples, the Neural 

agent escalated first and its opponent escalated second (Figure 1.4B: top plot, games 

79, 82, or 86). The Neural agent learned that this tactic caused the Opponent agent 

to ‘lose-shift’ towards Display in the following game, which could be taken 

advantage of by escalating (Figure 1.4B: top plot, games 80, 83, or 87). This tactic 

resulted in a maximal reward to the Neural agent but caused the Opponent agent to 

‘lose-shift’ back to Escalate in the following game (see Figure 1.4B: top plot, games 

81, 84, or 88). 

The neural response of the simulated neuromodulators appears to govern the 

Neural agent’s actions (Figure 1.4). When the VTA activity dropped below the 

Raphe activity, the Neural agent displayed. That is, Raphe activity may be acting as 

a threshold for the expected cost of upcoming actions, whereas the VTA activity 

rises and falls based on the expected reward. When the expected reward is lower 

than the expected cost, the Neural agent tended to display. For example, when a 

Neural agent behaved Dove-like, serotonin activity was high relative to dopamine 
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activity because the expected reward from displaying was low (Figure 1.4: games 

78-80). 

In addition, the oscillatory Neural agent actions (Figure 1.4A: games 84-99) 

are exactly matched by oscillatory VTA neuromodulatory activity (Figure 1.4: games 

84-99) rising above and falling below the Raphe neuromodulatory activity. The low 

fluctuation in Raphe values from one game to the next in Figure 1.4A result from 

the precision of predicted cost when playing a highly predictable opponent using the 

TT strategy. Predicted cost was not as regular for the Neural agent when playing 

against the WSLS opponent, which is why the Raphe neuromodulatory activity 

fluctuated more in Figure 1.4b (bottom plot). Although the Raphe activity fluctuated 

more when playing against the WSLS opponent, the Neural agent actions were 

consistent with the neuromodulatory activity. Thus, the results from the simulated 

neuromodulatory activity in Figure 1.4 suggest that the Raphe neural activity acts 

as a threshold for aggressive (escalate) or non-aggressive (display) Neural agent 

actions. 

Discussion 

 In this study, an agent, whose behavior was guided by a computational model 

of the neuromodulatory system, played Hawk-Dove against simulated opponents 

and learned to adjust its strategy appropriately depending on environmental 

conditions and its opponent’s strategy. The model makes several predictions on how 

the activity of neuromodulatory systems can lead to appropriate action selection in 

competitive and cooperative environments. 
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Figure 1.4. Actions and Neuromodulatory Activity of Agents. Neural and Opponent agent 
actions taken during the last 25 games of a single series, along with corresponding neuromodulatory 
activity for the Neural agent. The stair plots located on the top half of A and B are the actions taken 
by both the Neural (green) and Opponent (black) agents. The line plots located in the bottom half of 
A and B represent the neuromodulatory activity for the Neural agent during the same 25 games of 
the same series. The red line represents the Raphe activity, and the blue line represents the VTA 
activity. A. Neural agent versus the TT opponent. B. Neural agent versus WSLS opponent. 
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Results from this study verified the prediction that the interaction between 

the simulated serotonergic neuromodulatory system, associated with the expected 

cost of a decision, and the simulated dopaminergic system, associated with the 

expected reward of a decision, would allow for appropriate decision-making in 

Hawk-Dove (Figure 1.4). The Neural agent was more likely to escalate over the 

resource when activity of the reward system exceeded the activity of the cost 

system. Conversely, when the reward activity did not exceed the activity of cost, the 

Neural agent displayed. Impairment to either the dopaminergic or serotonergic 

system lead to perseverant, uncooperative behavior is another prediction verified in 

this study (Table 1.3). A simulated lesion of the serotonergic system resulted in the 

Neural agent engaging in risk taking (aggressive) behavior, which was similar to 

the uncooperative behavior seen in human studies where serotonin levels were 

lowered via ATD while subjects played games such as Prisoner’s Dilemma and the 

Ultimatum game (Wood, Rilling et al. 2006; Crockett, Clark et al. 2008). 

Impairment of the dopaminergic system resulted in risk-averse behavior (Dove-like) 

caused by an inability to assess reward, and impairment of the serotonergic system 

resulted in risk-taking behavior (Hawk-like) because of its inability to assess cost. 

Although dopamine and serotonin activity appears related to various expectations 

(e.g., predictive reward, anticipated cost), the action of these neuromodulators on 

downstream targets is similar in that it governs decision-making. That is, phasic 

neuromodulation shifts an agent’s behavior from random and exploratory to 

decisive and exploitive through differentially modulating synaptic pathways. 
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Altogether, results in this study are in agreement with the theoretical work 

proposed by Boureau and Dayan (Boureau and Dayan 2011), in which the influence 

of serotonergic and dopaminergic systems in generating an appropriate decision are 

sometimes in opposition. 

 The model constructed for this study is based on the notion that all 

neuromodulators have the same effect on downstream targets (Krichmar 2008). 

Large, phasic increases in neuromodulator activity cause an organism’s behavior to 

be more exploitive or decisive, whereas lower levels of neuromodulatory activity 

result in the organism being more exploratory or indecisive. This is in agreement 

with the idea of cholinergic modulation of attention (Pauli and O'Reilly 2008) and 

noradrenergic modulation of decision-making (Aston-Jones and Cohen 2005), but 

extended to dopaminergic and serotonergic systems. The model used in this study 

differs somewhat from the behavioral and neuroscience literature that suggests the 

role of dopamine is to calculate the reward prediction error, and that serotonin 

controls the timescale of the evaluation of delayed rewards in reinforcement 

learning (Doya 2002; Schweighofer, Tanaka et al. 2007). It may instead be more in 

agreement with the proposal that neuromodulators, such as dopamine and 

serotonin are involved with the discovery of new actions to outcome mappings 

(Redgrave and Gurney 2006). 
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CHAPTER 2: Reciprocity and Retaliation in Social Games With 

Adaptive Agents, Embodiment, and Pharmacological 

Manipulation  

With the computational model from Chapter 1 providing a means for 

investigating how neuromodulation may shape behavior during competitive and 

cooperative situations, this Chapter further tests neuromodulators role in decision-

making by embedding a similar model in an embodied (robotic) agent. Hawk-Dove 

was introduced in Chapter 1 as a socioeconomic game where players choose between 

competing and sharing a resource. Chicken (Rapoport and Chammah 1966), another 

game of conflict, was used to investigate competitive situations in terms of expected 

costs and reward alongside Hawk-Dove. Furthermore, the computational model 

featured in this Chapter plays against human subjects with manipulated levels of 5-

HT through acute tryptophan depletion, a procedure that has been shown to 

decrease cooperation and lower harm-aversion (Young, Smith et al. 1985; Wood, 

Rilling et al. 2006; Crockett, Clark et al. 2008). 

Chicken 

 In Chicken, two cars approach each other on a collision course, and players 

must decide to drive straight for a high-risk, high reward payoff or swerve away 

(Figure 2.1). If both cars go straight, a stiff penalty is incurred with the collision. If 

one car goes straight and the other swerves, the driver of the car that went straight 

receives a reward and the other driver receives nothing. While somewhat similar to 

Hawk-Dove and Prisoner’s Dilemma, Chicken forces players to decide on an action 
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quickly without knowledge of the opponent’s choice. Therefore, players must rely 

solely on prior game experience to make appropriate decisions. 

 In this study’s version of Chicken, human subjects and Neural agents drove 

their cars along a single lane from opposite directions (Figure 2.1). Both players 

started simultaneously at the same speed. The human subject had less than a 

second to decide to swerve or to continue straight and risk a crash. After each game, 

a payoff was calculated based on the outcome of the game (Table 2.1). If both 

players drove straight, then the result was a head-on collision with a heavy penalty. 

If one player swerved (thereby deemed the “chicken”), then the player that 

continued moving straight on the lane received a high payoff. If both players 

swerved, then a mutual small payoff was rewarded. 

 

Figure 2.1. Game Diagram for Chicken. In Chicken, two race cars approach each other on a 
collision course. The human subject (H) controlled one car and the Neural agent (N) controlled the 
other. Players decide whether to swerve onto another lane or stay straight. 
 
Neural Agent 

Throughout this study, a neural network controlled the behavior of the 

Neural agent, similar to the one used in Chapter 1 (Asher, Zaldivar et al. 2010; 

Zaldivar, Asher et al. 2010). The focus of this study was to move past using 

opponents with fixed strategies and introduce adaptive neural agents. For Hawk–
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Dove, this study borrows the same neural network architecture implemented in 

Chapter 1 (Figure 1.2). For Chicken, the neural network architecture was slightly 

modified from Hawk-Dove to accommodate for changes specific to the Chicken game 

(Figure 2.2). In place of the TOI-State area in Hawk-Dove (Figure 1.2), Chicken 

contains a Previous Action area featuring four neurons that represented 

information on possible outcomes performed in the prior game for both itself and the 

human subject: Neural Straight, Neural Swerve, Opponent Straight, or Opponent 

Swerve (Figure 2.2). Congruent with the Hawk–Dove games, at the start of each 

condition, the weights of the neural network were set to their initial values (Table 

2.2). 

Table 2.1 Chicken Payoff Matrix. 
 

  Neural Straight Neural Swerve 
Human Straight H: -4, N: -4 H: 3, N: 0 

Human Swerve H: 0, N: 3 H: 1, N: 1 
 
Table 2.2. Synaptic Connections Between Neural Areas for Chicken. 
 

From To 
Initial 
Weight 

Plastic 
Phasic 

Neuromodulation 
Previous Action Action 0.1 Y Y 
Previous Action Neuromodulator 0.1 Y N 
Action-Straight Action-Swerve 0.1 N N 
Action-Straight Action-Swerve -0.1 N Y 
Action-Swerve Action-Straight 0.1 N N 
Action-Swerve Action-Straight -0.1 N Y 

 
While the equations for each of the areas implemented in the neural 

architecture for Chicken are similar to Hawk-Dove (Chapter 1, Neural Agent), there 

were a few differences. In Chicken, the activity of Previous Action area (𝑛!), which 

resembles the TOI-State area from the Hawk-Dove model (Figure 1.2), was based on 

what occurred in the previous game: 



35 
	
  
 

𝑛! =
0.45+ 𝑟𝑛𝑑(0.0,0.5), 𝑖 = PreviousAction

𝑟𝑛𝑑(0.0,0.5), Otherwise  

where 𝑟𝑛𝑑(0.0,0.5) was a random number uniformly distributed between 0.0 and 

0.5. The Neuromodulatory area was identical in both games and included two 

neurons: Raphe, a simulated raphe nucleus, which was the source of serotonergic 

neuromodulation, and VTA, a simulated ventral tegmental area, which was the 

source of dopaminergic neuromodulation. The Action area in both games included 

two neurons, whose activity was based on input from TOI-State/Previous Action 

area and Neuromodulatory area, that function in similar ways. For Hawk-Dove, 

these areas were labeled Escalate (the Neural agent created a conflict) and Display 

(the Neural agent did not create a conflict) (Chapter 1, Neural Agent). For Chicken, 

the represented neurons in this Action area were: Straight (the Neural agent 

remained in the same lane) and Swerve (the Neural agent moved away from the 

lane) (Figure 2.2). Lastly, 𝑅𝑒𝑤𝑎𝑟𝑑 and 𝐶𝑜𝑠𝑡 were computed differently for Hawk-

Dove and Chicken, as their payoff matrix (Table 1.1 and Table 2.1, respectively) 

used different values. As such, the following 𝑅𝑒𝑤𝑎𝑟𝑑 and 𝐶𝑜𝑠𝑡 equations were used 

when computing the level of reinforcement: 

𝑅𝑒𝑤𝑎𝑟𝑑 =

Payoff
0.60 , for  Hawk-­‐Dove

Payoff
3 , for  Chicken

 

𝐶𝑜𝑠𝑡 =

Payoff
−0.50

, for  Hawk-­‐Dove

Payoff
−4 , for  Chicken

 



36 
	
  
 

Identical to the base assumptions for the computational model in Chapter 1 (Neural 

Agent), serotonin plasticity was based on the predicted cost of an action and 

dopamine plasticity was based on the predicted reward of an action. 

 

Figure 2.2. Neural Network Architecture for Chicken. The thick arrows represent plastic 
pathways. The dotted arrows and shaded ovals represent neuromodulatory pathways. Within the 
Action area, neurons with excitatory reciprocal connections are denoted with the lines with an arrow 
at the end, and neurons with reciprocal inhibitory connections are denoted with lines with a dot at 
the end. The solid arrows extending from the Previous Action neurons represent all-to-all 
connections. 
 
Acute Tryptophan Depletion 

Several studies of social behavior have used a dietary manipulation, called 

the acute tryptophan depletion procedure (ATD), to investigate the short-term 

effects of a decline in serotonin levels on mood in humans (Young, Smith et al. 1985; 

Wood, Rilling et al. 2006). The goal of ATD is to temporarily alter the levels of 

serotonin in the brain via a decrease in blood plasma tryptophan, the amino acid 

precursor to serotonin. Because free blood plasma tryptophan levels vary with the 
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amount of dietary tryptophan, these levels can be altered by a low protein diet in 

combination with a specially prepared “protein shake.” This “protein shake” 

contains an amino acid load (lacking tryptophan), which has two effects. First, it 

stimulates protein synthesis in the liver, which uses up blood plasma tryptophan. 

Second, the amino acids that are given in the “protein shake” compete with 

tryptophan for transport across the blood-brain barrier, which restricts entry of 

tryptophan into the brain and leads to lower levels of serotonin in the brain (Biggio, 

Fadda et al. 1974; Gessa, Biggio et al. 1974; Bell, Hood et al. 2005; Hood, Bell et al. 

2005). 

Through ATD, serotonin has also been linked to predicting punishment or 

harm aversion (Cools, Roberts et al. 2008; Crockett, Clark et al. 2009; Tanaka, 

Shishida et al. 2009; Crockett, Clark et al. 2012; Seymour, Daw et al. 2012). Cools et 

al. paired the ATD procedure with a reversal-learning task, demonstrating that 

subjects under ATD made more prediction errors for punishment-associated stimuli 

than for reward-associated stimuli (Cools, Roberts et al. 2008). In a related study, 

Crockett et al. utilized the ATD procedure with a Go/No-Go task to show that 

lowering serotonin levels resulted in a decrease in punishment-induced inhibition 

(Crockett, Clark et al. 2009). In a follow up study, they investigated the 

mechanisms through which serotonin regulated punishment-induced inhibition by 

using the ATD procedure paired with their Reinforced Categorization task, a 

variation on the Go/No-Go task (Crockett, Clark et al. 2012). Subjects with lowered 

serotonin were faster in responding to stimuli predictive of punishments (Crockett, 
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Clark et al. 2012), indicating a manipulation of some punishment-predicting 

mechanism associated with standard serotonergic function. Together, these results 

suggest that serotonin influences the ability to inhibit actions that predict 

punishment and to avoid harmful circumstances. 

Table 2.3. Amino Acid Levels for Acute Tryptophan Depletion Procedure 
 
 Control/Depleted Mixture 

L-alanine 5.5g 
L-arginine 4.9g 
L-cystine 2.7g 
glycine 3.2g 
histidine 3.2g 
L-isoleucine 8.0g 
L-leucine 13.5g 
L-lysine monohydrochloride 11.0g 
L-methionine 3.0g 
L-proline 12.2g 
L-phenylalanine 5.7g 
L-serine 6.9g 
L-threonine 6.5g 
L-tyrosine 6.9g 
L-valine 8.9g 
L-tryptophan 2.3g/0.0g 
Total 104.4g/102.1g 

 
 

In this study, an ATD “protein shake” was prepared for subjects to ingest 

prior to playing games of conflict against simulated and embodied agents. The ATD 

“protein shake” contained 15 amino acids (NutraBio, www.nutrabio.com) mixed 

with approximately 400 ml water and flavoring (Crystal Light, Kraft Foods, Inc.). 

The amino acids were used in proportions approximating human milk, except for 

three amino acids (Table 2.3). The ATD Trp- mixture lacks tryptophan, as well as 

aspartic acid and glutamic acid, which are omitted because of concern about their 

toxicity at high doses (Young, Smith et al. 1985; Wood, Rilling et al. 2006). The 
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Tryp- mixture had a total protein content of approximately 100 g. The control 

mixture, Tryp+ condition, used the same ratio of amino acids, but additionally 

included 2.3 g of tryptophan. For female participants, the same ratios of amino 

acids were used, but with approximately 17% reduction in quantity to take into 

account average lower body weight (Young, Smith et al. 1985). 

Embodiment Apparatus for Hawk-Dove 

To carry out the embodied version of the Hawk-Dove game, a robot (named 

CARL) and its interactive floor apparatus was modified from its original 

conditioning paradigm (Cox and Krichmar 2009). The robot consisted of a two 

wheeled mobile base equipped with infrared (IR) sensors for obstacle avoidance, a 

compass for orienting and navigation, a Wi-Fi device server (http://www.sena.com) 

for communication between the robot and a computer workstation, and a charge-

coupled device video camera with a radio frequency transmitter for vision. The 

model for the Neural agent ran on a computer workstation. The workstation 

received CARL’s camera video through radio frequency, CARL’s sensor input 

through serial (RS-232 port) communication, and sent motor commands to CARL 

through RS-232 communication. The pan and tilt position of the camera was 

controlled by commands to a pair of servomotors. The base of the robot was 10 

inches in diameter and 8.5 inches high. Visual processing was carried out on the 

workstation using open source Computer Vision (OpenCV) libraries 

(http://opencv.willowgarage.com/wiki/). A color histogram method was run across 

image frames to classify salient features (Cox and Krichmar 2009). 
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The robot’s environment consisted of a 10-foot by 10-foot enclosure that 

contained 25 light panels arranged in a 5-by-5 grid (Figure 2.3). The panel color was 

set to magenta, red, blue or green through RS-232 communication from the 

workstation to electronics controlling the panels. All 25 panels had IR transceivers 

that could communicate position information to the robot when it was directly above 

the panel. Robot navigation was achieved by combining heading information with 

visual tracking. 

The game proceeded with the human subject and Neural agent approaching 

the TOI and then upon arriving at the TOI, making a decision to choose Escalate or 

Display. A human subject sat at a computer workstation with a visual 

representation that reflected the state of the interactive floor (Figure 2.3). At the 

start of each game, the TOI was set to the Open state by displaying one panel on the 

human subject’s user interface as magenta, and setting the corresponding four 

panels on CARL’s interactive floor to magenta. After the TOI was presented to both 

players, the human subject and robot moved toward the Open resource. The human 

subject moved his or her icon by clicking on one adjacent panel at a time using a 

mouse. A ten-second delay between moves was used to prevent the human from 

moving toward the TOI faster than the robot. If the human subject’s icon was 

adjacent to the TOI, the human subject was allowed to make a decision. The human 

subject could Display by turning the panel to blue, or Escalate by turning the panel 

to Red. When the robot was at the TOI location, it would make a decision by 

visually recognizing the light panel’s color (i.e., magenta for Open, red for Escalate, 



41 
	
  
 

blue for Display). The robot chose Display by turning the panel to blue, or Escalate 

by turning the panel to green. The change of state was reflected on the human 

subject’s interactive screen. 

 
 
Figure 2.3. Hawk-Dove Apparatus. A subject is playing the Hawk-Dove game with the CARL 
robot (Cox and Krichmar 2009). The GUI reflects the state of the interactive floor and allows the 
subject to move their icon and change the TOI state. A Neural agent guides the robot’s behavior. 
Note that the TOI on the GUI and CARL’s interactive floor are in the same location with the same 
color. 
 

A simulated variant of Hawk-Dove was also implemented for human subjects 

to play against using the same interactive screen, but without a physical robot for 

the Neural agent to guide. Instead, the Neural agent control an icon on the display 

that would represent the robot. This simulated setup allowed judgment of whether 

playing against a robot had an effect on human behavior. 

Embodiment Apparatus for Chicken 

In the embodied version of Chicken, human subjects and the Neural agent 

controlled race cars from a digital slot car racing set (Figure 2.4). The Carrera 

Digital 1/24 23602 Classic Legends racing car set (http://us.carrera-toys.com) were 
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used and modified in this study such that two cars moved in opposite directions 

toward each other. Slot cars were placed on opposite ends of a 12’6” long 

straightaway. Controlling both cars was handled through RS-232 serial 

communication from a computer. The race car controller consisted of a PIC 

(Peripheral Interface Controller) microcontroller with two digital potentiometers 

used to control the speed of the cars, and a serial line level converter necessary for 

serial communication between the software and racing car set. The speed was fixed 

to insure that both cars reached the Swerve/Straight decision point at the same 

time. A graphical user interface was developed to allow the human subject’s car to 

switch lanes with a mouse click. The output of the model for the Neural agent 

dictated whether the other car would Swerve or not. If both cars chose Straight, 

they crashed in the middle of the track. Rubber foam bumpers were placed on the 

race cars to prevent damage from collisions. If both cars chose Swerve, they both 

switched lanes and stopped before hitting each other. In the case where one car 

chose Swerve and the other car chose Straight, the car that chose Straight traveled 

down the track, and the car that chose Swerve switched to the other lane and 

stopped. 

Similar to Hawk-Dove, human subjects played a pure simulation version of 

this game. The interactive representation was identical to controlling the race cars. 

Instead of seeing the cars move on the track, the outcome of the game was shown on 

the subject’s computer screen. 
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Subjects and Procedures 

Eight subjects (three female; average age: 26.6 ± 3.8 years) participated in 

this study. The Institutional Review Board at University of California, Irvine, 

approved the experimental protocol and informed consent was obtained from all 

subjects. 

 

Figure 2.4. Chicken Apparatus. Subjects have control of one racecar, and the agent has control of 
the other. The subject may choose to Swerve by clicking on a button shown on the interactive screen. 
 

Prior to enrollment in the study, all potential participants were screened for 

psychiatric and neurological disorders using the Structured Clinical Interview for 

DSM-IV-TR Axis I Disorders (SCID-I Research Version, Biometrics Research; 

(Williams and Gibbon 1992). Potential participants were excluded for a history of 

cardiac, hepatic, renal, pulmonary, neurological, psychiatric or gastrointestinal 

disorders, pregnancy, psychiatric medication, drug use, or a personal or family 

history of mood disorders. Because serotonin levels can be affected by estrogen 
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fluctuations, female subjects participated in the study only during the first two 

weeks of their menstrual cycles (Oldman, Walsh et al. 1995; Ellenbogen, Young et 

al. 1996; Jans, Riedel et al. 2007). 

 In this study, which was set up using a double-blind procedure, human 

subjects were randomly assigned on the first experimental day to receive either the 

Tryp+ control mixture or the Tryp- mixture. Each subject then returned to 

participate in the other condition at least seven days later to ensure the return to 

baseline blood plasma tryptophan levels between experimental days. On the 

morning of each experimental day, a blood sample was drawn to determine baseline 

blood plasma tryptophan levels. Following the blood draw, subjects ingested one of 

the amino acid drinks (either Tryp+ or Tryp-). A second blood sample was drawn 

approximately five hours after ingestion of the amino acid drink to confirm 

reduction (Tryp- condition) or maintenance (Tryp+ condition) of blood plasma 

tryptophan levels. Roughly five and a half hours after consumption of the amino 

acid drink, human subjects then participated in a series of Hawk–Dove and Chicken 

games against a Neural agent. 

To track potential ATD short-term mood effects and ensure no long term 

effects on subjects' mood, the positive and negative affect scale (PANAS) was 

administered on two occasions during each experimental day (Watson, Clark et al. 

1988), once before the amino acid drink was consumed and once just prior the start 

of the interactive games. A follow-up PANAS assessment was also performed at 

least seven days after the experiments and compared with baseline measurements. 
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Neural Agent’s Performance Against Subjects 

In both Hawk-Dove and Chicken, the Neural agent became more aggressive 

when its simulated serotonergic system was lesioned by escalating or going straight 

more often (Figure 2.5). These results from games against subjects were consistent 

with the behavior of the Neural agent against simulated opponents in Chapter 1 

(Neural Agent’s Performance in Simulations). 

In Hawk-Dove, similar to its performance against simulated opponents 

(Chapter 1, Neural Agent’s Performance in Simulations), the Neural agent needed 

an intact neuromodulatory system to appropriately adapt its performance to a 

human subject's strategy and the environmental conditions. The percentage of 

times the Neural agents chose to Escalate in Hawk–Dove were assessed using a 

four-way repeated-measures analysis of variance (ANOVA; α = 0.0125, Bonferroni 

corrected) that included the factors of Neural State (Control and Raphe), 

Embodiment (Robot and Simulation), Probability of Serious Injury (0.25 and 0.75), 

and Experimental Day (Tryp- and Tryp+). The Neural State had a significant effect 

Neural State (F(1,7) = 254.085, p < 1x10-4), driven by a higher percentage of choices 

to Escalate for Raphe (µ = 66.56% ±  2.22% standard error of the mean) than for 

Control (µ = 35.47% ±  2.64% standard error of the mean) (Figure 2.5, top). No 

significant effect for Embodiment (F(1,7) = 0.050, p = 0.829), Probability of Serious 

Injury (F(1,7) = 3.651, p = 0.097), or Experimental Day (F(1,7) = 0.116, p = 0.743) 

were found, nor were there any significant interactions (p > 0.05). 
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Figure 2.5. Neural Agent’s Percentage of Escalation and Straight in Hawk-Dove and 
Chicken. The bar plots show the mean and SEM for each level (Control and Raphe) within the main 
factor Neural State for the dependent variable % Escalations and % Straight. The double asterisks 
indicate significance for an intact Neural agent (Control) and for a Neural agent with a lesion to its 
simulated serotonergic system (Raphe). The double asterisks indicate that there was a significant 
difference at p < 1x10-4. 
 

In Chicken, the percentage of times the Neural agents chose to drive Straight 

were assessed with a three-way repeated-measures analysis of variance (ANOVA; 

𝛼 = 0.017, Bonferroni corrected) that included the Neural State (Control and 
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Raphe), Embodiment (Robot and Simulation) and Experimental Day (Tryp- and 

Tryp+) as its factors. The Neural State (F(1,7) = 116.069, p < 1x10-4) was 

significant, driven by a higher percentage of choices to drive Straight for Raphe (µ = 

54.69% ± 1.63% SEM) than for Control (µ = 32.66% ± 1.71% SEM) (Figure 2.5, 

bottom). There were no significant effect for Embodiment (F(1,7) = 1.252, p = 0.300) 

or Experimental Day (F(1,7) = 0.101, p = 0.760), nor were there any significant 

interactions (p > 0.100). 

Subjects’ Performance 

The ATD procedure effectively altered subjects’ blood plasma tryptophan 

levels. The ratio between total blood plasma tryptophan levels at the two time 

points (baseline T = 0 hours and experimental T = 5 and 1/2 hours) for each day 

resulted in a highly significant difference when comparing Tryp- with Tryp+ (p < 

0.0005, Wilcoxon rank-sum test, Figure 2.6). At baseline, the total blood plasma 

tryptophan levels for both days ranged from 49 to 69 µmol/L. At five hours after the 

amino acid drink, tryptophan levels ranged from 5 to 8 µmol/L for the Tryp- 

condition, and 51 to 182 µmol/L for the Tryp+ condition. 

ATD did not have an effect on mood assessment. No significant differences 

were found through analysis of the human subjects’ responses to the PANAS 

immediately before drink consumption and immediately before human robot 

interaction for each experimental day. Positive and negative affect with 2 separate 

two-way repeated-measures analysis of variance (ANOVA; α = 0.025, Bonferroni 

corrected) that included factors Time of Day (Morning and Afternoon) and 
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Experimental Day (Tryp- and Tryp+) were assessed. There were no significant main 

effects (positive affect: p > 0.400; negative affect: p > 0.200) or interactions (positive 

affect: p > 0.800; negative affect: p > 0.100) when comparing the two time points 

within an experimental day or across days, or when comparing negative affect 

within a day or across days. 

 

Figure 2.6. Tryptophan Ratios. The y-axis shows the ratio of total blood plasma tryptophan levels 
at the experimental time point (5 and 1/2 hours) to the baseline time point (before ATD shake 
consumption). The left column represents the ATD day and the right column represents the control 
day. The red lines represent the median value for each distribution, and the whiskers are the spread 
of each distribution. The horizontal bars represent the upper and lower quartile values for each 
distribution. 
 

In Hawk-Dove, subjects tended to change their strategies depending on which 

Neural agent they were playing against. Specifically, they tended to adopt a WSLS 

strategy against control neural agents with intact neuromodulatory systems and a 

TT strategy against simulated Raphe-lesioned Neural agents (Figure 2.7). 

Percentages of human subjects’ strategy choices (TT or WSLS) and the percentage 
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Neural State (Control and Raphe), Embodiment (Robot and Simulation), Probability 

of Serious Injury (0.25 and 0.75), and Experimental Day (Tryp- and Tryp+) factors. 

There was a significant main effect of Neural State (F(1,7) = 38.949, p < 0.001; 

Figure 2.7, bottom), driven by a higher percentage of choices to use the TT strategy 

for Raphe (µ = 60.36% ± of 1.98% SEM) than for Control (µ = 40.13% ± 2.49% SEM). 

Additionally, there was a marginally significant main effect of Neural State (F(1,7) 

= 5.731, p < 0.05; Figure 2.7, top), driven by a higher percentage of choices to use 

the WSLS strategy for the Control (µ = 64.56% ± 1.99% SEM) than for Raphe (µ = 

51.56% ± 1.83% SEM). No significant effects for Embodiment (TT: F(1,7) = 0.310, p 

= 0.595; WSLS: F(1,7) = 0.455, p = 0.522), Probability of Serious Injury (TT: F(1,7) = 

3.309, p = 0.112; WSLS: F(1,7) = 0.133, p = 0.726), or Experimental Day (TT: F(1,7) 

= 1.075, p = 0.334; WSLS: F(1,7) = 0.319, p = 0.590) were found, nor were there any 

significant interactions (TT: p > 0.100; WSLS: p > 0.150). There were also no 

significant effects when assessing the percentage of choices to Escalate for all the 

factors: Neural State (F(1,7) = 1.43, p = 0.271), Embodiment (F(1,7) = 0.704, p = 

0.429), Probability of Serious Injury (F(1,7) = 0.178, p = 0.686), and Experimental 

Day (F(1,7) = 0.7103, p = 0.427). There were no significant interactions with the 

percentage of choices to Escalate (p > 0.213). This shift from WSLS to TT against a 

Neural agent with a Raphe lesion suggested that subjects were retaliating against 

an aggressive opponent. Subjects tended to respond to cooperation with cooperation 

and aggression with aggression by adopting a TT strategy. 
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Figure 2.7. Human Subjects’ Strategy Adoption in Hawk-Dove. The bar plots show the mean 
and SEM for each level (Control and Raphe) within the main factor Neural State for the respective 
dependent variables, %TT and %WSLS. The double asterisks indicate that there was a significant 
increase in the percentage of choices to use TT against Raphe-lesioned Neural agents (p < 0.001). 
The single asterisk indicates that there was a marginally significant decrease in the percentage of 
choices to use WSLS against Raphe-lesioned Neural agents (p < 0.05). 
 

In Chicken, consistent with Hawk-Dove results, subjects tended to change 

their strategies depending on the state of the Neural agent they were playing 

against. That is, they tended to adopt a WSLS strategy against a control Neural 
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agent with an intact neuromodulatory system and tended to adopt the TT strategy 

against a simulated Raphe-lesioned Neural agent (Figure 2.8). Percentages of 

strategies (TT or WSLS) and percentages of driving Straight were assessed with 

two separate three-way repeated-measures analysis of variance (ANOVA; α = 0.017, 

Bonferroni corrected) that included factors Neural State (Control and Raphe), 

Embodiment (Robot and Simulations), and Experimental Day (Tryp- and Tryp+). 

The Neural State main effect was marginally significant for both TT (F(1,7) = 8.537, 

p < 0.025; Figure 2.8, bottom) and WSLS (F(1,7) = 5.240, p < 0.06; Figure 2.8, top), 

driven by a higher percentage of choices to use the TT strategy for Raphe (µ = 

50.17% ± 2.01% SEM) than for Control (µ = 37.67% ± 2.38% SEM) and driven by a 

higher percentage of choices to use the WSLS strategy for the Control (mean = 

55.10% ± 1.97% SEM) than for Raphe (µ = 47.37% ± 1.43% SEM). No significant 

effects were found for Embodiment (TT: F(1,7) = 0.492, p = 0.506; WSLS: F(1,7) = 

3.943, p = 0.088) nor Experimental Day (TT: F(1,7) = 1.584, p = 0.249; WSLS: F(1,7) 

= 2.696, p = 0.145). There were no significant interactions (TT: p > 0.340; WSLS: p > 

0.170). There were also no significant effects when assessing the percentage of 

choices to drive Straight for all factors: Neural State (F(1,7) = 0.069, p = 0.801), 

Embodiment (F(1, 7) = 0.003, p = 0.957), and Experimental Day (F(1,7) = 0.349, p = 

0.573). No significant interactions were found between factors for choices to drive 

Straight (p > 0.4). 
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Figure 2.8. Human Subjects’ Strategy Adoption in Chicken. .The bar plots show the mean and 
SEM for each level (Control and Raphe) within the main factor Neural State for the respective 
dependent variables, %TT and %WSLS. The single asterisk indicates marginal significance at p < 
0.025 (bottom) and p < 0.06 (top). 
 
Discussion 

 This study made several predictions regarding the mechanisms underlying 

cognitive behaviors, such as cooperation, competition, social contracts and 

reciprocity. For one, playing games against opponents that are interactive and 
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personified evoked strong responses in subjects. Furthermore, an agent with the 

ability to adapt to contextual changes in the environment or its opponent’s behavior 

was an important factor in evoking these responses. Lastly, subjects tend to 

reciprocate and retaliate against adaptive agents when they believed being treated 

unfairly. 

 The main finding of this study was that human subjects changed their overall 

strategies in response to changes in the neural agent’s state (Control or Raphe). 

Specifically, subjects switched from a WSLS strategy when playing against a neural 

agent with an intact simulated nervous system to a TT strategy when playing 

against a neural agent with a lesion to its serotonergic system (Figure 2.7 and 2.8). 

This change in strategy was independent of the embodiment of the Neural agent 

and independent of tryptophan levels. A Neural agent with a simulated lesion to its 

serotonergic system tended toward more aggressive behavior, because it lost its 

ability to assess the cost of an action (Figure 1.3). Subjects playing against such an 

opponent did not increase their levels of aggression; that is, there were no 

significant increases in their decisions to choose to Escalate or drive Straight. 

Rather, subjects responded to aggressive behavior with aggression and cooperative 

behavior with cooperation, through the adoption of the TT strategy. 

 The shift to a TT strategy may be similar to the rejection of unfair offers in 

the Ultimatum Game (Nowak, Page et al. 2000). In both cases, subjects behaved 

irrationally by lowering their overall utility through aggressive behavior. That is, 

aggressive behavior by both cases resulted in lower payoffs. In the Ultimatum 
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Game, a subject rejects what he or she deems unfair even if he or she is the only one 

penalized by their rejection, and even if the proposer of the offer is unaware of their 

actions (Yamagishi, Horita et al. 2009). A TT strategy, which is strategically less 

advantageous than WSLS, could send a message to another player that the subject 

believes he is being treated unfairly. The Neural agent, which was developed in 

simulations against fixed-strategy opponents, did not have the capacity to retaliate. 

Playing an opponent that is interactive and personified has previously been 

observed to evoke strong responses in subjects. For example, in the Ultimatum 

Game, subjects reject more offers made by a human partner than those offers made 

by a computer, suggesting that participants have a stronger emotional reaction to 

unfair offers from humans than from a computer (Sanfey, Rilling et al. 2003). In the 

present study, the physical instantiation of the Neural agent in both games did not 

evoke stronger responses from subjects than did the simulated Neural agent. 

Perhaps both the simulated and embodied versions of the Neural agent evoked 

strong responses in subjects because of the Neural agent’s adaptive behavior. The 

Neural agent demonstrated a variety of strategies and adjusted its behavior to 

environmental conditions and its opponent. Moreover, lesions to the Neural agent’s 

simulated serotonergic system resulted in additional classes of more aggressive 

opponents. 
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CHAPTER 3: Exploratory Survey of Neuromodulatory Systems 

and the Amygdala Using the Allen Brain Atlas 

 Combining game theory and computational modeling from Chapter 1 with 

embodiment and pharmacological manipulations from Chapter 2 helped reveal how 

humans interact with agents utilizing adaptive behavior in conflicting situations. 

The computational model used in Chapter 1 and 2, though built on the assumptions 

that all neuromodulators have the same effect on downstream targets and that 

specific neuromodulator levels are driven by environmental stimuli (Krichmar 

2008), is in itself not enough to fully explore the interactions between 

neuromodulatory systems (Introduction). A computational model of how the brain 

works may integrate experimental facts from different levels of investigation, which 

may come from neuroanatomy, neurophysiology, and psychology (Trappenberg 

2010). Otherwise, the computational model may not be considered biologically 

plausible; thereby, its predictions may not be taken seriously. 

 One way to obtain experimental facts for modeling is by analyzing publicly 

available data sets containing brain connectivity, neural activity, and gene 

expression. The survey presented in this chapter explores one such data set, the 

Allen Mouse Brain Atlas (ABA), a project that features an interactive, 

comprehensive, genome-wide image database of expression data for over 20,000 

genes (Lein, Hawrylycz et al. 2007; Ng, Pathak et al. 2007). Using the ABA could 

assist in analyzing and understanding the organization of brain circuitry involved 

with neuromodulators. Specifically, the methodology presented in this chapter 
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makes predictions about the connectivity of neuromodulator systems with other 

brain regions based on receptor localization.  

Allen Brain Atlas 

The ABA is a standardized atlas of gene expression data from 56-day-old 

male C57BL/6J mice strains visualized by in situ hybridization (ISH). The ISH was 

performed using a non-radioactive, digoxigenin-labeled anti-sense riboprobes. This 

survey utilized an early version of the ABA’s Application Programming Interface 

(API) to access gene expression energy in different anatomical regions of the mouse 

brain atlas (http://community.brain-map.org/confluence/display/DataAPI/Home). 

The API featured several method calls that allow users to obtain data including 

high-resolution images, expression data from an experiment’s image series and 3D 

coordinates for atlas-annotated structures in 200 µm resolution. 

To investigate expression energy volumes in the brain regions of interest, a 

Java application to access the ABA via calls to API methods was implemented. Data 

was retrieved on February 28th, 2012.  In particular, two ABA API methods were 

utilized for the survey: Gene API and Expression Energy Volumes API. The Gene 

API method was first used to obtain a listing of image series identification (ID) 

numbers given a list of genes (Table 3.1). The Expression Energy Volumes API 

returned gene expression energy data per voxel of the mouse brain for a given ID. 

The volume space returned by this method was divided into individual 200 µm 3D 

cubic sagittally arranged voxels on an (x,y,z) coordinate plane. Expression energy 

value, as defined in the ABA, represents the density of expression within a 200 µm 
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voxel from grid data taken per image series ID (sum of expressing pixels ÷ sum of 

all pixels in division) divided by the pixel intensity of expression in that voxel (sum 

of expressing pixel intensity ÷ sum of expressing pixels). To account for different 

sized brain regions, expression energy values for a brain region were normalized by 

dividing the voxels in a brain region that contained expression energy by the 

maximum voxels for that given brain area. No attempts were made in normalizing 

based on neuron size. Instead, normalization was applied at the level of the receptor 

gene expression per anatomical region. 

Table 3.1 List of Neuromodulatory Receptor Genes. ImageSeriesID is an identification number 
for the experiment used to analyze gene expression. 
 

Symbol Name ImageSeriesID Receptor Subtype 

Adra1a adrenergic receptor, 
alpha 1a 

74277700 Gq-protein coupled 

Adra1d adrenergic receptor, 
alpha 1d 

69236807 Gq-protein coupled 

Adra2a adrenergic receptor, 
alpha 2a 

70723343 Gi-protein coupled 

Adra2c adrenergic receptor, 
alpha 2c 

70723357 Gi-protein coupled 

Adrb1 adrenergic receptor, 
beta 1 

77340494 Gs/Gi-protein coupled 

Adrb2 adrenergic receptor, 
beta 2 

68744522 Gs/Gi-protein coupled 

Chrm1 cholinergic receptor, 
muscarinic 1 

73907497 Gq/Gs/Gi-protein coupled 

Chrm2 cholinergic receptor, 
muscarinic 2 

70560343 Gi-protein coupled 

Chrm3 cholinergic receptor, 
muscarinic 3 

2095 Gq-protein coupled 

Chrm4 cholinergic receptor, 
muscarinic 4 

261 Gi-protein coupled 

Chrm5 cholinergic receptor, 
muscarinic 5 

74821591 Gq-protein coupled 

Chrna1 cholinergic receptor, 
nicotinic, alpha 
polypeptide 1 

75551465 Ligand-gated Na+/K+ cation channel 
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Chrna2 cholinergic receptor, 
nicotinic, alpha 
polypeptide 2 

75551460 Ligand-gated Na+/K+ cation channel 

Chrna3 cholinergic receptor, 
nicotinic, alpha 
polypeptide 3 

69734723 Ligand-gated Na+/K+ cation channel 

Chrna4 cholinergic receptor, 
nicotinic, alpha 
polypeptide 4 

1173 Ligand-gated Na+/K+ cation channel 

Chrna5 cholinergic receptor, 
nicotinic, alpha 
polypeptide 5 

74821601 Ligand-gated Na+/K+ cation channel 

Chrna6 cholinergic receptor, 
nicotinic, alpha 
polypeptide 6 

75551461 Ligand-gated Na+/K+ cation channel 

Chrna7 cholinergic receptor, 
nicotinic, alpha 
polypeptide 7 

69237107 Ligand-gated Na+/K+/Ca2+ cation channel 

Chrna9 cholinergic receptor, 
nicotinic, alpha 
polypeptide 9 

74821602 Ligand-gated Na+/K+ cation channel 

Chrnb1 cholinergic receptor, 
nicotinic, beta 
polypeptide 1 

75831174 Ligand-gated Na+/K+ cation channel 

Chrnb2 cholinergic receptor, 
nicotinic, beta 
polypeptide 2 

2097 Ligand-gated Na+/K+ cation channel 

Chrnb3 cholinergic receptor, 
nicotinic, beta 
polypeptide 3 

79760470 Ligand-gated Na+/K+ cation channel 

Drd1a dopamine receptor 
D1A 

352 Gs-protein coupled 

Drd2 dopamine receptor 2 357 Gi/Go-protein coupled 

Drd3 dopamine receptor 3 69859867 Gi/Go/Gs-protein coupled 

Htr1a 5-hydroxytryptamine 
(serotonin) receptor 
1A 

79394355 Gi/Go-protein coupled 

Htr1b 5-hydroxytryptamine 
(serotonin) receptor 
1B 

583 Gi/Go-protein coupled 

Htr1d 5-hydroxytryptamine 
(serotonin) receptor 
1D 

71393418 Gi/Go-protein coupled 

Htr1f 5-hydroxytryptamine 
(serotonin) receptor 1F 

69859867 Gi/Go-protein coupled 

Htr2b 5-hydroxytryptamine 
(serotonin) receptor 
2B 

71664130 Gq/G11-protein coupled 
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Htr2c 5-hydroxytryptamine 
(serotonin) receptor 
2C 

71393424 Gq/G11-protein coupled 

Htr3a 5-hydroxytryptamine 
(serotonin) receptor 
3A 

74724760 Ligand-gated Na+/K+ cation channel 

Htr3b 5-hydroxytryptamine 
(serotonin) receptor 
3B 

68745408 Ligand-gated Na+/K+ cation channel 

Htr4 5-hydroxytryptamine 
(serotonin) receptor 4 

69257849 Gs-protein coupled 

Htr5a 5-hydroxytryptamine 
(serotonin) receptor 
5A 

71393430 Gi/Go-protein coupled 

Htr5b 5-hydroxytryptamine 
(serotonin) receptor 
5B 

69257975 Gi/Go-protein coupled 

Htr6 5-hydroxytryptamine 
(serotonin) receptor 6 

69257981 Gs-protein coupled 

Htr7 5-hydroxytryptamine 
(serotonin) receptor 7 

71393436 Gs-protein coupled 

 
The (x,y,z) coordinates associated with an expression energy were mapped to 

brain structures using the annotated atlas provided with the ABA API main site 

(AtlasAnnotation200.sva). The annotated atlas provided an identifier for a brain 

structure at a given coordinate. This identifier was then compared with a separate 

dataset file (brainstructures.csv) to obtain the name of the brain region associated 

with the identifier. For instance, suppose an expression energy value was found at 

coordinate (40,26,26) for the dopamine receptor, Drd1a. The annotated atlas would 

reveal that those coordinates corresponded to the informatics ID number 139. The 

brainstructures.csv file would then indicate that the informatics ID number 139 

represented the ventral tegmental area (VTA). 
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Figure 3.1 Allen Reference Atlas Images of Brain Regions. Brain regions studied include: 
dorsal raphe nucleus (DR), superior central nucleus raphe (CS), central linear nucleus raphe (CLI), 
nucleus raphe pontis (RPO), ventral tegmental area (VTA), locus coeruleus (LC), nucleus of the 
solitary tract (NTS), substantia innominata (SI), magnocellular nucleus (MA), pedunculopontine 
nucleus (PPN), anterior amygdalar area (AAA), central amygdalar nucleus (CEA) and medial 
amygdala nucleus (MEA). Image originally from the Allen Mouse Brain Reference Atlaas 
(http://mouse.brain-map.org/static/atlas). 
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Brain Regions 

Expression data from the ABA were extracted from 13 different brain regions 

(Figure 3.1). Ten of those regions are considered sources of neuromodulatory 

systems: noradrenergic (locus coeruleus, LC; nucleus of the solitary tract, NTS), 

cholinergic (substantia innominata, SI; magnocellular nucleus, MA; 

pedunculopontine nucleus, PPN), dopaminergic (ventral tegmental area, VTA), and 

serotonergic (dorsal raphe nucleus, DR; superior central nucleus raphe, CS; central 

linear nucleus raphe, CLI; nucleus raphe pontis, RPO) (Mesulam, Mufson et al. 

1983; Bhatia, Saha et al. 1997; Hornung 2003; Sodhi and Sanders-Bush 2004). The 

remaining three brain regions are in the amygdala (i.e., anterior amygdalar area, 

AAA; central amygdalar nucleus, CEA; medial amygdalar nucleus, MEA), which 

were chosen because of their strong bidirectional interaction with neuromodulatory 

systems (Woolf and Butcher 1982; Han, Holland et al. 1999; Bouret, Duvel et al. 

2003; McGaugh 2004; Lee, Wheeler et al. 2011). Note that substantia nigra pars 

compacta, which is also a source of dopamine neurons, was not included because it 

is thought to project primarily to the basal ganglia, an area not included in this 

survey. 

Neuromodulatory Receptor Genes 

Using the Gene API, a search was performed for all known neuromodulatory 

receptor genes, which included 5 dopaminergic, 16 serotonergic, 19 cholinergic and 

9 adrenergic receptors for a total of 49 different receptor types (Nicholas, Hokfelt et 

al. 1996; Hoyer, Hannon et al. 2002; Ishii and Kurachi 2006; Lan, DuRand et al. 
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2006; Dani and Bertrand 2007). Of these 49, only 38 receptors were available for 

evaluation (Table 3.1). Drd4 and Drd5 were not available in the ABA, and thus, 

were not included in this survey. Although ABA data extends from mouse brain 

tissue, all genes listed in Table 3.1 are orthologous to rat and human genes 

according to the Mouse Genome Informatics database, which can be accessed at: 

http://www.informatics.jax.org. 

While the detection sensitivity for probes vary across mRNA species, the ABA 

has performed validation experiments to ensure consistent data quality and 

internal reproducibility (Lein, Hawrylycz et al. 2007; Lee, Sunkin et al. 2008). In 

every ISH run, a positive control slide was incubated with a Drd1a riboprobe and a 

negative control was incubated in hybridization buffer without that riboprobe (Lein, 

Hawrylycz et al. 2007). These slides were then used to determine whether data from 

the run would advance into their data analysis pipeline by qualitatively scoring the 

run as ‘Pass’ or ‘Fail’. In addition, an experiment was performed to replicate data 

across a series of days, using riboprobes generated in parallel through in vitro 

translation, which include Calb1, Calb2, Cst3, Dkk3, Gad1, Man1a, Plp1, Pvalb and 

Nov (Lee, Sunkin et al. 2008). For each gene, an independently synthesized probe 

was hybridized on consecutive serial sections from the same brains over the span of 

four days, which maximizes comparability over time while minimizing other 

biological variability, including differential hapten incorporation in riboprobes, and 

batch reagent preparation variability. The results reported in Lee et al. 2008 

demonstrate consistency of the ABA ISH platform. 
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In cases where multiple experiments (image series IDs) for a particular gene 

were found, the experiment that contained the highest expression energy data 

within brain regions of interest were used and the remaining experiments were 

discarded. 

GABA and Glutamate Genes 

Within the SI and LC, the expression energy of GABA and glutamate 

receptors was also surveyed. The same procedures for retrieving gene expression 

data on neuromodulatory receptors were applied for GABA and glutamate receptors 

in SI and LC. All known GABA and glutamate receptors were queried and found in 

the ABA via Gene API, which includes 17 GABAA, 2 GABAB, 4 AMPA, 5 kainate, 7 

NMDA, and 7 mGluR receptors for a total of 42 different receptors. All GABA and 

glutamate genes are orthologous to rat and human genes according to the Mouse 

Genome Informatics database (http://www.informatics.jax.org). 

Total Expression and Individual Receptor Subtypes 

In the examined brain regions, expression energy of cholinergic receptors was 

much higher and expression energy of adrenergic receptors was much lower than 

that for dopaminergic and serotonergic receptors. Figure 3.2 represents the total 

expression energy for available adrenergic, cholinergic, dopaminergic and 

serotonergic receptors from the ABA across the 13 brain regions examined (note the 

different scale on the x-axes of Figure 3.2). Each bar in Figure 3.2 represents gene 

expression energy when combining all receptor subtypes per region. Brain regions 
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were ranked and arranged based on total expression in Figure 3.2, with the brain 

region having the highest expression energy at the top bar of each plot. 

 
Figure 3.2. Total Gene Expression Energy of Neuromodulatory Receptors. Gene expression 
values for each subtype were collapsed into their respective neuromodulatory systems and separated 
by brain region. Brain regions were arranged from most (top) to least (bottom) amount of total 
expression. 
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The substantia innominata (SI) of the basal forebrain, amygdala (AAA, CEA, 

and MEA), and the ventral tegmental area (VTA) had relatively high levels of 

receptor expression energy. The SI had the highest receptor expression energy of all 

neuromodulatory regions tested, implying that this region of the basal forebrain is 

strongly innervated by all neuromodulatory systems (Figure 3.2). The amygdala 

closely followed SI in terms of overall neuromodulatory receptor expression energy, 

but expression energy in the amygdala differed based on neuromodulatory receptor 

type and amygdala subregions. For example, MEA had the highest adrenergic, 

cholinergic and serotonergic receptor expression energy among the amygdala 

regions. However, the CEA had the most dopaminergic receptor expression energy. 

Similar to the SI, the VTA, which contains dopaminergic neurons, displayed high 

expression energy for all neuromodulatory receptors.  

LC and raphe nuclei (DR, CS, CLI, and RPO), which are sources of 

norepinephrine and serotonin respectively, did not have high expression energy of 

neuromodulatory receptors relative to the other regions examined (Figure 3.2). Note 

that the small sizes of these brain regions may not influence expression energy 

reporting because of the normalization procedures described above. 

Different brain areas had distinct patterns of receptor subtype expression. 

Expression energy for individual receptor subtypes across all neuromodulatory 

systems are displayed in Figure 3.3. Subtypes were sorted by expression per 

neuromodulatory system with the top charts having the highest expression. Within 

each neuromodulatory system, the arrangement of brain regions from left to right 
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on each chart was based on their overall expression as in Figure 3.2. It is apparent 

that the distribution of gene expression per subtype from one brain region to 

another was not uniform (Figure 3.3). However, examining individual expression 

energy helps identify receptor subtypes that contribute to the total expression of a 

particular brain region being described in Figure 3.2. 

The expression profile of SI, which has the highest receptor expression 

energy among all for neuromodulatory regions (Figure 3.2), is influencing select 

subtypes within neuromodulatory systems. Within the adrenergic receptors, Adra1d 

and Adrb2 made up a large proportion of the expression energy found in SI, while 

the remaining four adrenergic receptors did not contribute nearly as much (Figure 

3.3). The cholinergic system, which had the most receptor subtypes, was dominated 

by expression of the muscarinic subtypes Chrm1, Chrm2 and Chrm4, and the 

nicotinic Chrna1 (Figure 3.3). Even the dopaminergic system, having the fewest 

receptor subtypes, had differing receptor expression, with Drd1a and Drd2 having 

much higher expression value in SI than Drd3 (Figure 3.3). Lastly, serotonergic 

receptors Htr2c, Htr1f, Htr1a, and Htr1b described most of the total expression 

energy in SI with comparatively lower contribution from the other subtypes (Figure 

3.3). 

VTA also displayed higher overall receptor expression energy compared to 

other regions. In general, many of the subtypes that have noticeably high 

expression energy in the SI also have high energy in the VTA (Figure 3.3). The 

main difference observed was that muscarinic receptor (Chrm2), the nicotinic 
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(Chrna4, Chrna6, Chrnb3), and the dopaminergic Drd2 receptor expression were 

higher in VTA than in SI. 

 Different regions of the amygdala have distinct patterns of neuromodulatory 

receptor expression energy. The neuromodulatory receptor expression energy found 

in the amygdala, which was among the highest of the brain regions studied in this 

survey, differed based on the neuromodulatory system (Figure 3.2), amygdalar 

subregion, and by receptor subtypes (Figure 3.3). For ease of visualization, pie 

charts were used to illustrate how receptor subtypes were distributed within the 

different amygdala areas (Figure 3.4). Figure 3.4 revealed a similar distribution set 

of prominent gene expression across the amygdala areas with similar proportions. 

In the noradrenergic system, Adra1a was highly expressed in the CEA and AAA, 

but lower in the MEA. In contrast, Adrb2 had higher expression energy in MEA 

than AAA or CAE (Figure 3.4, first row). The nicotinic receptor Chrna1 and the 

muscarinic receptor Chrm1 were more highly expressed across all the amygdala 

areas in comparison to other nicotinic and muscarinic receptors, though it is 

interesting to note that Chrm2 had relatively higher expression in the AAA, 

compared to CEA and MEA (Figure 3.4, second row). Dopamine and serotonin 

receptors were also different in receptor expression energy across the amygdala. 

Drd2 and Htr1f contributed most strongly to the expression found in the CEA, 

whereas Drd1a and Htr2c contributed most strongly to the expression found in the 

AAA and MEA regions (Figure 3.4, third and fourth row). 
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Figure 3.3. Individual Gene Expression Energy of Neuromodulatory Receptors. Charts 
were grouped by neuromodulatory systems. In each receptor subtype, amount of expression along the 
x-axis were arranged from most (left) to least (right). Brain regions were ordered from most (top) to 
least (bottom) amount of total expression energy for each neuromodulatory system. The y-axis 
represents expression energy. Note the y-axis scale varies per receptor subtype. 
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Figure 3.4 Distribution of Gene Expression Energy Within Amygdala Areas. Each column 
represents a different amygdala region (AAA, Anterior Amygdalar Area; CEA, Central Amygdalar 
Area; MEA, Medial Amygdalar Area). Each row represents the distribution of expression energy for 
a particular neuromodulatory system. The amount of expression energy is relative to the size of each 
slice in each chart. 
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expression energy and anatomical location (Figure 3.5). A hierarchical clustering 

analysis is a commonly used exploratory technique to handle a large set of data 

whose interrelationships are elusive and not fully understood. The cluster analysis 

assigned subsets of gene expression data into groups based on the similarity in their 

expression patterns (Figure 3.5, top), and based on the location of the brain regions 

examined (Figure 3.5, bottom). A hierarchy of groupings can emerge using this 

methodology, and such analyses have previously revealed relationships between 

biological function and anatomical location (Gerstein and Jansen 2000). 

To perform the receptor expression energy cluster analysis, a vector of the 

total expression across the 38 genes was constructed for each of the 13 brain 

regions. The pairwise distance between these vectors were calculated using 

Euclidean distance. To create the dendrogram in Figure 3.5 (top), an Unweighted 

Pair Group Method with Arithmetic Mean (UPGMA) was calculated based on the 

Euclidean distance metric. Threshold values in Figure 3.5 (top) represented the 

computed distance and linkage between brain regions. The cutoff for determining 

clusters was set to a threshold of 0.19 to yield three separate clusters, denoted by 

their different coloring scheme in Figure 3.5 (top). 

To examine the relationship between gene expression and anatomical 

location, a separate hierarchical cluster analysis was conducted using the centroid 

location for all of the 13 brain regions (Figure 3.5, bottom). The procedure was 

identical to the hierarchical cluster in Figure 3.5 (top), except a vector of the (x,y,z) 

coordinates from the reference atlas file (AtlasAnnotation200.sva) was used for 
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clustering instead of gene expression data. The threshold for determining clusters 

was set to 0.02 to yield four clusters, as in Figure 3.5 (bottom). 

 
Figure 3.5. Hierarchical Cluster of Gene Expression Energy and Brain Area. The top 
dendrogram was derived from the expression of selected genes. The bottom dendrogram was derived 
from the x,y,z coordinates of brain area centroid given in the reference atlas. These dendrograms 
were generated using a Euclidean distance metric. The cutoff for generating the different clusters 
was set to 0.19 (top) and 0.02 (bottom), which broke the hierarchical cluster into four separate 
constitutes, denoted by their different coloring scheme. 
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The clusters in Figure 3.5 suggest several relationships between 

neuromodulatory receptor expression and anatomical location. The amygdala (AAA, 

MEA, CEA) and the SI formed a tight cluster (Figure 3.5, top, blue) in gene 

expression, as well as anatomically (Figure 3.5, bottom, cyan and purple). The SI 

and basal forebrain are located near the amygdala (Figure 3.1) and like the 

amygdala contain high overall neuromodulatory receptor expression energy (Figure 

3.2 and 3.3). LC and NTS, which contain noradrenergic neurons (McGaugh 2004; 

Samuels and Szabadi 2008), formed a tight cluster both in terms of gene expression 

and to a slightly lesser extent anatomically (Figure 3.5, top, green; Figure 3.5, 

bottom, green and red). There was also tight clustering among the raphe nuclei, the 

source of serotonin in the CNS (Figure 3.5, top, red; Figure 3.5, bottom, red and 

green). 

There were a few receptor expression energy clusters that did not match their 

anatomical cluster counterpart or did not form a strong cluster based on expression. 

The cholinergic sources SI and MA (Nicholas, Hokfelt et al. 1996; Ishii and Kurachi 

2006; Dani and Bertrand 2007) did not cluster together based on expression energy, 

though their distance apart from each other is still relatively small (Figure 3.5, top, 

blue and green). However, they are found in neighboring regions of the brain 

(Figure 3.1) and thus clustered together based their centroid location (Figure 3.5, 

bottom, cyan). The SI and MA may not cluster together because their proportionally 

higher expression energy across all four neuromodulatory systems in the SI 

compared to MA (Figure 3.2 and 3.3). The dopaminergic region (VTA) and the CLI 
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of the raphe nucleus brain region did not fall within a cluster below the threshold 

when analyzing gene expression (Figure 3.5). However, in the anatomical cluster 

analysis, the VTA clustered together with all the raphe regions, PPN, and NTS 

(Figure 3.5, green and red), as they are located beside each other (Figure 3.1). 

GABA and Glutamate Receptor Distribution Across SI and LC 

One main finding was that the SI of the basal forebrain had high receptor 

expression energy for all four neuromodulatory systems (Figure 3.2). In contrast, 

the LC had the lowest overall expression energy across the receptors examined 

(Figure 3.2). 

To see if high expression energy in SI and low expression energy in LC exist 

beyond neuromodulators receptors, the expression energy of GABA and glutamate 

receptors in the SI and LC (Chapter 3, GABA and Glutamate Genes) was analyzed. 

The same analysis used as before (Chapter 3, Total Expression and Individual 

Receptor Subtypes) was applied here for profiling the distribution of GABA and 

glutamate receptors in SI and LC. 

Similar to neuromodulatory receptors expression profiles, SI had very high 

expression energy of GABA and glutamate receptors, while LC was low (Figure 3.6). 

For directed comparison, the total expression energy of adrenergic, cholinergic, 

dopaminergic, and serotonergic receptors from Figure 3.2 were included in Figure 

3.6. The values in each bar in Figure 3.6 represent the accumulated amount of 

expression energy when combining all subtypes per region. Note that there is a 

much higher order of magnitude in expression found in the SI compared to LC. 
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Figure 3.6. Total Gene Expression Energy for GABA, Glutamate, and Neuromodulatory 
Receptors in SI and LC. Expression energy from neuromodulatory receptors came from Figure 3.2. 
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over region size, this lower overall receptor expression energy level reflects a unique 

property of the LC region. 

Contrast Between ABA Expression Data and Prior ISH mRNA Literature 

Neuroinformatics resources such as the Gene Expression Nervous System 

Atlas (GENSAT) and the Neuroscience Information Framework (NIF) provide an 

accessible way to obtain gene expression data from various experiments (Heintz 

2004; Gardner, Akil et al. 2008; Müller, Rangarajan et al. 2008). To gauge the 

impact of ABA, data retrieved from the ABA were compared to results from studies 

retrieved from these resources. 

 Table 3.2 is the relative expression level in the brain regions of interest per 

receptor subtype. This was accomplished by first querying NIF using all genes 

listed in Table 3.1. NIF returned results from GENSAT that contained gene 

expression information from the mouse brain based on bacterial artificial 

chromosomes (BACs) experiments. However, because BAC experiments measure 

the relative rates of transcription for each gene, it is thereby not a direct 

measurement of mRNA accumulation. As such, in addition to the BAC expression 

data, GENSAT provides background literature, primarily from rat experiments, 

that measure localized mRNA using ISH, which GENSAT uses to correlate with 

their results. This feature was utilized to collect prior literature on gene receptor 

expression localization and intensities. 

Altogether, twenty-six papers were retrieved from GENSAT to compare gene 

receptor expression with the ABA in Table 3.2. With the exception of two receptors 
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(Htr3a and Htr3b) coming from mouse literature, and six not having any prior 

literature found in GENSAT (Chrna1, Chrna7, Chrna9, Chrnb1, Chrnb3, Htr2b), all 

remaining receptors from Table 3.2 were available in GENSAT and featured rat 

brain in their experiment. It is worth noting that Table 3.2 is an indirect 

comparison of species to species receptor expression. However, all experiments 

retrieved from GENSAT document localization of mRNA using ISH. 

Once literature was acquired, classification of expression level in prior 

studies was taken directly from the referenced wording. For example, some studies 

stated relative values (high, moderate, low), while others created tables using 

symbols (-, +, ++, +++) to denote the density of expression from ISH analysis. 

Classification of expression level in the present ABA study was based on the 

relative expression energy within a brain category. Expression energy less than the 

33rd percentile was classified as low expression, moderate expression was between 

the 33rd and 66th percentiles, and above the 66th percentile was considered highly 

expressed. The 13 brain regions were condensed into 5 categories: Amygdala (AAA, 

MEA, CEA), Dopaminergic (VTA), Serotonergic (DR, RPO, CLI, CS), Cholinergic 

(SI, MA, PPN), and Adrenergic (LC, NTS) regions. To determine the energy of 

expression, the average expression across these categorized brain regions was 

computed, and then percentiles were calculated across each gene in each category. 

If the expression of a gene (row) in a brain category (column) from the ABA 

coincided with previous work, then the comparison was considered in agreement 

(Table 3.2, green cells). The table cell was colored in red if the expression in the 
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ABA was classified higher than in prior studies. Blue cells denoted lower expression 

in the ABA than in prior studies. Gray cells in the table represent expression data 

not found in previous studies, while yellow cells represent experiments not 

conducted in the literature. In cases where there was no expression found, but 

experiments were conducted in both the literature and ABA, table cells were colored 

orange. Black cells represent a case where, for a given gene, no data was found in 

the ABA and no experiment was found through literature. 

Table 3.2. Comparison Between Gene Expression Levels Found in ABA and Previous 
Literature. Data from previous studies taken from: 1. (Bouthenet, Souil et al. 1991), 2. (Bruinvels, 
Landwehrmeyer et al. 1994), 3. (Buckley, Bonner et al. 1988), 4. (Day, Campeau et al. 1997), 5. 
(Diaz, Levesque et al. 1995), 6. (Fremeau, Duncan et al. 1991), 7. (Kinsey, Wainwright et al. 2001), 8. 
(McCune, Voigt et al. 1993), 9. (Mengod, Martinez-Mir et al. 1989), 10. (Narang 1995), 11. (Nicholas, 
Pieribone et al. 1993), 12. (Nicholas, Hokfelt et al. 1996), 13. (Novere, Zoli et al. 1996), 14. 
(Pompeiano, Palacios et al. 1992), 15. (Pompeiano, Palacios et al. 1994), 16. (Scheinin, Lomasney et 
al. 1994), 17. (Sugaya, Clamp et al. 1997), 18. (Tecott, Maricq et al. 1993), 19. (Vilaró, Cortés et al. 
1990), 20. (Vilaro, Cortes et al. 2005), 21. (Wada, Wada et al. 1989), 22. (Wada, McKinnon et al. 
1990). 
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Chrna3 (21)           
Chrna4 (21)           
Chrna5 (22)           
Chrna6 (13)           
Chrna7           
Chrna9           
Chrnb1           
Chrnb2 (21)           
Chrnb3           
Drd1a (6)           
Drd2 (9)           
Drd3 (1, 5)           
Htr1a (14)           
Htr1b (2)           
Htr1d (2)           
Htr1f (2)           
Htr2b           
Htr2c (17)           
Htr3a (18)           
Htr3b (18)           
Htr4 (20)           
Htr5a (7)           
Htr5b (7)           
Htr6 (7)           
Htr7 (7)           

 
In general, the comprehensiveness of the ABA revealed information that was 

previously unreported (Table 3.2, gray and yellow cells), and reported higher 

receptor expression in the amygdala and basal forebrain across all neuromodulatory 

systems than previously reported studies (Table 3.2, red cells). 

Network Visualization and Connectivity 

To analyze neuromodulatory interaction, Pajek, a software package designed 

for examining large networks (Batagelj and Mrvar), was used to visualize potential 

connectivity relationships between brain regions based on expression data from the 

ABA (Figure 3.7 – 3.11). Given a neuromodulatory source, such as VTA, one can 
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infer the strength of a projection to a target area from that source based on the 

receptor expression energy. 

 
Figure 3.7. Network Graph of Neuromodulatory Receptors. Vertices represent brain regions 
that are either standalone or are combined regions. Directed arcs represent projections going to and 
from a source. The pointed-arrow indicates the target location and the non-arrow end of the arc 
indicates the origin. The thickness of each arc, as well as the size of vertices, is proportional to the 
amount of expression found in the target location. Colors were used for visualization purposes, 
similar to Figure 3.2 and 3.3. 
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class of neurotransmitter source (e.g., ACh from SI, MA, and PPN) or different 

regions of the amygdala. Arcs represented inferred projections from a 

neuromodulatory system to a target brain area. Thickness of each arc is 
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DR, CS, 
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AAA

CEA
MEA
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proportional to the amount of receptor expression energy found target region. 

Diameter of each node represented the total amount of receptor expression energy 

in brain region. For ease of visualization, receptor expression energy was scaled 

down by 10-2. 

Expression energy emanating from the cholinergic system is overwhelmingly 

the highest, followed by serotonergic, dopaminergic, and adrenergic (Figure 3.7). All 

neuromodulatory systems project strongest to the cholinergic system (Figure 3.7, 

green node). The rest of the projections remained relatively low, though serotonin 

projects more heavily to AAA compared to other amygdala areas (Figure 3.7). 

In addition examining at the overall neuromodulatory connectivity network, 

the influence of receptor subtypes on the different brain regions were examined. 

Families of receptors were categorized in the following way: α (Adra1a, Adra1b,  

Adra2a, Adra2c) versus β (Adrb1, Adrb2) adrenergic receptors; muscarinic (Chrm1, 

Chrm2, Chrm3, Chrm4, Chrm5) versus nicotinic (Chrna1, Chrna2, Chrna3, Chrna4, 

Chrna5, Chrna6, Chrna7, Chrna9, Chrnb1, Chrnb2, Chrnb3) cholinergic receptors; 

D1 (Drd1a) versus D2 (Drd2, Drd3) dopaminergic receptors; and serotonin receptors 

that produce an inhibitory response (Htr1a, Htr1b, Htr1d, Htr1f, Htr5a, Htr5b) 

versus serotonin receptors that produce an excitatory response (Htr2b, Htr2c, 

Htr3a, Htr3b, Htr4, Htr6, Htr7). 

Different families of receptors were distributed differently across brain 

regions (Figure 3.8 – 3.11). For comparison purposes, the layout, arc thickness, and 

node diameter proportions were scaled down, dividing the amount of receptor 
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energy expression by 1,000. Expression energy from α-adrenergic receptors (Figure 

3.8, top) was more prevalent in cholinergic regions, as well as in the anterior 

amygdalar area (AAA), and within itself compared to β-adrenergic receptors (Figure 

3.8, bottom), which had a stronger influence on dopaminergic areas. Both D1 and 

D2 dopamine families had a strong influence on regions associated with 

acetylcholine and the CEA (Figure 3.9, top). However, the D2 family of receptors 

expressed more in dopaminergic sources compared to D1 (Figure 3.9, bottom). 

Muscarinic (Figure 3.10, top) was higher expressed than nicotinic acetylcholine 

receptors in the amygdala (MEA, CEA), while nicotinic receptors (Figure 3.10, 

bottom) were more strongly expressed in the dopaminergic areas. As for 

serotonergic receptors, expression was roughly the same for inhibitory and 

excitatory families (Figure 3.11). 
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Figure 3.8. Network Graph of α and β Adrenergic Receptors. 
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Figure 3.9. Network Graph of Muscarinic and Nicotinic Cholinergic Receptors. 
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Figure 3.10. Network Graph of D1 and D2 Family Dopamine Receptors 
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Figure 3.11. Network Graph of Inhibitory (Htr1 and Htr5) and Excitatory (Htr2, Htr3, 
Htr4, Htr6 and Htr7) Serotonergic Receptors. 
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Discussion 

An exploratory ABA survey of receptor expression energy was conducted 

using data from the classical neuromodulatory systems (cholinergic, dopaminergic, 

noradrenergic, serotonergic) within anatomical origins of these systems and in the 

amygdala. This survey was based on the assumption that sources of these systems 

are localized in small subcortical nuclei, and that the amygdala is thought to be a 

major target of neuromodulation (Gallagher and Chiba 1996; McGaugh ; McGaugh 

2006). Based on these assumptions, the targets of these neuromodulatory systems 

using receptor gene expression data were inferable from the ABA. 

Several findings emerged from this survey that could have functional 

implications: 1) Cholinergic receptors have overwhelmingly higher expression in the 

neuromodulatory nuclei than the other classic neuromodulatory systems. The 

expression of cholinergic receptors is an order of magnitude higher than serotonin 

and norepinephrine, and much higher than dopamine. 2) The level of adrenergic 

receptor expression was small in all the brain areas tested. Moreover, the amount of 

neuromodulatory expression within the locus coeruleus was low compared to other 

regions. NTS, which is another source of noradrenergic neurons, displayed 

comparatively moderate expression energy of all neuromodulatory receptors. 3) SI 

and VTA appear to be hubs, or ‘rich clubs’ of neuromodulation (van den Heuvel and 

Sporns 2011). In particular, SI had the highest expression of all four 

neuromodulatory receptors compared to other examined brain regions. 4) The 

amygdala and its anatomical neighbor SI are another hub of neuromodulation, with 
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high receptor expression energy from all 4 neuromodulatory classes. 5) The 

comprehensive ABA allowed the present survey to fill in many gaps in our 

knowledge of receptor expression using ISH. Many of the inferred connections and 

receptor expressions found  in this survey have not been reported previously in the 

rodent brain. 

The completeness of the ABA revealed interesting patterns of 

neurotransmitter receptor expression energy, which supplement current anatomical 

knowledge on neuromodulatory systems. Many of these expression patterns had not 

been previously reported (Table 3.2, gray and yellow cells). The amygdala (AAA, 

CEA, MEA), SI, and VTA were the highest receptor expression energy of the regions 

examined (Figure 3.2). The pattern of expression was similar within 

neuromodulator classes and among anatomical regions (Figure 3.5). Within an 

anatomical region, such as the amygdala, distinct patterns of receptor expression 

were observed across subregions (Figure 3.4). 

Bearing in mind that literature retrieved from GENSAT to compare and 

contrast receptor expression energies with the ABA in Table 3.2 originate from rat 

studies (with the exception of Htr3a and Htr3b), this survey suggests that the 

amygdala may express more neuromodulatory receptors than previously reported 

(Haber, Ryoo et al. 1995; Han, Holland et al. 1999; McGaugh 2004; Meneses and 

Perez-Garcia 2007). 

Among prominent expression in the amygdala (Figure 3.4), Chrm1, Chrm2, 

and the dopaminergic receptors were in agreement with literature findings 
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(Buckley, Bonner et al. 1988; Narang 1995) (Table 3.2). The rest, which includes 

Adra1d, Adrb2, Htr1f, Htr2c, and Htr3a has higher expression energy in the ABA 

than what was previously reported (Goldman, Simmons et al. 1986; Bruinvels, 

Landwehrmeyer et al. 1994; Pompeiano, Palacios et al. 1994; Nicholas, Hokfelt et 

al. 1996; Day, Campeau et al. 1997). Though there were a few genes, Adra2a and 

Chrna3, that did not have abundant expression yet were in agreement with 

literature data, the remaining genes were either considered more expressed than 

has been known, or no data was available for comparison (Table 3.2). 

Our reporting of neuromodulatory receptor expression energy in the midbrain 

area, where dopaminergic neurons are found, were comparable to prior work in 

many cases (Table 3.2). In particular, all of the α-adrenoreceptors, Chrna6, Chrnb3, 

Drd2, Htr4, and Htr6 were in agreement with studies that also have expression 

data from these receptors in the midbrain region (Deneris, Boulter et al. 1989; 

Novere, Zoli et al. 1996; Day, Campeau et al. 1997; Kinsey, Wainwright et al. 2001; 

Vilaró, Cortés et al. 2005). 

Raphe nuclei, a source for serotonergic neurons, had fairly low expression 

energy overall (Figure 3.2). This expression profile was in agreement with several 

other studies (Table 3.2). Adra2a, Adra2c, Adrb2, Chrna3, Htr1a, Htr1b, and Htr1d, 

had low-to-moderate expression energy in the ABA and other studies (McCune, 

Voigt et al. 1993; Scheinin, Lomasney et al. 1994; Nicholas, Hokfelt et al. 1996). 

Adra1d, Chrna4, Chrnb2, and Htr1f have higher expression in the ABA than 

previously reported. Chrm4, Chrna5, Htr5a, and Htr5b, on the other hand, 
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displayed lower expression in the ABA than stated in prior literature. Still, no 

literature data was found in many genes, with one gene in particular (Chrnb1) not 

found in both the literature and ABA data set (Table 3.2).  

Basal forebrain, a source of cholinergic neurons, which displayed the highest 

amount of expression out of all the brain regions in this survey (Figure 3.2), was a 

surprising finding when compared with literature data (Table 3.2). It has been 

reported that there are efferent projections of the adrenergic and serotonergic 

systems into the basal forebrain (Hornung 2003; Samuels and Szabadi 2008; 

Holmstrand and Sesack 2011). However, this survey suggests a larger 

neuromodulatory innervation of the basal forebrain compared to other 

neuromodulatory regions. Adrenergic (Adra1a, Adra1d, Adrb1, Adrb2) and 

cholinergic (Chrm4, Chrna2, Chrna3, Chrna4, Chrnb2) receptors were classified as 

having higher expression in the ABA than in previous studies. However, no 

information in literature data was found for the remaining receptors (Table 3.2).  

LC and the NTS, which are major sources of noradrenergic neurons, had 

several genes that were classified as having lower expression energy in the ABA 

than in other studies (Figure 3.2 and Table 3.2). Adra2a, Chrna2, Chrna3, Chrna6, 

and Htr1b all reported to have moderate-to-high expression in the locus coeruleus 

(McCune, Voigt et al. 1993; Scheinin, Lomasney et al. 1994; Nicholas, Hokfelt et al. 

1996), yet the data in the ABA suggests lower expression. Furthermore, Htr7 was 

the only gene that had no data in both the ABA and literature. In terms of 

agreement, only Adra2c, Adrb2, Htr1d, and Htr2c receptors, which had low-to-
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moderate energy of expression, match former findings (Goldman, Simmons et al. 

1986; Wada, Wada et al. 1989; McCune, Voigt et al. 1993; Bruinvels, 

Landwehrmeyer et al. 1994; del Toro, Juiz et al. 1994; Pompeiano, Palacios et al. 

1994; Scheinin, Lomasney et al. 1994; Nicholas, Hokfelt et al. 1996; Mengod, Vilaró 

et al. 2006). All other receptor genes in this survey were not found in any literature 

that covers LC and the NTS. 

The ABA ISH mouse brain project is a rich resource that made this 

neuroinformatics survey possible (Lein, Hawrylycz et al. 2007; Jones, Overly et al. 

2009). This survey, which took advantage of the unique structure of the 

neuromodulatory systems, was able to create a connectivity map from the sources of 

neuromodulation to their receptor targets in the amygdala and other 

neuromodulatory nuclei (Figure 3.7 – 3.11). This survey revealed connectivity 

relations and receptor localization that had not been reported previously. The 

pattern of expression varied across region, not just in the level of expression, but 

also by receptor subtypes. These variations may have important functional 

implications.  
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CHAPTER 4: Allen Brain Atlas-Driven Visualization 

 The survey in Chapter 3 unveiled novel relationships between the 

neuromodulatory systems and the amygdala. While the comprehensive mouse atlas 

the ABA provided helped form a more complete picture of these neuromodulatory 

interactions, the ABA tools limit the amount of genes and brain structures 

researchers can view at once. The Allen Brain Atlas-Driven Visualization (ABADV) 

was created to provide an easy way for other researchers to survey expression data. 

ABADV is a web application that generates multiple pie charts, bar charts and heat 

maps of expression energy values for any given set of genes and brain structures. 

By creating this web application, researchers can immediately obtain and survey 

numerous amounts of expression energy data from the ABA, which they can then 

use to supplement their work or perform meta-analysis. 

Other Resources 

The ABA and its vast array of resources enable researchers to develop new 

methods for investigating brain data. For instance, Liscovitch (Liscovitch, Shalit et 

al. 2013) created FuncISH, a method to learn functional representations of any 

neural in situ hybridization (ISH) images by applying Gene Ontology categories 

with the genomic set of mouse neural ISH images available in the ABA. Another 

group also systematically explored high resolution ISH images contained in the 

ABA by using a data mining tool they developed called Hippo-ATESC (Automatic 

Texture Extraction from the Hippocampal region using Soft Computing). Hippo-

ATESC helps detect neuropil-encoded genes in the hippocampus that are known for 
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their involvement in synaptic structure and plasticity (Ugolotti, Mesejo et al. 2013). 

Ji et al. integrated resources from both the ABA and the recent Allen Mouse Brain 

Connectivity Atlas to systematically study the relationship between gene expression 

and structure-level brain connectivity (Ji, Fakhry et al. 2014). This was 

accomplished by employing ensemble models for predicting brain connectivity. 

Altogether, the richness of the ABA resources helps researchers conduct scientific 

data analysis and discover new knowledge in neuroscience, accelerating the 

understanding of how the brain works. 

These resources and applications, though offering sophisticated ways of 

navigating across ABA and their large database, come with a steep learning curve. 

Many ABA tools limit the amount of genes and brain areas researchers can view at 

once. Furthermore, while the ABA provides documentation and tutorials on how to 

use their resources, some users may not want to devote their time in reading and 

understanding their overwhelming amount of features for retrieving a small 

amount of data. 

ABA provides programmatic access to their published data set for any user to 

perform any data retrieval and analysis beyond interfacing with their existing 

software. Some groups that have built software on top of the ABA through this 

programmatic service are typically motivated by a specific hypothesis-driven 

analysis (Ugolotti, Mesejo et al. 2013; Ji, Fakhry et al. 2014). Though beneficial, 

hypothesis-driven software may prevent other users from using their software in 

the first place, as those users instead may prefer software that enables explorative 
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analysis. Inspired by lack of exploratory software, ABADV was designed to increase 

the exploration and usability of ABA. 

Data-Driven Documents 

ABADV visualized data by using D3, a Javascript library that uses digital 

data to drive the creation and control of dynamic and interactive web-based 

visualizations (Bostock, Ogievetsky et al. 2011). D3 works by binding input data to 

arbitrary document elements through the document object model (DOM) API. The 

DOM API enables collaboration of web technologies such as HyperText Markup 

Language (HTML) for page creation, Cascading Style Sheets (CSS) for aesthetics, 

JavaScript for web interaction, and Scalable Vector Graphics (SVG) for vector 

graphics (Bostock, Ogievetsky et al. 2011).  

Implementation 

ABADV was implemented to selectively display expression energy across 

many genes and brain structures at once. The flowchart in Figure 4.1 depicts the 

program flow from user input to visualization. 

Upon accessing the web application (Figure 4.2), the user is provided with 

several options to filter and visualize results (Figure 4.3 – 4.5). For filter options, 

the user can set which probe (antisense, sense or both) and section (coronal, sagittal 

or both) to retrieve. These choices are provided to the user because various probe 

features and brain sections may influence a gene’s expression profile. For 

visualization options, the user can either select multiple pie charts, grouped bar 

charts, a heatmap, or all three. By default, ABADV is set to visualize all three 
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Figure 4.1 ABADV Flowchart. Depicts how each process in ABADV works, as well as the flow of 
these processes. The user sets filters (probe and section), visualization type (pie, bar, heatmap, or all 
three) and inserts a list of genes and brain structures of interest. Upon validating the input, ABADV 
queries the ABA API for expression data. If the query successfully returns data, ABADV will utilize 
D3 to display the results. 
 
options. After selecting these filters and visualizations, the user can insert a list of 

genes and brain structures. ABADV accepts gene symbols and brain structure 

acronyms. Symbols used to query genes in the Allen Mouse Brain Atlas follow the 

same guidelines the International Committee on Standardized Genetic 

Nomenclature for Mice (Eppig, Blake et al. 2012) established. A list of gene symbols 

can be downloaded at http://www.informatics.jax.org/genes.shtml (Eppig, Blake et 

al. 2012). Acronyms used to query brain structures in the Allen Mouse Brain Atlas 

come from the Allen Reference Atlas. These brain structure acronyms can be found 
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at http://atlas.brain-map.org. ABADV also provides a full list of these structures, 

located in a hyperlink below the text field where users insert brain structures 

(Figure 4.3 – 4.5). 

  
 
Figure 4.2 ABADV Main Page Screenshot. 
 

After the user enters their genes and brain structures of interest, they are 

ready to click the “Visualize!” button, which triggers the application to query the 

ABA API. ABADV first ensures valid inputs before generating API URLs. Once the 

process goes through, ABADV obtains a set of SectionDataSetId values. A 

SectionDataSetId is a value associated with the collection of images and metadata 

for a gene expression experiment. Some genes may return multiple 

SectionDataSetId values, while other genes may return null. These 
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SectionDataSetId values are necessary to access expression energy values. Once a 

list of SectionDataSetId values has been obtained, the application completes its 

query, using each SectionDataSetId and brain structure to acquire expression 

energy values. Expression energy values are retrieved in JSON, which is compatible 

with D3, making JSON an ideal format for data interchange. During this process, 

ABADV will inform the user if any error arises from attempting to access the API. 

 
 
Figure 4.3. ABADV Pie Charts Results Page Screenshot. 
 

With data retrieved from the API and stored in the user’s web browser, 

ABADV can now visualize this information to the user. Data is further parsed and 

formatted depending on the visualization the user selects.  

If multiple pie charts were selected, ABADV will generate one pie chart for 

each gene of interest with a pie slice within a chart representing a brain structure 
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of interest (Figure 4.3). Multiple pie charts are useful for demonstrating relative 

proportions. To quickly identify prevalent genes from their query, ABADV 

augments the color intensity of the pie charts. Genes with lower expression energy 

relative to other genes from the query will appear more transparent, while genes 

with higher expression energy will appear more opaque. The width of a pie slice 

represents the total amount of expression energy of a given gene in a brain 

structure relative to other brain structures within the same gene. 

 
 
Figure 4.4. ABADV Bar Charts Results Page Screenshot. 
 

If grouped bar charts were selected, ABADV will appropriately create various 

bar charts of expression energy (Figure 4.4). Grouped bar charts provide a way to 

show information about various sub-groups (brain structures) of the main categories 

(genes). Each bar within a group, categorized by gene of interest, represents the 

amount of expression energy found in a brain structure of interest and are colored 

differently to distinguish between them. The height of the bar is proportional to the 
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amount of expression energy. As such, there is no need to augment the color 

intensity of each bar, as its height identifies predominant genes.  

Lastly, if heatmap was selected, ABADV will substitute each individual gene 

expression value into a 2D data matrix of colors (Figure 4.5). Heatmaps are useful 

for finding high and low values, as well as patterns. Each row in this data matrix 

represents a brain structure and each column represents a gene of interest. Various 

shades of colors per cell represent the actual expression energy value of a gene per 

structure, with a darker shade denoting high expression energy and a lighter shade 

denoting low expression energy. 

 
 
Figure 4.5. ABADV Heatmap Results Page Screenshot. 
 

ABADV can link back to the ABA experiment page, so users may view a 

summary of its experimental detail, by clicking on any portion of the pie chart, bar 
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chart, or cell in heatmap. The ABA experimental detail includes an interactive 3-D 

representation of gene expression, a histogram of expression energy across major 

brain structures, probe and gene metadata, and an interactive image viewer that 

displays ISH images from the experiment. In addition, various color schemes are 

provided for pie and bar charts. Users can either select a color scheme from RGB 

values assigned to each brain structure according to the anatomic ontology derived 

from the Allen Reference Atlas (Dong 2008), or a default categorical color set 

generated by D3. 

Web-Application Demonstration  

Using the Allen Mouse Brain Atlas API with D3, ABADV was designed to aid 

users in visualizing expression energy data across many genes and brain structures. 

This section presents an output example of ABADV. These examples were 

performed using the ABADV web application available at: 

http://www.socsci.uci.edu/~jkrichma/ABADV/. 

To demonstrate ABADV’s capabilities, a sample query was performed 

consisting of dopamine receptors (Drd1a, Drd2, Drd3, Drd4, Drd5), serotonin 

receptors (Htr1a, Htr1b, Htr2a, Htr2b, Htr2c), and various brain structures 

involved in reward, which include: prelimbic area (PL), infralimbic area (ILA), 

hypothalamus (HY), hippocampal formation (HPF), striatum-like amygdalar nuclei 

(sAMY), nucleus accumbens (ACB), ventral tegmental area (VTA), and dorsal raphe 

nucleus (DR). These receptors and brain structures form a significant part of the 

reward circuit, a network responsible for processing various aspects of positive 
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emotional stimulus (Nakamura ; Russo and Nestler). This reward circuit is key for 

incentive-based drives and goal-directed behaviors (Berridge and Robinson). Recent 

findings suggest that, in particular, the dopaminergic neurons in the VTA 

projecting to the ACB are principally involved in guiding attention toward rewards 

and consuming rewards (Koob and Le Moal). It has also been argued that serotonin 

neurons in the DR have possible functions in reward processing as it interacts with 

dopamine (Nakamura). A full overview of reward circuits in the brain is beyond the 

scope of this demonstration and discussed later in Chapter 5. However, these genes 

and brain structures associated with the reward circuit help demonstrate the 

capabilities of ABADV. 

Of the entire query, 22 unique experiments were found. 12 experiments came 

from dopamine receptor genes and 10 from serotonin receptor genes. Their 

SectionDataSetId number denotes each experiment, which was truncated to their 

first three digits for visualization purposes (Figure 4.6). 

Out of all the dopamine receptor genes queried, Drd1a SectionDataSetId 

#713 contained the highest amount expression energy, denoted by both the opacity 

of its slices and height of its bars (Figure 4.6). Within Drd1a SectionDataSetId 

#713, ACB was highest in expression energy at approximately 20, while expression 

energy in other brain structures ranged from moderate to nearly quiescent. The 

heatmap in Figure 4.7 further illustrates this difference in expression, both across 

brain areas and gene expression experiments. Across other dopamine receptor 

genes, expression energy in ACB remained dominant, again as denoted by dark blue 
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shaded cells in Figure 4.7. However, the total amount of expression found within 

each gene compared to Drd1a SectionDataSetId #713 was lower, as was also by its 

low bar height in Figure 4.7. 

 

Figure 4.6. ABADV Pie and Bar Chart of Dopamine Receptor Genes in Brain Structures 
Associated with Reward Processing. (Top) Each pie represents a different gene, while the slices 
within a pie represents a different brain structure. Opacity of each pie slice denotes the amount of 
expression energy relative to other gene expression experiments. Size of pie slice denotes the amount 
of expression energy relative to other brain structure within the same gene. Color scheme derived 
from both the Allen Reference Atlas or generated by default in D3. (Bottom) Each group of bars 
represents a different gene expression experiment, while each bar within a group represents a 
different brain structure. Height of bar denotes the amount of expression energy. Default color 
generated D3 was used in this plot. 
 

For serotonin receptors, two particular experiments stood out the most: 

Htr1a SectionDataSetId #793 and Htr2c SectionDataSetId #713. These two genes 

were highest in expression energy values compared to the rest, though where that 

expression was located at differed between the two (Figure 4.8 and 4.9). Within 

Htr1a SectionDataSetId #793, expression energy was found highest in DR, denoted 

by its tall blue bar and large blue pie slice in Figure 4.8. However, within Htr2c  
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SectionDataSetId #713, expression energy was found highest in sAMY, followed by 

ACB and DR. The remaining serotonin receptor expressions were lower, which the 

amount of light shades cells versus dark shaded cells in Figure 4.9 depicts. 

 

Figure 4.7. ABADV Heatmap of Dopamine Receptor Genes in Brain Structures Associated 
with Reward Processing. Each cell in the matrix represents an expression energy value for a 
particular experiment (column) and brain structure (row). The shade of the color denotes how much 
expression was found in that cell, where the darker the color, the higher the expression, and the 
lighter the color, the lower the expression. 
 

Drd1a SectionDataSetId #354 and Drd2 SectionDataSetId #359 displayed 

peculiarly low amounts of expression energy across all brain structures (Figure 4.6 

and 4.7). Upon inspection of their respective experimental page in the ABA (via 

clicking on the pie or chart of these SectionDataSetIds), those two experiments 

utilized labeled sense RNA probes, while other experiments used labeled antisense 

RNA probes. A sense probe is a strand of RNA that has the same sequence as its 

target mRNA, while an antisense probe is an RNA strand that is complementary to 
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the sequence of its target mRNA. As such, a sense probe gives a measure of non-

specific probe binding because of the chemical properties of the probe, as opposed to 

an antisense probe which measures its target mRNA. Given that, these sense 

probes are used to gauge protocol efficacy. A low-to-no expression energy found in 

sense probes, as results from Drd1a SectionDataSetId #354 and Drd2 

SectionDataSetId #359, assures that any signal detected by its antisense probe is 

because of the sequence-specific binding to mRNA and not with other targets within 

the cell. The ability to retrieve experimental details directly from the Allen Mouse 

Brain Atlas unveiled this information that might otherwise cause confusion when 

interpreting data. 

 

Figure 4.8. ABADV Pie and Bar Chart of Serotonin Receptor Genes in Brain Structures 
Associated with Reward Processing. (Top) Each pie represents a different gene expression 
experiment, while the slices within a pie represents a different brain structure. Opacity of each pie 
slice denotes the amount of expression energy relative to other genes. Size of pie slice denotes the 
amount of expression energy relative to other brain structure within the same gene. (Bottom) Each 
group of bars represents a different gene expression experiment, while each bar within a group 
represents a different brain structure. Height of bar denotes the amount of expression energy. 
Default color generated D3 was used in this plot. 
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Figure 4.9. ABADV Heatmap of Serotonin Receptor Genes in Brain Structures Associated 
with Reward Processing. Each cell in the matrix represents an expression energy value for a 
particular experiment (column) and brain structure (row). The shade of the color denotes how much 
expression was found in that cell, where the darker the color, the higher the expression, and the 
lighter the color, the lower the expression. 
 
Brain Explorer Comparison  

Brain Explorer is a free-to-download desktop application for viewing brain 

anatomy and gene expression data in 3D (Lau, Ng et al. 2008). It is integrated with 

the ABA, enabling users to view spatially registered gene expression data in 3D at a 

200-µm3 resolution. With Brain Explorer, users have the ability to display ISH 

expression data from multiple genes superimposed on each other in 3D, as well as 

fully interact with the Allen Reference Atlas. To obtain gene expression data for 

display in Brain Explorer, users can either perform a search on their website at 
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http://mouse.brain-map.org/, select gene(s) of interest, then click on the ‘View in 3D’ 

link in the search results list or search within Brain Explorer itself. 

To compare ABADV with Brain Explorer, the same query from above was 

performed in Brain Explorer. Genes of interest were first searched through their 

website. After downloading each gene into Brain Explorer, 3D polygonal brain 

structures associated with the reward circuit was turned on while all other brain 

structures was turned off. Figure 4.10 is a screenshot of Brain Explorer’s main 

window application displaying all 12 dopamine receptor genes and 8 brain 

structures from the query. Figure 4.11 is a screenshot of Brain Explorer’s main 

window application displaying all 10 serotonin receptor genes and 8 brain 

structures from the query. Colored spheres indicate the amount of expression 

energy in a given brain structure, where blue-green is low, yellow is medium, and 

red is high. Spheres are used to represent each 200-µm3 voxel, with the size of the 

spheres directly proportional to the intensity and density of each voxel. 

While results from Brain Explorer are identical to ABADV, because the data 

is the same, there are complementary differences. As with dopamine receptor gene 

query using ABADV (Figure 4.6 and 4.7), Brain Explorer results revealed ACB 

containing the highest amount of expression energy compared to other brain 

structures, as denoted by dense, bright-colored voxels located on the rostral end of 

the visualized mouse brain in Figure 4.10. Likewise, compared to serotonin receptor 

genes expression in ABADV (Figure 4.8 and 4.9), Brain Explorer results also 

revealed both DR and sAMY were highest amongst all other brain structures in 
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expression energy values (Figure 4.11), which is demonstrated by large, localized 

voxels in the posterior and lateral end of the visualized mouse brain. 

 
 
Figure 4.10. Brain Explorer 2 Expression of Dopamine Receptor Genes in Brain 
Structures Associated with Reward Processing. Colored spheres represent the amount of 
expression in a given brain structure, where blue-green is low, yellow is medium, and red is high. 
Spheres also represent each 200-µm3 voxel, with the size of the spheres directly proportional to the 
intensity and density of each voxel.  
 

 
 
Figure 4.11. Brain Explorer 2 Expression of Serotonin Receptor Genes in Brain Structures 
Associated with Reward Processing. Colored spheres represent the amount of expression in a 
given brain structure, where blue-green is low, yellow is medium, and red is high. Spheres also 
represent each 200-µm3 voxel, with the size of the spheres directly proportional to the intensity and 
density of each voxel. 
 

Superimposing multiple genes using Brain Explorer made it difficult to 

identify which dopamine or serotonin SectionDataSetId were expressing the most. 
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To know which SectionDataSetId expressed the most in Figure 4.10 and 4.11, in 

Brain Explorer can either:  reveal metadata by clicking on individual voxels, or 

selectively turn off the display of other SectionDataSetIds and view each 

experiment separately. Expression visibility is also controllable by setting 

thresholds on expression values (Figure 4.10 and 4.11, bottom right corner). In 

ABADV, however, comparisons between genes are easier to portray because a pie 

chart, bar chart, or heatmap cell is generated for each gene, which does not get in 

the way of one another.  

Another key difference between Brain Explorer and ABADV is the 

presentation of gene expression. In Brain Explorer, clicking on colored spheres 

reveals the expression density and intensity of that voxel, whereas ABADV displays 

expression energy across the entire brain structure. While the Brain Explorer offers 

detailed expression data at the voxel level, ABADV allows quantitative analysis of 

expression energy across the entire brain structure.  

Aside from these key advantages of ABADV, Brain Explorer does offer 

features not available in ABADV. In particular, Brain Explorer enables 3D 

representation of gene expression with the original full resolution 2D tissue sections 

is a rich feature that may make data exploration convenient, easily mapping the 

localization of expression. By selecting a colored voxel, Brain Explorer can display 

the name of the structure and its location in its atlas ontological hierarchy while 

simultaneously displaying its original image data that was used to generate these 

quantitative results.  
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Discussion 

ABADV, which is available at: http://www.socsci.uci.edu/~jkrichma/ABADV/, 

has been developed to extend the ABA by providing users with a quick and intuitive 

way to survey large amounts of expression energy data across multiple brain 

regions of interest. ABADV combines the ABA API with D3 to obtain and visualize 

expression energy data from various genes and brain structures using pie charts, 

bar charts, and heatmaps to display these quantified measurements. The 

demonstration of querying the ABA for available dopamine and serotonin receptor 

genes in this chapter showed that ABADV could help identify prevalent genes and 

brain structures that may otherwise be obscured in other visualizations (i.e., Brain 

Explorer). Using ABADV revealed heavily expressed brain regions such as the 

nucleus accumbens and dorsal raphe across dopamine and serotonin receptor genes, 

respectively (Figure 4.6 – 4.9). This quantified, exploratory analysis makes it easier 

for users to obtain such results without having to delve deep into the intricacies of 

the ABA. ABADV serves as a complement to the resources the ABA provides and 

can be used in conjunction with other data sets and techniques for complete 

analysis. 
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CHAPTER 5: Exploratory Survey of the Reward Circuit Using 

the Allen Brain Atlas 

 Chapters 3 and 4 utilized the Allen Mouse Brain Atlas (ABA) in situ 

hybridization (ISH) expression data to survey receptor gene expression associated 

with neuromodulatory systems. This chapter further explores the interaction 

between neuromodulatory systems by focusing on the role of dopamine and 

serotonin in the mammalian reward circuit. 

The reward circuit is a network of brain areas that moderate various aspects 

of reward processing (Haber and Knutson 2010). These reward processes refer to 

three features: the ‘liking’ or the actual pleasure component of a reward, the 

‘wanting’ or motivation for a reward, and the ‘learning’ or the associations about 

future rewards based on experience (Berridge and Kringelbach 2008). For 

mammals, coordinated neural circuits facilitate information from external 

environmental stimuli and internal physiological cues in order to develop an 

appropriate behavioral response. The reward circuit governs these neural circuits to 

produce adaptive, goal-directed decisions (Haber and Knutson 2010; O’Connell and 

Hofmann 2011). From a clinical perspective, impairments in the reward circuit, 

perhaps reflecting altered reward evaluation or other distortions in behavior, may 

amount to models of dysfunctional action selection in psychiatric disorders, 

including depression, anhedonia, schizophrenia and dementia (Kapur and 

Remington 1996; Proitsi, Lupton et al. 2012; Tye, Mirzabekov et al. 2013). Thus, 
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revealing the neural mechanisms involved in this reward circuit is a major goal in 

neuroscience (O’Connell and Hofmann 2011). 

Dopamine has long been implicated in regulating reward-related behaviors 

(Baik 2013), and yet this hypothesis remains subject to debate (Salamone, Correa et 

al. 2005). In psychopharmacological animal studies, interfering with dopamine 

transmission, particularly in the nucleus accumbens, does not reduce primary 

motivation for natural rewards such as food, which goes against the hypothesis 

(Kelley 2004). Yet, in conflicting studies, disrupting dopamine transmission hinders 

the propensity for these animals to engage in obtaining natural rewards (Salamone, 

Correa et al. 2005). This opens up the possibility that dopamine is selectively 

involved in reward processing, and that other neural mechanisms in certain 

circumstances may be more principally involved in reward processing than 

dopamine.  

Serotonin also has functional importance in the reward circuit, though the 

mechanisms by which serotonin affect behaviors that stem from activity in reward 

processing regions remains unclear (Cools, Nakamura et al. 2011; Nakamura 2013). 

In pharmacological research, the role of serotonin is challenged by its ability to bind 

to various receptor subtypes (14 in total), each having a different or unknown effect 

on reward-related behavior (Higgins and Fletcher 2003). Under some conditions, 

reduced serotonin facilitates reward-related behavior (Soubrie 1986). This effect, 

however, is not observed in all experiments, and inconsistencies between 
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experiments may come from methodological factors such as the reinforcer stimuli 

itself or the extent of serotonin depletion (Higgins and Fletcher 2003). 

Using the ABA as a fundamental tool to explore serotonin and dopamine 

receptor gene expression data may shed new light on the structure and function of 

the reward circuit. Despite dopamine being considered the principal 

neuromodulator in reward processing, it would be reasonable to predict that 

serotonin receptors would not be highly expressed throughout the reward circuit, 

more so than dopamine receptors in certain brain regions. In addition, because the 

serotonergic system has multifunctional roles outside of reward processing, one 

would not expect every receptor subtype to be prevalent in the reward circuit. 

However, the data presented in this chapter suggests otherwise. 

While the ABA in of itself cannot reveal behavioral information, 

corroborating results in literature with ABA results can quantify which receptor 

subtypes are most prominent in the reward circuit. This is important because the 

abundance of a particular receptor subtype is suggestive of a brain structure’s 

underlying functionality. Since expression profiles of these neuromodulators have 

not been curated and remain sparse throughout literature, data mining the ABA for 

these receptors may be informative for researchers studying the reward circuit. 

Performing this exploratory analysis could inspire a researcher to, for instance, 

select a particular pharmacological drug or receptor gene knockout for future 

reward-based behavioral studies. This in turn can assist in disambiguating the role 

of dopamine and serotonin in the reward circuit.  
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Allen Brain Atlas 

Similar to how Chapters 3 and 4 approached their respective studies, 

expression energy volumes of dopamine and serotonin receptors in brain structures 

associated with reward processing were retrieved from the ABA using their API to 

investigate the reward circuit. Data from the ABA represents quantified gene 

expression energy values derived from high-resolution ISH images of specific mRNA 

species at a resolution of 200-µm3. For each gene, the ABA informatics data 

analysis pipeline processes expressing pixels, which are then summed to collect 

pixel-based statistics such as the expression density (sum of expressing pixels 

divided by sum of all pixels in division) and expression intensity (sum of expression 

pixel intensity divided by sum of expression pixels). From these statistics, the ABA 

then calculates the expression energy of a voxel, defined as the sum of expression 

pixel intensity divided by the sum of all pixels in division. Each voxel located within 

a brain structure is then unionized to formulate the overall expression energy of the 

given brain structure. 

Brain Structures Associated with the Reward Circuit 

 Expression data from the ABA were gathered from 15 different brain 

structures associated with reward processing (Figure 5.1), including ventral 

tegmental area (VTA), substantia nigra compact part (SNc), substantia nigra 

reticular part (SNr), prelimibc area (PL), infralimbic area (ILA), nucleus accumbens 

(ACB), basolateral amygdalar nucleus (BLA), laterodorsal tegmental nucleus (LDT), 

lateral habenula (LH), dorsal nucleus raphe (DR), lateral septal nucleus (LS), 
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central amygdalar nucleus (CEA), medial amygdalar nucleus (MEA), hypothalamus 

(HY) and hippocampal region (HIP). There is much evidence suggesting strong 

anatomical connections between these forementioned brain structures (Camara, 

Rodriguez-Fornells et al. 2009; Ikemoto 2010). This section will describe in more 

detail each brain structure and their reward processing involvement. 
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Figure 5.1. Allen Reference Atlas Images of Brain Structures Associated with the Reward 
Circuit.  
 

Dopamine is a catecholamine neurotransmitter in the brain and is 

synthesized by neurons primarily in the VTA, and to a lesser extent in SNc. 
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Dopamine neurons originating in these brain structures project to the striatum, 

cortex, limbic system and hypothalamus (Bentivoglio and Morelli 2005). Through 

these pathways, dopamine affects many physiological functions, such as motivated 

and emotional behaviors, but also hormone secretion and controlling movements 

(Beaulieu and Gainetdinov 2011; Tritsch and Sabatini 2012). VTA is a 

heterogeneous brain structure that serves a central role in reward processing 

(Russo and Nestler 2013; Schultz 2013). Classically known for encoding reward 

prediction errors through phasic activation, recent evidence suggests dopamine 

neurons in VTA also respond to aversive, stressful and salient events (Lammel, Lim 

et al. 2013; Schultz 2013). SNc is another major source of dopamine, with recent 

reporting suggesting that dopamine neurons in the SNc exhibit functional 

heterogeneity that may contribute to diverse roles in behavior related to reward, 

addiction and movement (Kitahama, Nagatsu et al. 2000; Di Giovanni, Esposito et 

al. 2010; Ungless and Grace 2012). Both VTA and SNc also project to DR, which 

may facilitate serotonin neurons and in turn mediate motivational behavior (Ferre 

and Artigas 1993). 

Serotonin is a monoamine neurotransmitter in the brain and originates in 

DR. Similar to VTA, DR is a heterogeneous brain structure that projects extensively 

to brain areas related to reward processing (Peyron, Petit et al. 1998). DR has been 

shown have a strong impact on value-based decision-making (Nakamura 2013). 

Although evidence suggests that serotonin may oppose dopamine’s rewarding 

activities (Crockett, Clark et al. 2009), DR neural recordings found increased firing 
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activity during reward tasks and that this activation can alter neuronal activity 

patterns in efferent regions, such as in the cortex (Liu, Zhou et al. 2014). 

ACB, referred to as the “hedonic hotspot”, is crucial for the recognition of 

reward in the environment and initiating food consumption (Peyron, Petit et al. 

1998; Pecina, Smith et al. 2006; Koob and Le Moal 2008). ACB receives input from 

both dopaminergic VTA and serotoninergic DR regions (Peyron, Petit et al. 1998; 

Bentivoglio and Morelli 2005). Much of the research has focused ACB and its role in 

reward-related functions has received come from dopamine’s rewarding effects of 

drugs of abuse (Rodd-Henricks, McKinzie et al. 2002; Pierce and Kumaresan 2006). 

It is also known that serotonergic neurons from the DR innervate the mesolimbic 

dopaminergic system, which ACB is a part of this system (De Deurwaerdere, Stinus 

et al. 1998; Fletcher and Korth 1999). 

Both VTA and DR project to the prefrontal cortex (Peyron, Petit et al. 1998; 

Bentivoglio and Morelli 2005). Though the prefrontal cortex is not defined in the 

ABA, PL and ILA are considered homologues of human and primate anterior 

cingulate cortex and is a subdivision of the medial prefrontal cortex (Groenewegen 

and Uylings 2000). PL and ILA are responsible for mediating different behavioral 

responses to specific rewarding, environmental stimuli (Bromberg-Martin, 

Matsumoto et al. 2010; Pentkowski, Duke et al. 2010; Russo and Nestler 2013). 

As discussed in Chapter 3, the amygdala has strong bidirectional interaction 

with the dopaminergic and serotonergic systems (Steinbusch 1981; Lee, Wheeler et 

al. 2011). The amygdala participates in responding to aversive events as well as 
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encoding predictive cues of reward (LeDoux 2003; Belova, Paton et al. 2007). Three 

regions from the amygdala were explored in this survey: BLA, CEA and MEA. BLA 

is reported to play a crucial role in many emotional and cognitive functions of the 

brain (Bjorklund and Dunnett 2007; Lammel, Hetzel et al. 2008; Russo and Nestler 

2013), while both CEA and MEA encode positive and negative motivational values 

(Lee, Eum et al. 2007; Belova, Paton et al. 2008). 

The remaining subcortical structures, SNr, LDT, LH, HY, LS and HIP, play a 

role in reward processing. SNr, which receives its input from serotonin, has been 

reported to control reward-dependent modulation of action in its afferent regions 

such as PL and ILA (Moukhles, Bosler et al. 1997; Balleine 2005). LDT promotes 

burst firing of dopamine neurons in VTA, which influences reward processing by 

increasing dopamine release in ACB (Cornwall, Cooper et al. 1990; Lodge and Grace 

2006). LH is thought to be critical for mediating when expected rewards do not 

occur, as well as behavioral responses to aversive stimuli (Matsumoto and Hikosaka 

2007; Hikosaka 2010). HY is an important source of reward information caused by 

orexin neurons, which activate serotonin release through arousal, feeding and 

rewarding stimuli (Harris and Aston-Jones 2006; Tao, Ma et al. 2006). LS is an 

important region involved in reward-oriented behavior when serotonin is released 

in this region (Kohler, Chanpalay et al. 1982; Clemett, Punhani et al. 2000). Lastly, 

HIP, through its dense connections with VTA and DR, is reported to strengthen 

memory encoding of a particular stimulus based on its valence (Amat, Matus-Amat 

et al. 1998; Fields, Hjelmstad et al. 2007). 
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Dopamine and Serotonin Receptor Genes 

The query in this survey was comprised of dopamine receptors: Drd1a, Drd2, 

Drd3, Drd4, and Drd5; and serotonin receptors: Htr1a, Htr1b, Htr1d, Htr1f, Htr2a, 

Htr2b, Htr2c, Htr3a, Htr4, Htr5a, Htr5b, Htr6 and Htr7 (Table 5.1). Experiments 

for each gene was found in the ABA. For any particular gene that returned multiple 

experiments (SectionDataSetIDs), the experiment that contained the highest sum of 

expression energy within brain regions of interest (Chapter 5, Brain Structures 

Associated with the Reward Circuit) was used in this survey for analysis. 

Previous Literature Reporting of Dopamine and Serotonin Receptor Gene 

Expression 

 Before analyzing any data from the ABA, levels of expression energy for 

dopamine and serotonin receptors in the reward circuit taken from previous 

literature were tabulated (Figure 5.2). This was accomplished to generate 

predictions about the ABA dataset. 

Each subplot in Figure 5.2 represents a different family of dopamine and 

serotonin receptors, separated by their affect on neurotransmission (excitatory or 

inhibitory). The top right plot represents excitatory serotonin receptors (Htr2a, 

Htr2b, Htr2c, Htr3a, Htr4, Htr6, Htr7). The top left plot represents inhibitory 

serotonin receptors (Htr1a, Htr1b, Htr1d, Htr1f, Htr5a, Htr5b). The bottom right 

plot represents D1 family receptors (Drd1a, Drd5), which are known to mediate 

excitatory neurotransmission. Lastly, the bottom left plot represents D2 family 
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receptors (Drd2, Drd3, Drd4), which are known to mediate inhibitory 

neurotransmission. 

Table 5.1. List of Dopamine and Serotonin Receptor Genes. ImageSeriesID is an identification 
number for the experiment used to analyze gene expression. 
 

Symbol Name ImageSeriesID Receptor Subtype 

Drd1a dopamine receptor D1A 352 Gs-protein coupled 

Drd2 dopamine receptor 2 81790728 Gi/Go-protein coupled 

Drd3 dopamine receptor 3 75038431 Gi/Go-protein coupled 

Drd4 dopamine receptor 4 112650336 Gi/Go-protein coupled 
Drd5 dopamine receptor 5 81790728 Gs-protein coupled 

Htr1a 5-hydroxytryptamine receptor 1A 79394355 Gi/Go-protein coupled 

Htr1b 5-hydroxytryptamine receptor 1B 79913318 Gi/Go-protein coupled 

Htr1d 5-hydroxytryptamine receptor 1D 71393418 Gi/Go-protein coupled 

Htr1f 5-hydroxytryptamine receptor 1F 69859867 Gi/Go-protein coupled 

Htr2a 5-hydroxytryptamine receptor 2A 81671344 
Gq/G11-protein 
coupled 

Htr2b 5-hydroxytryptamine receptor 2B 71664130 
Gq/G11-protein 
coupled 

Htr2c 5-hydroxytryptamine receptor 2C 71393424 
Gq/G11-protein 
coupled 

Htr3a 5-hydroxytryptamine receptor 3A 70593142 
Ligand-gated Na+/K+ 
cation channel 

Htr4 5-hydroxytryptamine receptor 4 69257849 Gs-protein coupled 

Htr5a 5-hydroxytryptamine receptor 5A 71393430 Gi/Go-protein coupled 

Htr5b 5-hydroxytryptamine receptor 5B 71247644 Gi/Go-protein coupled 

Htr6 5-hydroxytryptamine receptor 6 69257981 Gs-protein coupled 

Htr7 5-hydroxytryptamine receptor 7 71393436 Gs-protein coupled 

 
Though the procedure used to retrieve literature data and classify expression 

energy is similar to Table 3.2 (Chapter 3, Contrast Between ABA Expression Data 

and Prior ISH mRNA Literature), Figure 5.2 does not include ABA data. In short, 

the Gene Expression Nervous System Atlas (GENSAT) was used to access prior 

rodent brain studies. Classifying expression level from these previous studies were 

taken directly from their reported wording. Some studies may state qualitative 

values (high, moderate, low), and others may use symbols (-, +, ++, +++) to classify 
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expression energy. Expression based on this qualitative assessment was mapped to 

a different color in Figure 5.2 based on reported levels. 

 
Figure 5.2. Literature Reporting of Dopamine and Serotonin Receptor Gene Expression. 
Numbers in parentheses next to each receptor gene name correspond to the following literature: 1. 
(Weiner, Levey et al. 1991), 2. (Bouthenet, Souil et al. 1991), 3.) (O'Malley, Harmon et al. 1992), 4.) 
(Meador-Woodruff, Mansour et al. 1992), 5.) (Pompeiano, Palacios et al. 1992), 6.) (Duxon, Flanigan 
et al. 1997), 7.) (Bruinvels, Landwehrmeyer et al. 1994), 8.) (Pompeiano, Palacios et al. 1994), 9.) 
(Tecott, Maricq et al. 1993), 10.) (Vilaró, Cortés et al. 2005), 11.) (Maroteaux, Saudou et al. 1992), 
12.) (Matthes, Boschert et al. 1993), 13.) (Gerard, el Mestikawy et al. 1996), 14.) (Neumaier, Sexton 
et al. 2001). 
 
 In general, many dopamine and serotonin receptors in the reward circuit 

have neither any documented experimental results nor significant expression 

energy detection (Figure 5.2, white and light blue cells). Every gene receptor 

subtype had at least two or more missing data points in every reward-related brain 

structure (Figure 5.2, white cells), with Htr2b in particular not having any 
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experiments conducted in the reward circuit (Pompeiano, Palacios et al. 1994), 

suggesting that perhaps Htr2b may not have influence in modulating activity in the 

reward circuit (Alex and Pehek 2007). 

Total Expression and Individual Receptor Subtypes 

 Using the ABA to examine receptor subtypes, expression energy of serotonin 

receptors was observed to be greater than the amount of expression energy of 

dopamine receptors in the reward circuit brain areas (Figure 5.3). Each bar in 

Figure 5.3 represents expression energy of a particular receptor subtype combined 

across all brain structures involved in reward processing (Chapter 5, Brain 

Structures Associated with the Reward Circuit). 

Of all receptor genes assessed, Htr2c had the highest expression energy 

values within the serotonergic system, followed by Drd1a and Drd2 within the 

dopaminergic system (Figure 5.3). Htr2c reported as highest in the ABA may be 

explained its characterized high levels of constitutive activity across the 

mesolimbocortical pathway (Katsidoni, Apazoglou et al. 2011). As for Drd1a and 

Drd2, those receptors have been most abundantly expression throughout the brain 

compared to the rest of the dopamine receptors according to previous reporting 

(Baik 2013), consistent with ABA results (Figure 5.3). 

In the examined brain structures associated with reward processing, 

dopamine receptor expression energy was more centralized in ACB and serotonin 

receptor expression energy was more distributed across brain structures (Figure 

5.4). Though debatable (Salamone, Correa et al. 2005), a critical portion of reward 



136 
	
  
 

processing is encoded in ACB and is mediated through the actions of dopamine 

(Gale, Shields et al. 2014). This may suggest why there is an abundant amount of 

dopamine receptor expression energy found in the ACB compared to the other brain 

structured involved in reward processing (Figure 5.4). In contrast, expression of 

serotonin receptors was distributed across the studied brain structures (Figure 5.4). 

While there is evidence to support the functional importance of serotonin in reward-

seeking behavior (Cools, Nakamura et al. 2011; Nakamura 2013), developing a 

formal framework for understanding its precise role remains challenging because, 

perhaps, its nearly equal, widespread receptor distribution across the reward 

circuit. 

 
Figure 5.3. Total Gene Expression Energy of Dopamine and Serotonin Receptors Across 
All Brain Structures Associated with Reward Processing. Gene expression values for each 
brain structure were collapsed into a single receptor subtype 
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Individual Receptor Expression 

To reveal which receptor subtype is contributing to the expression profiles in 

Figure 5.3 and 5.4, the expression energy of each gene per brain structure was 

examined (Figure 5.5). 

Though serotonin may seem distributed across all brain structures (Figure 

5.4), separating each expression profile by subtype revealed only a few receptors 

responsible for its distributed profile: Htr1a, Htr1f, Htr2a and Htr2c (Figure 5.5). 

The remaining serotonin receptors, particularly Htr5a, Htr5b, Htr6 and Htr7, are 

not contributing much to the overall expression profile (Figure 5.5).  

 
 
Figure 5.4. Total Gene Expression Energy of Dopamine and Serotonin Receptors per 
Brain Structure Associated with Reward Processing. Gene expression values for every 
receptor subtype were collapsed into a single brain structure. 
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Figure 5.5. Individual Gene Expression Profile of Dopamine and Serotonin Receptors 
Across Brain Structures Associated with Reward Processing. The brain structures are 
arranged in the same order across all subplots as displayed in the bottom row. Values on the y-axis 
represent expression energy. 
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In regards to dopamine, the expression energy of Drd1a and Drd2 is 

predominately found in ACB (Figure 5.5). As previously mentioned in Figure 5.3, 

this observation is in line with evidence that Drd1a and Drd2 are most prevalent 

throughout the brain, contributing greatly to reward-related behaviors (Baik 2013). 

In addition to profiling individual receptor subtypes, proportions of 

expression energy within reward processing brain structures were visualized using 

the ABADV introduced in Chapter 4 (Figure 5.6). Each portion (quantity of 

expression energy in a brain structure) within a chart (gene) is colored differently 

depending on its parent brain structure according to the Allen Reference Atlas 

(Dong 2008). This color-coding resulted in five different categories: Interbrain, 

Midbrain, Cerebral Cortex, Striatum and Pons. Structures in red fall under the 

Interbrain region, which include HY and LH. Structures in green represent 

Cerebral Cortex areas, which include BLA, HIP, ILA, and PL. Structures in blue 

represents regions in the Striatum, which include MEA, CEA, LS, and ACB. 

Structures in light purple come from the Midbrain, which include VTA, SNc, SNr, 

and DR. LDT is all by itself in the Pons, colored in light orange. 

Overall, the distribution of expression energy varied tremendously within 

and between each receptor subtype with no emerging patterns. However, brain 

structures associated with the dopaminergic mesolimbic-cortical pathway stood out 

in high proportions across several receptors. The mesolimbic-cortical pathway 

originates in VTA and projects to ACB, ILA, and PL, responsible for value-gained 

decision-making and processing aversive stimuli (Brooks and Berns 2013; 
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Nakamura 2013). Drd1a, Drd2, Drd3, Drd5 and Htr1b contained a high proportion 

of ACB compared to other brain structures. Drd4, Htr1d, Htr5a and Htr7 featured 

ILA as its highest proportional brain structure. Drd4, Htr1f, Htr2a and Htr2b had a 

high proportion of expression energy found in PL. 

 

 
 
Figure 5.6. Proportions of Brain Structures Associated with Reward Processing Across 
Dopamine and Serotonin Receptor Gene Expression. Each pie chart represents a receptor 
subtype and each portion within a pie chart represents a brain structure and the width of each 
portion represents the total amount of expression energy of the gene relative to other brain 
structures within the same gene. Brain structures were colored based on their Allen Reference Atlas 
(Dong 2008). 
 
Hierarchical Clustering Analysis 

 To identify any functional-structural relationships between dopamine, 

serotonin and brain structures associated with reward processing, a hierarchical 

cluster analyses was performed (Figure 5.7). As described in Chapter 3, performing 

a cluster analysis merges similar groups of brain structures into a binary tree of 

data that provides a useful summary of similarity within groups and dissimilarity 
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between groups. New functional-structural relationships about reward processing 

may surface by joining or "clustering" similar brain structures based on data. 

Overall, several structures that clustered together based on expression 

energy also formed identical clusters based on anatomical location and parent 

structure (Figure 5.7). VTA, SNc and SNr, as well as PL and ILA, clustered across 

gene expression, anatomical location, and shared parent structure (Figure 5.7, 

purple and green). MEA and HY formed a cluster in terms of expression energy and 

anatomical location, but not based on their shared parent structure (Figure 5.7). 

CEA and LS, both part of the Striatum parent structure, clustered together based 

on expression energy, but in terms of anatomical location it was LS and ACB, also 

part of the Striatum, that clustered (Figure 5.7, blue). In general, these clusters 

may suggest that the expression profile of dopamine and serotonin receptors in 

brain structures from Striatum, Cerebral Cortex, and Midbrain are defined by their 

anatomical location. 
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Figure 5.7. Hierarchical Clusters of Dopamine, Serotonin and Centroid Location Based on 
Brain Structures Associated with Reward Processing. Cluster analysis were performed on 
energy expression data (top) and anatomical location (bottom). Brain structures were colored based 
on their shared parent structure according to the Allen Reference Atlas (Dong 2008).  
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Reward Circuit Network 

 In order to better analyze a complex network, Cytoscape.js, a Javascript 

library (Saito, Smoot et al. 2012), was used to visualize potential connectivity 

relationships between brain regions where dopamine and serotonin originate and 

brain structures involved in reward processing based on expression data from the 

ABA (Figure 5.8). Given a dopamine or serotonin source, one can infer the strength 

of either neuromodulator projection to a target area based on their receptor 

expression energy, for example by examining at the overall expression energy of D1 

family receptor gene expression energy in a target region of interest. 

Figure 5.8 is a depiction of the overall relationship between excitatory and 

inhibitory-mediated dopamine and serotonin receptor genes across brain structures 

involved in processing reward. Figure 5.8 uses the same coloring scheme featured in 

Figure 5.6 and 5.7, where brain structures were collapsed together based on their 

common parent structure, Midbrain, Cerebral Cortex, Striatum, Interbrain and 

Pons. These categories are encapsulated in nodes, where the Midbrain is the 

common parent structure for VTA, SNc, SNr and DR; the Cerebral Cortex is the 

common parent structure for PL, ILA, BLA, and HIP; the Striatum is the common 

parent structure for MEA, CAE, LS, and ACB; the Interbrain is the common parent 

structure for HY and LH; and the Pons is the parent structure of LDT. In addition 

to these five parent structure nodes, there are two source nodes: VTA and DR, 

which represent the source of dopamine and serotonin, respectively. Between each 

source node and parent structure node are two edges: an edge that ends with a 
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triangle, which represents its source node’s respective set of expression energy 

values whose subtype mediates excitatory neurotransmission (Drd1a, Drd5, Htr2a, 

Htr2b, Htr2c, Htr3a, Htr4, Htr6, Htr7); and an edge that ends with a circle, which 

represents its source node’s respective set of expression energy values whose 

subtype mediates inhibitory neurotransmission (Drd2, Drd3, Drd4, Htr1a, Htr1b, 

Htr1d, Htr1f, Htr5a, Htr5b). The width of each edge denotes the total amount of 

expression energy value. 

 
Figure 5.8. Network Graph of the Reward Circuit Based on Dopamine and Serotonin 
Receptor Gene Expression Energy. Edges with a triangle as its endpoint denote an excitatory 
connection and edges with a circle as its endpoint denote an inhibitory connection. Size of each edge 
represents the amount of expression energy. Parent structures were colored according to the Allen 
Reference Atlas (Dong 2008). 
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Serotonin has more influence in brain structures associated with reward 

processing compared to dopamine (Figure 5.8). While excitatory and inhibitory 

dopamine seems to have the most influence in the Striatum (particularly ACB in 

Figure 5.4), and to a lesser extent in the Midbrain, where it is mostly mediated by 

inhibitory DA neurotransmission as opposed to both, excitatory and inhibitory 

serotonin were more prevalent in not just the Striatum and Midbrain, but also 

completely dominate in the Cerebral Cortex and Interbrain compared to dopamine 

(Figure 5.8). Pons, which is only comprised of LDT, received the least amount of 

expression energy, though excitatory serotonin still favors in its influence compared 

to inhibitory serotonin and dopamine (Figure 5.8). Compared to dopamine, perhaps 

serotonin’s role in the reward circuit is more important than speculated (Alex and 

Pehek 2007; Nakamura 2013). 

 
Figure 5.9. Network Graph Between Ventral Tegmental Area and Dorsal Raphe. Edges with 
a triangle as its endpoint denote an excitatory connection and edges with a circle as its endpoint 
denote an inhibitory connection. Size of each edge represents the amount of expression energy. 
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Examining more closely at the interaction of these neuromodulators, the ABA 

revealed that serotonin has a stronger influence than dopamine between and within 

their site of origins (Figure 5.9). Excitatory dopamine receptors have low expression 

in VTA and DR, while excitatory serotonin receptors are more expressed in both 

(Figure 5.9, left). A similar relationship also exists for their inhibitory counterparts, 

though inhibitory dopamine receptors are more expressive compared to excitatory 

dopamine receptors (Figure 5.9, right). The strong presence of serotonin receptor 

expression energy in these areas suggests that the activity of neurons in these 

regions is more strongly regulated by serotonin than by dopamine. 

Discussion 

 An exploratory ABA survey of receptor expression energy was conducted 

using data from the dopaminergic and serotonergic systems in anatomical regions 

that are associated with reward processing. Under the assumption that the amount 

of expression energy in a given brain structure is indicative of its function, the ABA 

results revealed several implications that both support and challenge arguments 

surrounding the reward circuit.  

Both excitatory and inhibitory serotonin receptors expressed high energy 

across all brain structures investigated. Contrary to the belief that dopamine is the 

principal neuromodulator for reward-related behavior, serotonin’s expression profile 

suggest that it also plays a principal role in reward processing. On the other hand, 

expression energy of dopamine receptors was limited to ACB and to a lesser extent 

in midbrain VTA and SNc. This suggests dopamine is selectively involved in reward 



147 
	
  
 

processing, and not across the reward circuit. Moreover, receptor subtypes Htr2c, 

Drd1a and Drd2 were most expressed, while the remaining subtypes were 

considerably less expressed. These individual receptor profiles disambiguate the 

importance of receptor subtype in reward processing regions. In addition, based on 

expression energy, anatomical location and parent structure, the midbrain VTA, 

SNc and SNr, as well as cerebral cortex PL and ILA, formed a cluster based on 

similarity. This clustering of data suggests a structural-functional relationship 

amongst the midbrain and cerebral cortex regions. Together, the ABA filled in many 

missing data that was not reported or went undetected in rodent brain ISH studies. 

Given the results, there is perhaps an indication that, between the two 

neuromodulators, it is serotonin driving the overall neuronal activity in the reward 

circuit (Figure 5.7). This assertion is in support of other studies that challenge the 

simplified view of DR serotonin neurons and its lack of involvement in reward 

processing (Balasubramani, Chakravarthy et al. 2014; Liu, Zhou et al. 2014; 

Macoveanu 2014). Though other methodologies were used to explore serotonin’s role 

in reward, no one has quantitatively reported precisely how much influence each 

serotonin receptor subtype has in each reward processing brain structure. The 

quantitative expression energy data presented in this survey contributes by 

favoring serotonin’s involvement with reward from a molecular perspective. 

Unexpectedly, expression of dopamine receptors was not as robust as 

literature would suggest. Perhaps an explanation for the disparity in dopamine 

receptor expression may stem from its functional connectivity profile, rather than 
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its level or receptor expression. Chapter 3 explored the interaction between the 

neuromodulatory system, including dopaminergic, serotonergic, cholinergic and 

noradrenergic, and identified both substantia nigra (where acetylcholine originates) 

and ventral tegmental area as a hub, or “rich club” of neuromodulation (van den 

Heuvel and Sporns 2011). Despite relatively low expression values, the hierarchical 

clustering analysis in this survey did reveal that VTA, SNc and SNr formed a tight 

cluster together based on its expression profile, anatomical location and shared 

parent structure (the Midbrain). This may open up the argument that perhaps 

dopaminergic innervation may work as an ensemble in order to process rewarding 

signals, as opposed to separate projections. 

 Similar to the contribution made in Chapter 3, the comprehensive ABA 

allowed the present survey to fill in many gaps in the knowledge of ISH 

dopaminergic and serotonergic receptor gene expression (Figure 5.2). Furthermore, 

the ABA’s standardization and consolidation of numerous ISH experiments more 

readily allows comparison of gene expression across multiple brain regions. With 

the ABA and this survey, this information is now curated for other researchers to 

corroborate results and promote discovery of dopamine and serotonin involvement 

in reward-related behaviors.  
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CONCLUSIONS 

This dissertation set out to investigate the interaction of neuromodulators 

and their role in modulating fundamental behaviors by using computational 

modeling, game theory, embodiment, pharmacological manipulations, and 

neuroinformatics. While much is known about neuromodulators, their structural 

and functional implications in fundamental behavior are still not clear. This final 

chapter will review the research contributions of this dissertation, as well as discuss 

new directions for future research. 

Contributions 

Chapter 1 introduced a novel computational model that investigated how 

dopamine and serotonin shaped competitive and cooperative situations in game 

theoretic environments. This computational model was based assumptions that 

dopaminergic activity increases as expected reward increases, and serotonergic 

activity increases as the expected cost of an action increases. Results from Chapter 

1 agreed with proposed theoretical work (Boureau and Dayan 2011), in which the 

influence of serotonergic and dopaminergic systems are sometimes in opposition. 

Yet, this opposition is necessary for the model to select appropriate actions. This 

model was capable of predicting how the neuromodulatory systems shape decision-

making and adaptive behavior in competitive and cooperative situations. 

Chapter 2 adopted the computational model from Chapter 1 to conduct a 

human subject experiment. The study put human subjects up against an adaptive 

model that did not depend on fixed strategies in games of conflict. The study was 
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designed to gauge subjects’ reactions to playing against adaptive agents, as well as 

measuring the influence of embodied agents on game play. Chapter 2 involved ATD, 

a dietary manipulation that temporarily lowers serotonin levels in the human 

central nervous system, resulting in decreased cooperation and lowered harm-

aversion (Wood, Rilling et al. 2006; Crockett, Clark et al. 2008). When playing 

against an aggressive version of the model, there was a significant shift in the 

subjects’ strategy. Subjects also became retaliatory when confronted with agents 

that tended towards risky behavior. These results highlighted the important 

interactions between subjects and agents utilizing adaptive behavior. Moreover, like 

in Chapter 1, the study revealed neuromodulatory mechanism that gives rise to 

cooperative and competitive behaviors.  

Chapter 3 investigated functional activity of these neuromodulatory circuits 

by exploring the expression energy of cholinergic, dopaminergic, noradrenergic, and 

serotonergic receptors. Expression energy data from these neuromodulatory 

receptors were examined in the amygdala, which is thought to be a major target of 

neuromodulation, and within the sources of neuromodulation themselves, which are 

all are localized in small subcortical nuclei. Based on these assumptions, 

connectivity relationships can be inferred by examining the expression energy of 

receptors specific to those neuromodulatory systems. The survey was conducted 

using the Allen Mouse Brain Atlas (ABA) as a resource to obtain expression energy 

data. Results revealed that the substantia innominanta, amygdala and ventral 

tegmental area all displayed high receptor expression across the classic 
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neuromodulatory systems. In contrast, the locus coeruleus displayed low receptor 

expression energy overall. The expression of cholinergic receptors, in particular, was 

an order of magnitude greater than other neuromodulatory receptors. The 

comprehensive analysis proposed connectivity relationships, identifying substantia 

innominanta and ventral tegmental area as the main hubs of neuromodulation 

activity. The analysis also reported receptor localization in brain regions that were 

previously undetected according to literature. The methodology presented here may 

be applied to other neural systems with similar characteristics, and to other animal 

models as these brain atlases become available. 

Inspired by challenges encountered in retrieving and analyzing expression 

energy data in Chapter 3, a web application called the Allen Brain Atlas-Driven 

Visualization (ABADV) was implemented in Chapter 4. ABADV was developed to 

extend the ABA by providing users with a quick and intuitive way to survey large 

amounts of expression energy data across multiple brain regions of interest. Though 

the ABA offers their own search engine and software for researchers to view their 

growing collection of online public data sets, many of their tools limit the amount of 

genes and brain structures researchers can view at once. Researchers can use 

ABADV to immediately obtain and survey numerous amounts of expression energy 

data from the ABA. ABADV was demonstrated by querying available dopamine and 

serotonin receptor genes. This query helped identify prevalent genes and brain 

structures that may otherwise be obscured in other types of visualizations. By 

creating this web application, researchers can immediately obtain and survey 
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numerous amounts of expression energy data from the ABA, which they can then 

use to supplement their work or perform meta-analysis. 

Chapter 5 continued exploring the interaction of dopamine and serotonin by 

focusing specifically on the reward circuit. Using similar methodologies from 

Chapter 3 and 4, dopaminergic and serotoninergic receptor gene expression energy 

were retrieve from the ABA across available brain structures associated with 

reward processing. This survey was based on the notion that the ventral tegmental 

area and dorsal raphe, the site of origin for dopamine and serotonin respectively, 

both receive common inputs and innervate common output regions that have been 

shown to process rewards. Between the two neuromodulators, it was a select subset 

of serotonin receptors that was overall more expressed across the reward circuit, 

which may suggest serotonin having a principal involvement in reward processing. 

To the contrary, dopamine receptors were almost exclusively designated in the 

nucleus accumbens, which may suggest selective involvement in reward processing. 

However, the ventral tegmental area, substantia nigra pars compacta, and 

substantia nigra pars reticulata all clustered together based on similar expression 

profile, as well as anatomical location, suggests a dopaminergic sub-circuit that 

projects to reward circuit regions. Lastly, much like in Chapter 3, the ABA helped 

clear up discrepancies from rodent brain-based literature reporting of dopamine and 

serotonin receptor gene expression data in the reward circuit by filling in the 

missing gaps of expression energy profile information. 



164 
	
  
 

The key findings of each chapter help contribute their share of knowledge on 

the interaction of neuromodulators and its role in modulating fundamental 

behaviors. Though each chapter took a very different approach (computational 

modeling, game theory, embodiment, pharmacological manipulations and 

neuroinformatics), they all shed new light from their own perspectives. Chapters 1 

and 2 provided a more behavioral understanding of how dopamine and serotonin 

interacts, what that interaction might look like in the brain, and how those 

interactions transpire in complex situations. Chapters 3, 4, and 5, on the other 

hand, used an informatics approach to reveal the underlying empirical structure 

and function behind the interactions of dopamine, serotonin, acetylcholine and 

norepinephrine in brain regions responsible for the behaviors witnessed in Chapters 

1 and 2. 

When combined, each perspective provides an additional level of 

understanding regarding neuromodulators. This is of great importance because 

neuroscience simply cannot be explained through one methodology. It is going to 

take a multifaceted effort, like the one presented in this dissertation, to obtain a 

deeper understanding of the complexity behind neuromodulators and their 

structural and functional relationship with one another. For instance, Chapters 1 

and 2 demonstrated that computational modeling, alongside dietary manipulations, 

embodiment and game theory, can serve as a great apparatus for investigating 

complex behaviors. But how can these approaches inform us about the distribution 

of inhibitory versus excitatory neurotransmitter receptors, which is information 
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needed in the first place to accurately model the system under study? This is 

especially crucial to someone conducting a computational modeling study, as they 

likely want their model to fully adhere to the biological constraints of the 

mammalian brain. Doing so would lead to more definitive, rather than speculative, 

predictions about brain phenomena. Thereby, one might want to combine the 

empirical findings from Chapters 3, 4 and 5 to refine the models from Chapters 1 

and 2, which can then help in developing better treatment for patients with brain-

related disorders, or technical applications that utilize brain-like computations to 

perform tasks.  

Future Research 

 Investigating the complexities of neuromodulatory systems using various 

techniques from various disciplines provides a natural guide to future research. 

While other researchers may investigate neuromodulatory systems using 

electrophysiology, pharmacology, genetics, brain imaging, or other techniques in 

neuroscience, this dissertation took a multidisciplinary approach, emphasizing the 

combination of neuroscience, computation, embodiment and informatics to answer 

questions about the interaction of neuromodulators. Other researchers could adopt 

a similar approach and combine these resources to either study a biological 

question; develop and evaluate a new method; or integrate, annotate and analyze 

data to build new data resources (Rung and Brazma 2013). This approach may also 

accelerate scientific and technological progress, which could result in major clinical 

and economical benefits. As time and resources are spent more in viewing and 
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integrating data in novel dimensions, research could become less duplicative and 

enable more theoretical considerations of these neuromodulatory systems and their 

underlying structural and functional mechanisms. Utilizing various techniques and 

publicly accessible data may provide a strong approach toward making predictions 

about the neurobiology that ties neuromodulators to motivated behavior. 

 The computational models in Chapter 1 and 2 were rather abstract and could 

benefit from incorporating additional empirical data collected from the mammalian 

brain studies (Asher, Craig et al. 2013). For instance, functional data from 

neuroimaging studies can help turn computational models to more biologically 

realistic by revealing the specific brain areas active during select behaviors. Single 

unit recording studies in animals can also inform these computational models on 

how they dictate the more granular neural behavior within each modeled brain 

region. Empirical data provides the base assumptions that guide the neural 

behavior and architecture of computational models, making these models more 

biologically realistic. Improved biological plausibility can increase the efficacy of 

theoretical predictions made by our models, resulting in better theories to be tested 

through future neurophysiological and neuroimaging experiments. 

 Much research also remains to be done in investigating the role of serotonin 

and dopamine in the reward circuit. Numerous studies have reported that 

dopamine activations are primarily driven by reward, which in turn causes 

dopamine to regulate emotional and motivational behavior through the mesolimbic-

cortical pathway (Baik 2013; Schultz 2013). As discussed in Chapter 5, though there 
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are many arguments that also support the role of serotonin in modulating these 

same behaviors through the same pathway, the specific mechanisms by which 

serotonin is having an affect is unclear (Cools, Nakamura et al. 2011; Nakamura 

2013). Under the assumption that the more expression found in a particular gene 

the more functional responsibility that gene has in a brain area, results from 

surveying the ABA in Chapter 5 suggest that serotonin was responsible for the 

functional activity of brain areas associated with reward processing. Future work 

may further this neuroinformatics approach by analyzing other genes involved in 

the signaling of dopamine and serotonin beyond receptors, such as genes involved in 

the reuptake or transporting of these neurotransmitters. This may verify the exact 

quantitative profile of these neuromodulators in the reward circuit. 
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