
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Downclocking WiFi to Improve Energy Efficiency in Mobile Devices /

Permalink
https://escholarship.org/uc/item/7c83n5cg

Author
Lu, Feng

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7c83n5cg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Downclocking WiFi to Improve Energy Efficiency in Mobile Devices

A dissertation submitted in partial satisfaction of the

requirements for the degree of Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Feng Lu

Committee in charge:

Professor Tara Javidi, Co-Chair

Professor Alex C. Snoeren, Co-Chair

Professor Geoffrey M. Voelker, Co-Chair

Professor Ramesh Rao

Professor Stefan Savage

2014

Copyright

Feng Lu, 2014

All rights reserved.

The Dissertation of Feng Lu is approved and is acceptable in quality and

form for publication on microfilm and electronically:

Co-Chair

Co-Chair

Co-Chair

University of California, San Diego

2014

iii

DEDICATION

To my wife who is always there for me.

iv

EPIGRAPH

The best way to predict the future is to invent it.

Alan Kay

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1

1.1 Downclocking . 3

1.2 Contribution . 4

1.3 Organization . 7

Chapter 2 Background and Motivation . 9

2.1 A Communication System Primer . 9

2.2 WiFi Overview . 11

2.2.1 Physical Layer . 12

2.2.2 Rate Selection . 14

2.2.3 Media Access Control . 14

2.3 The Potential of Downclocking . 15

2.4 Downclocked Transmission . 18

2.5 Related Work . 19

2.5.1 Efficient Power Save Modes . 20

2.5.2 Device Duty Cycling . 21

2.5.3 Transmission Power Control . 21

2.5.4 Downclocking . 22

2.6 Summary . 23

Chapter 3 Downclocking 802.11b . 24

3.1 Reception . 24

3.1.1 DSSS Modulation . 25

3.1.2 Compressive Sensing . 27

vi

3.2 Transmission . 29

3.3 Practical Design Considerations . 32

3.3.1 Fixed-Length Integrate-and-Dump . 33

3.3.2 Synchronization . 34

3.4 Interacting with Existing Networks . 35

3.4.1 Rate Selection . 35

3.4.2 Protocol Interactions . 36

3.5 Network Impacts . 37

3.6 Prototype . 38

3.6.1 Implementation . 38

3.6.2 Phase Tracking & Automatic Gain Control 39

3.6.3 Experimental Evaluation . 40

3.7 Summary . 49

Chapter 4 Downclocking 802.11a/g . 50

4.1 Harnessing Aliasing . 51

4.1.1 Downclocked OFDM Modulation . 51

4.1.2 Decoding Aliasing Induced Modulation . 55

4.2 WiFi Reception . 56

4.2.1 Frame Structure . 56

4.2.2 Reception Pipeline . 57

4.3 Downclocking WiFi . 58

4.3.1 Timing Synchronization . 58

4.3.2 Frequency Compensation . 62

4.3.3 Channel Estimation . 63

4.3.4 Phase Compensation . 64

4.3.5 Data Precoding . 64

4.3.6 Additional Considerations . 67

4.4 Implementation . 69

4.4.1 Sender . 69

4.4.2 Receiver . 70

4.4.3 Network interactions . 72

4.5 Evaluation . 73

4.5.1 Microbenchmark Results . 74

4.5.2 Prototype System Evaluation . 77

4.6 Summary . 86

Chapter 5 Energy Consumption Evaluation . 87

5.1 Methodology . 87

5.1.1 WiFi Power Model . 88

5.1.2 Smartphone App Traces . 89

5.2 SloMo Energy Consumption . 90

5.3 Network Impact . 95

vii

5.4 Alternative Approaches . 96

5.5 Extending Energy Saving with Enfold . 98

5.6 Summary . 101

Chapter 6 Conclusion and Future Work . 103

6.1 Future Directions . 105

Bibliography . 107

viii

LIST OF FIGURES

Figure 2.1. DSSS modulation waveform. 12

Figure 2.2. A simplified WiFi card architecture. 17

Figure 3.1. Baseband processing Tx chain . 25

Figure 3.2. Original and modified baseband Rx processing chain. Compared

to the original Rx chain, the modified chain adds an additional

integrate-and-dump component and replaces the De-spreading part

with the compressive sensing decoder. 26

Figure 3.3. Spreading sequences of various lengths, including the 802.11-

standard eleven chip Barker sequence and the Barker-like sequences

used by SloMo when downclocked accordingly. 31

Figure 3.4. Power spectrum density comparison between standard 802.11b

and downclocked Barker-like transmission for real WiFi packets

captured (downclocking rate: 27.2%). 32

Figure 3.5. Frame reception rates using downclocked compressive sensing at

SloMo node for packets sent by commercial WiFi device. As a

baseline, the 100% clock rate corresponds to using the default

802.11b implementation. 42

Figure 3.6. Frame reception rates at commercial WiFi device for packets sent

by SloMo node using downclocked Barker-like transmission. As

a baseline, the 100% clock rate corresponds to using the default

802.11b implementation. 43

Figure 3.7. UDP throughput using iperf sending packets from the commercial

WiFi device to the SloMo Sora node using downclocked reception

with compressive sensing. 45

Figure 3.8. Comparing UDP throughput when sending from two different com-

mercial WiFi devices to the SloMo Sora node. 46

Figure 3.9. The Mean Opinion Score (MOS) for VoIP calls using Skype at

different downclocked rates and network conditions. The SloMo

node uses both downclocked reception and transmission. 47

ix

Figure 4.1. Frequency response (constellation diagrams) on subcarrier 6 for

two real WiFi packets under 50 and 25% downclocking. Notice

how the constellation diagram changes as clock rate decreases. . . . 54

Figure 4.2. WiFi (802.11a/g) packet structure. 56

Figure 4.3. Correlation responses at 100%, 50% and 25% clock rates for raw

data samples of a real WiFi packet captured by Universal Software

Radio Peripheral (USRP). 61

Figure 4.4. WiFi packet structure for both original and precoded versions. Note

that our modifications are restricted to the data payload only (gray

area). 70

Figure 4.5. Timing synchronization offset error with downclocking at 50% and

25%. 76

Figure 4.6. Cumulative distribution function (CDF) of normalized blocking

distance (relative to 100%) for 2,000 WiFi packets. 78

Figure 4.7. Packet reception rate as a function of SNR. 81

Figure 4.8. Raw packet reception ratio for different clock rates at five different

locations. 83

Figure 4.9. PRR with additional known bits on subcarriers for a 25% down-

clock rate (SNR = 30dB). The right y-axis shows the corresponding

effective throughput. 85

Figure 5.1. Energy cost of various apps under 802.11 power save mode (PSM)

and SloMo (Google Nexus S). For each app, the upper bar cor-

responds to the breakdown of energy consumption under 802.11

PSM while the lower bar corresponds to SloMo. 91

Figure 5.2. Energy cost of various apps under 802.11 power save mode (PSM)

and SloMo (iPhone 4S). For each app, the upper bar corresponds

to the breakdown of energy consumption under 802.11 PSM while

the lower bar corresponds to SloMo. 92

Figure 5.3. PDFs of the IFT for a selected set of apps on Neuxs S. We remove

the inter frame time (SIFS) between DATA and acknowledge (ACK)

frame for better presentation. IFTs larger than a sleep period are

also removed. 93

x

Figure 5.4. Comparing the timing breakdown for various apps under 802.11

PSM (upper bar) and SloMo on Google Nexus S (lower bar). The

number at the end of the bar group shows the free channel airtime

contraction ratio, the lower the better with 1.0 as the minimum. . . 95

Figure 5.5. Comparing energy consumption among PSM, E-MiLi and SloMo

on the Nexus trace set. 97

Figure 5.6. Energy comparison among PSM, SloMo, and Enfold. We also

include a hypothetical case where the downclocked reception data

rate is 54 Mbps and PRR is 100%. Results are normalized with

respect to PSM. 99

xi

LIST OF TABLES

Table 2.1. Power draw of the Atheros 5414 WiFi chipset in the LinkSys network

interface controller (WPC55AG) at various clock rates [70]. 18

Table 4.1. Probability of detection Pd with different SNRs at 50% and 25%

downclock rates. 74

Table 5.1. WiFi Power Characteristics . 88

xii

ACKNOWLEDGEMENTS

I am deeply indebted to my advisors Professor Alex C. Snoeren and Geoffrey

M. Voelker. I would like to thank them for taking a chance on me, and letting me sit

in the driver seat while still providing sufficient guidance to steer my research towards

the right direction. Their generous help, encouragements, understanding, and patience

have constantly been a great source of motivation during my graduate study. I benefit

tremendously from their feedback during our fruitful weekly meetings, and am always

amazed on how fast they could understand my material and the fresh perspectives they

provide. I further thank them for the many editing rounds on our co-authored papers

before submission deadlines, no matter how inconvenient the time had been for them.

Outside work, they are also extremely supportive and helpful for many of my personal

decisions.

I would also like to thank Professor Tara Javidi, Ramesh Rao and Stefan Savage

for being part of my committee and their invaluable feedback on this dissertation. I

also want to acknowledge Dr. Curt Schurgers for his guidance in my first two years of

graduate school and Professor George Porter for sharing his knowledge on networking.

The journey of graduate study would have been much less enjoyable without

the companionship from friends and fellow graduate students. I have some awesome

office mates, who have made my day-to-day grad life refreshing. And here they are:

Alvin AuYoung, Ryan Braud, Peng Huang, Yang Liu, Damon McCoy, Andreas Pitsillidis,

Bhanu Vattikonda, Michael Vrable, and David Wang. Many people in UCSD have helped

me in different ways: Yuvraj Agarwal, Michael Conley, Danny Huang, Do-kyum Kim,

Terry Lam, Xiao Ma, John McCullough, Sivasankar Radhakrishnan, Alex Rasmussen,

Daniel Turner, Patrick Verkaik, Dawei Wang, Kevin Webb, Yu Xiang, Tianyin Xu, Ding

Yuan and Qing Zhang. Yichao Huang and Wei Guan deserve special mention for being

such great friends, and I am always grateful for their help offered in numerous occasions.

xiii

I had great fun working with Rishi Kapoor, Patrick Ling, He Liu, Diba Mirza,

Malveeka Tewari and Jiaqi Zhang on our co-authored papers. I want to extend my special

thanks to Hao Du and Dr. Andreas Terzis for their help, guidance and warmness during

my internship in Google. Also greatly appreciate the prompt assistance from our sysnet

staff Brian Kantor, Cindy Moore and Jennifer Folkestad.

I am particularly thankful to my parents for their love, care and principles instilled

on me. Finally, this dissertation would not be possible without the selfless support from

my wife, Lijuan, it is to her this dissertation is dedicated.

Chapter 2, 3, and 5, in part, are a reprint of the material as it appears in Proceedings

of the USENIX Symposium on Networked Systems Design and Implementation 2013.

Lu, Feng; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was the

primary investigator and author of this paper.

Chapter 2, 4, and 5, in part, are a reprint of the material as it appears in Proceedings

of the ACM Annual International Conference on Mobile Computing and Networking

2014. Lu, Feng; Ling, Patrick; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation

author was the primary investigator and author of this paper.

xiv

VITA

2006 Bachelor of Engineering, Computer Engineering

Nanyang Technological University, Singapore

2010 Master of Science

Electrical Engineering (Computer Engineering)

University of California, San Diego

2014 Doctor of Philosophy

Electrical Engineering (Computer Engineering)

University of California, San Diego

PUBLICATIONS

Feng Lu, Patrick Ling, Geoffrey M. Voelker, Alex C. Snoeren. “Enfold: Downclocking

OFDM in WiFi”. Proceedings of the 20th ACM Annual International Conference on

Mobile Computing and Networking (MobiCom), Maui, HI, Sep 2014.

Feng Lu, Geoffrey M. Voelker, Alex C. Snoeren. “Managing Contention with Medley”.

To Appear in the IEEE Transactions on Mobile Computing.

He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker,

George Papen, Alex C. Snoeren, George Porter. “Circuit Switching Under the Radar with

REACToR”. Proceedings of the 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), Seattle, WA, Apr 2014.

Haifeng Lu, Feng Lu, Chuan Heng Foh, Jianfei Cai. “LT-W: Improving LT Decoding

with Wiedemann Solver”, IEEE Transactions on Information Theory, Volume 59, Issue

12, Pages 7887-7897, Dec 2013.

Feng Lu, Geoffrey M. Voelker, Alex C. Snoeren. “SloMo: Downclocking WiFi Commu-

nication”. Proceedings of the 10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), Lombard, IL, Apr 2013.

Feng Lu, Jiaqi Zhang, Stefan Savage. “When Good Services Go Wild: Reassembling

Web Services for Unintended Purposes”. Proceedings of the 7th USENIX Workshop on

Hot Topics in Security (HotSec), Bellevue, WA, Aug 2012.

xv

Feng Lu, Geoffrey M. Voelker, Alex C. Snoeren. “Weighted Fair Queuing with Differ-

ential Dropping”. Proceedings of the 31st Annual IEEE International Conference on

Computer Communications (INFOCOM) Mini-conference, Orlando, FL, Apr 2012.

Feng Lu, Diba Mirza, Curt Schurgers. “D-Sync: Doppler-Based Time Synchronization

for Mobile Underwater Sensor Networks”. Proceedings of the 5th ACM International

Workshop on Underwater Networks (WUWNET), Woods Hole, MA, Oct 2010.

Feng Lu, Sammy Lee, Jeffrey Mounzer, Curt Schurgers. “Low-cost Medium-Range

Optical Underwater Modem”. Proceedings of the 4th ACM International Workshop on

Underwater Networks (WUWNET), Berkeley, CA, Nov 2009.

Feng Lu, Chuan Heng Foh, Jianfei Cai, Liang-Tien Chia. “LT Codes Decoding: Design

and Analysis”. Proceedings of the IEEE International Symposium on Information Theory

(ISIT), Seoul, Korea, Jun 2009.

Lijuan Geng, Feng Lu, Ying-Chang Liang, Francois Chin. “Secure Multi-path Con-

struction in Wireless Sensor Networks using Network Coding”. Proceedings of the 19th

IEEE International Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), Cannes, France, Sep 2008.

Feng Lu, Liang-Tien Chia, Kok Leong Tay, Wai Hoe Chong. “NBgossip: an Energy-

efficient Gossip Algorithm for Wireless Sensor Networks”. Springer Journal of Computer

Science and Technology, Volume 23, Issue 3, Pages 426-437, May 2008.

Feng Lu, Lijuan Geng, Liang-Tien Chia, Ying-Chang Liang. “Poster: Secure Multi-path

in Sensor Networks”. Proceedings of the 5th ACM Conference on Embedded Network

Sensor Systems (Sensys), Sydney, Australia, Nov 2007.

Feng Lu, Liang-Tien Chia, Kok Leong Tay. “NBGossip - Neighborhood Gossip with

Network Coding Based Message Aggregation”. Proceedings of the 4th IEEE Interna-

tional Conference on Mobile Ad-hoc and Sensor Systems (MASS), Pisa, Italy, Oct 2007.

Feng Lu, Liang-Tien Chia. “Multimedia Web Services for an Object Tracking & High-

lighting Application”. Proceedings of the 13th International Multimedia Modeling

Conference (MMM), Singapore, Jan 2007.

xvi

ABSTRACT OF THE DISSERTATION

Downclocking WiFi to Improve Energy Efficiency in Mobile Devices

by

Feng Lu

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2014

Professor Tara Javidi, Co-Chair

Professor Alex C. Snoeren, Co-Chair

Professor Geoffrey M. Voelker, Co-Chair

As manufacturers continue to improve the energy efficiency of battery-powered

wireless devices, WiFi has become one of the most significant power consuming com-

ponents on them. Hence, modern devices fastidiously manage their radios, shifting into

low-power listening or sleep states whenever possible. Unfortunately, recent studies have

shown that a wide variety of popular applications make frequent and persistent use of the

network, frustrating attempts to keep the WiFi chipset in a power-efficient state. Even

a less chatty application like email could still constitute a significant source of energy

xvii

consumption. A fundamental limitation with current power-saving approaches is that the

radio is incapable of transmitting or receiving unless fully powered.

In this dissertation, I introduce a widely-used technique for energy savings in

CMOS, namely dynamic frequency scaling (DFS), to standards-compliant WiFi radios.

A fundamental limit that prevents decreasing the clock frequency in WiFi chipsets is

the Nyquist sampling theorem, which states that the sampling rate must be twice the

signal bandwidth. Leveraging the inherent sparsity in direct sequence spread spectrum

(DSSS) modulation in 802.11b, this dissertation proposes a transceiver design based

on compressive sensing that allows WiFi devices to operate their radios below the

Nyquist rate, thus consuming less power. Recognizing that modern WiFi chipsets are

shifting towards orthogonal frequency-division multiplexing (OFDM), I further extend

the benefits of DFS to OFDM communication systems. Based on my observations of

OFDM signaling, I show that the aliasing effect, resulting from undersampling, essentially

transforms the original per-subcarrier quadrature amplitude modulation (QAM) into a

more dense, but still decodable, QAM modulation.

I implement both the 802.11b DSSS-based (SloMo) and 802.11a/g OFDM-based

design (Enfold) on the Microsoft Sora platform, a full-stack programmable software-

defined radio. Both implementations are standards-compliant, and SloMo is also fully

backwards compatible with existing WiFi deployments. My experiments and evaluation

demonstrate that downclocking WiFi is both practical and beneficial, even when clock

rate is reduced by a factor of five. Specifically, my downclocked design can reduce energy

consumption by over 30% for many popular smartphone apps even with a deliberately

conservative power model.

xviii

Chapter 1

Introduction

Smartphones and other battery-powered wireless devices are becoming increas-

ingly popular platforms for all manner of network applications. As a result, the high

energy usage of the radios on these devices has become an imperative issue to be ad-

dressed. For example, Rozner et al. report that the base energy consumption of an HTC

Tilt 8900 series phone ranges from 155–475 mW depending on the display backlight

intensity. In comparison, for the same phone model, the WiFi radio consumes over

1000 mW when active [54]. Not surprisingly, a large number of techniques have been

proposed to help manage the power consumption of both cellular and WiFi radios. Focus-

ing particularly on the WiFi domain, the basic approach has been to implement extremely

low-power listening or sleep modes and transition devices into operational mode as little

as possible [22, 38, 54]. Unfortunately, recent studies have shown that a wide variety of

popular smartphone applications make frequent and persistent use of the network [45, 68],

frustrating attempts to keep the WiFi chipset in a power-efficient state.

Transitioning in and out of sleep mode adds significant overhead, both in terms

of time and energy. In particular, in addition to the costs associated with powering

up the transceiver, once awake the WiFi chipset still needs to participate in the carrier

sense multiple access (CSMA) channel-access scheme which frequently results in the

device spending significant time in idle listening mode waiting for its turn to access the

1

2

channel [38, 70]. Moreover, once a device is done transmitting or receiving, it will remain

in a tail state for some period of time in anticipation of subsequent transmissions [38, 45].

In the case of WiFi, idle power consumption is almost identical to that in transmission

(Tx) and reception (Rx) modes.

To amortize the cost of frequent state transitions, the 802.11 power save mode

(PSM) specification allows WiFi devices to save power by only waking up on the

granularity of the 100-ms access point (AP) beacon interval to check for incoming traffic.

Hence, while useful for bulk data transfers [22] or situations where traffic patterns can be

predicted precisely [51], PSM-style power saving approaches are often ineffective for

applications that need to send or receive data frequently [70]. Finally, even otherwise-

effective power saving mechanisms implemented by the WiFi chipset can be overridden

by applications in many popular frameworks [11, 12]: some apps prevent the WiFi device

from entering PSM mode, forcing the WiFi card to stay awake in an effort to improve

performance [17, 64].

Consequently, given how popular apps interact with the network and manage

power states, the WiFi radio spends a large fraction of time in high-power states (idle

state in particular). Furthermore, I observe that the data rates for many popular apps are

small—ranging from 10s to 100s of Kbps— compared to the channel capacity offered

by modern WiFi networks (e.g., ≥ 1 Gbps in 802.11ac). Traditionally, when faced with

low-demand clients, system designers have used excess channel capacity to improve

reception rates by introducing redundant coding and/or reducing transmission power. For

example, 802.11n specifies a wide variety of link rates, ranging from 1 to 150 Mbps

and beyond. The lower link rates use more robust encoding and signaling schemes that

can be decoded at lower signal-to-noise ratios (SNRs). These schemes translate into

longer range or the ability to decrease transmission power which, along with the potential

for power savings at the sender, can increase spatial reuse. Unfortunately, the amount

3

of energy saved by transmission power control is rather limited, primarily due to the

large asymmetry of WiFi traffic (dominated by the downlink traffic from access point to

clients [27]). Even for balanced traffic patterns such as those generated by voice over

Internet Protocol (VoIP) applications, transmission often consumes only a small fraction

of the overall energy for WiFi.

1.1 Downclocking

In this dissertation, I exploit a widely-used technique, namely dynamic frequency

scaling (DFS), to reduce the power consumption of WiFi chipsets. Given that the power

consumption of a complementary metal-oxide-semiconductor (CMOS) computing device

is proportional to its clock rate, modern central processing units (CPUs) dynamically

adjust their clock frequency to conserve power or to reduce the amount of heat generated

when the workload is light. Unlike CPUs, where the entire pipeline only handles digital

data, WiFi chipsets (or communication devices in general) need to interface with real-

world signals. A fundamental limit that prevents lowering the clock frequency is the

Nyquist(-Shannon) sampling theory, which dictates that the sampling rate must be at least

twice the occupied bandwidth of the signal. Therefore, the clock frequency of a WiFi

chipset is essentially gated by the Nyquist sampling rate, which suggests a minimum

clock frequency of 40 (80) Mhz for WiFi 802.11a/b/g(n).

After exploring the properties of WiFi signaling, this dissertation proposes a

number of techniques to bypass the Nyquist sampling rate constraint for WiFi chipsets.

Specifically, I observe that the information rate is eleven times smaller than the occupied

bandwidth in 802.11b under the direct sequence spread spectrum (DSSS) modulation

scheme. By leveraging this inherent information sparsity, I can decode the transmitted

information bits with fewer samples than the sampling theory requires using compressive

sensing. Unlike the DSSS signal, however, orthogonal frequency-division multiplexing

4

(OFDM) signals (used in 802.11a/g/n/ac) are extremely dense and the compressive sens-

ing technique is no longer applicable. I instead recognize that there exists well-defined

structure in terms of how the subcarriers fold up under aliasing due to undersampling. As

a result, aliasing essentially transforms the original per-subcarrier quadrature amplitude

modulation (QAM) into a more dense—but still decodable—QAM modulation.

To ensure correct WiFi medium access control (MAC) protocol interactions, the

WiFi transceiver needs to transmit packets at a reduced clock rate as well. Given that

signal spectrum is proportional to clock rate, a signal transmitted while operating in

downclocked state unavoidably yields a narrower bandwidth than a standard WiFi signal.

Fortunately, I find that there exists large design headroom in commercial WiFi chipsets

while decoding DSSS modulated WiFi packets. By carefully crafting the downclocked

signals given sufficient SNR, the excess design margin allows us to successfully convince

standards-compliant WiFi receivers that the incoming non-standard-conforming signals

are valid DSSS modulated signals. Therefore, I believe that it is feasible to realize

downclocked packet transmission and reception while being fully standards-compliant.

My thesis is that it is possible to save energy in mobile devices by applying dynamic

frequency scaling to the WiFi transceiver.

1.2 Contribution

Practical communications systems often involve more complex operations than

merely frame reception and transmissions. There are many other system-level compo-

nents, such as timing synchronization and phase compensation, that are critical for proper

packet decoding and encoding. For example, timing synchronization helps the receiver

to determine the correct symbol boundaries. Most of these functions involve direct

manipulation of raw channel samples. Given that the WiFi chipset was not designed to

operate in the downclocked mode, it remains questionable whether these components

5

would continue to work with reduced channel samples. In this dissertation, I systemat-

ically study the impact of downclocking on these components and suggest alternative

implementations if necessary.

Even if it were possible to implement downclocked WiFi transceivers, the effec-

tive SNR under downclocking is likely to be smaller than that at full clock rate due to

reduced channel samples. As a result, my downclocked design explicitly trades SNR

(and throughput indirectly) for energy savings. To understand whether such a trade-off is

worthwhile, I sample a wide range of popular smartphone apps and thoroughly evaluate

their energy-consumption behavior under downclocking.

In summary, this dissertation makes the following contributions:

• Although the signal spectrum is fully occupied, I observe that the information rate

is substantially smaller than the signaling rate for DSSS modulation in 802.11b. I

further notice that the DSSS modulation process is very similar to the decoding of

a sparse signal based on compressive-sensing techniques. Therefore, leveraging

the information sparsity in DSSS, I propose a compressive-sensing-based DSSS

reception pipeline inspired by a previous design [62]. My downclocked DSSS

design allows 802.11b WiFi devices to reduce their clock rates by a factor of five

or more while still being able to decode regular DSSS modulated packets.

• I extend downclocked reception to OFDM signals in 802.11a/g/n/ac by exploiting

the aliasing effect. I first identify the essential building blocks of an OFDM-based

modulation scheme: fast Fourier transform (FFT) and inverse fast Fourier transform

(IFFT). Under downclocking, the FFT component remains intact while the IFFT

component only receives half (a quarter) of the original time-domain samples at

50 (25)% clock rate. I then perform the IFFT operation on the reduced samples

and mathematically show that there exists well-defined structure in terms of how

6

the subcarriers fold up as reflected in the IFFT output. In particular, by folding the

subcarriers on top of each other, I decode frames transmitted with a form of QAM

as if they were encoded with a more dense QAM modulation.

• I find that commercial WiFi chipsets typically employ a matched filter in their

reception pipeline, where the output of the matched filter is compared with a

pre-determined threshold to decode the received data. In other words, the decoding

decision is entirely based on the matched filter output but not the shape of the

input signal. Based on this observation, I propose several waveforms that could

successfully pass the matched filter to yield a correctly-decoded output but with

lower signaling rates than DSSS. These proposed waveforms effectively allow

a downclocked WiFi radio to transmit non-standard-conforming signals that are

decodable by commercial WiFi chipsets.

• I carefully analyze the impact on the entire WiFi transceiver pipeline due to down-

clocking. First, I discern the various functional units that form the reception and

transmission pipelines. For each functional unit, I then determine its role and

implementation details, and evaluate whether this functional unit continues to oper-

ate under downclocking. In case it fails, I provide an alternative implementation

that achieves the same purpose and remains fully functional when downclocked.

Otherwise, I study the performance impact due to reduced clock rate through

theoretical analysis or extensive experimentation.

• I discuss the modifications needed for existing deployed WiFi infrastructure to

support downclocked operations. Specifically, I show how I could re-use the

existing (re)association frames, which are defined in the 802.11 specification, to

notify the AP that a node is going to enter (leave) downclocked state. For my

OFDM-based design, I also explain the necessary modifications at the AP to permit

7

downclocked OFDM modulated WiFi packet reception, beacon listening, and AP

scanning.

• I implement my solutions on the Microsoft Sora platform (an open-source software-

defined radio platform), and experimentally verify the standards compatibility of

my design. I further report the downclocked transmission and reception perfor-

mance that I am able to achieve under different SNR conditions and packet sizes.

Finally, I evaluate the potential energy-consumption behavior of a downclocked

WiFi chipset based on network traces from a wide range of popular smartphone

apps. Even with a deliberately conservative WiFi power model, my findings sug-

gest that my approach could reduce power consumption by up to 34% compared to

the default power-save mode in 802.11.

1.3 Organization

The remainder of this dissertation is organized in the following manner.

Chapter 2 provides a general overview of the WiFi chipset architecture, previous

work on designing energy-efficient WiFi systems, and the motivation for introducing

dynamic frequency scaling to WiFi radios.

Chapter 3 discusses my downclocked 802.11b transceiver design that is able to

transmit and receive DSSS WiFi packets while downclocked. Further, I evaluate the

communication performance of my design and demonstrate that it is possible to run real

applications on a downclocked WiFi radio.

Chapter 4 contains a detailed analysis on the per-subcarrier channel response

under aliasing. Based on the findings, I then present my downclocked 802.11a/g re-

ceiver design, and investigate the impact on OFDM-communicaiton performance due to

downclocking.

8

Chapter 5 studies the potential impact on energy consumption of my downclocked

design. I collect network traces from a wide range of popular smartphone apps and

evaluate the corresponding energy consumption based on a conservative WiFi power

model.

Chapter 6 concludes the dissertation and points out how this dissertation could be

extended.

Chapter 2

Background and Motivation

This chapter provides background information about the technologies discussed in

the rest of this dissertation. In addition, we present an overview of existing research liter-

ature on energy-efficient WiFi design. Finally, we discuss our motivation for introducing

dynamic frequency scaling to WiFi chipsets.

2.1 A Communication System Primer

Shannon introduces the fundamental law of data compression and transmission

(also known as Shannon theory) in his “A Mathematical Theory of Communication” [57],

which later on becomes the foundation of modern day communication systems. Shannon

theory establishes the maximum data rate at which information can be reliably transmitted

over a communication channel of a particular bandwidth given some signal-to-noise ratio

(SNR) value. More specifically, the channel capacity C is defined as:

C = B log2(1+
S

N
) (2.1)

where B is the bandwidth of the channel in Hertz, S is average received power and N

is the average noise or interference power (both in Watts). The Shannon theory does

not specify a particular data encoding (modulation) scheme that can be used to achieve

9

10

the channel capacity in practical communication systems. It is up to system designers

to determine which modulation and coding technique to apply. As a general guideline,

the achievable throughput under any modulation scheme in a communication system is

bounded by the Shannon channel capacity.

A typical communication system consists of the following three elements: the

sender, the channel, and the receiver. Now suppose some modulation and coding scheme

is selected at the sender to encode and transmit information on the channel, how could

the receiver decode the transmitted signal and recover the original information? Most

(if not all) modern communication systems are based on digital circuits. Given that

the signal transmitted on the physical channel is analog in nature, this analog signal

needs to be first converted to digital samples (the sampling process) before the decoding

process can be started. To perfectly reconstruct the analog signal, the sampling rate,

which determines how frequently a signal sample should be acquired, must be at least

twice the highest frequency (bandwidth) contained in the signal as mandated by Nyquist

sampling theory [58]. When sampling below the Nyquist rate, aliasing occurs where the

signal spectrum folds up, and it is generally impossible to discern the original signal.

However, it is possible to bypass the Nyquist sampling constraint and recover an

analog signal with a lower sampling rate under certain circumstances. For example, when

the signal is sparse, compressive sensing techniques can be used to efficiently sample

and reconstruct a signal with much smaller sampling rate than Nyquist sampling theory

requires [19]. At a high level, compressive sensing is a signal-processing methodology

for dealing with fewer samples that leverages the presence of sparsity and compressibility

in a signal. Mathematically, compressive sensing recovers the original signal by finding

solutions to a set of underdetermined linear equations. Since its inception, compressive

sensing has been widely applied in numerous application domains such as medical

imaging and statistics.

11

2.2 WiFi Overview

Wireless local-area networking (WLAN) technologies have become pervasive,

and their increasing prevalence has raised users’ expectations for performance and

availability. Today’s gadget-oriented consumer expects high-quality Internet access not

only in their homes and workplaces, but also in businesses, public areas, and increasingly

even buses and airplanes. Moreover, an ever-expanding variety of consumer electronics

have come to rely on wireless networking technologies in order to operate. Due to

its cheap infrastructure cost, WiFi has also been used by wireless carriers and their

customers to offload cellular traffic [36]. To cope with the ever-increasing demand placed

on WiFi networks, advances in physical layer technologies are delivering additional

channel capacity.

The first generation of WiFi products is based on 802.11b [32], which delivers

a peak data rate of 11 Mbps. The 802.11b specification defines two physical layer

modulation schemes: direct sequence spread spectrum (DSSS) and complementary

code keying (CCK). When channel condition (SNR) is poor, the more robust DSSS

modulation is used yielding a 1 or 2-Mbps data rate; as SNR improves, the compact CCK

modulation can be used to achieve higher data rates (5.5 and 11 Mbps). Realizing the

speed limitation of 802.11b products, the second WiFi generation (i.e., 802.11g [33])

employs the popular orthogonal frequency-division multiplexing (OFDM) modulation

technique, which significantly boosts the maximum data rate supported to 54 Mbps.1

Due to its high speed and backwards compatibility with 802.11b, 802.11g-based WiFi

products enjoyed great market success and were widely deployed in home and enterprise

environments. With advances in multiple-input-multiple-out (MIMO) technology [47],

more recent WiFi generations, e.g., 802.11n [33], use multiple antennas and a wider

1The 5-Ghz counterpart, 802.11a [31], is almost identical to 802.11g but has been less successful due

to cost and compatibility issues.

12

0 1 0

Figure 2.1. DSSS modulation waveform.

channel bandwidth (40 MHz) to increase data rates, which leads to an order-of-magnitude

speed improvement from 54 Mbps to 600 Mbps. Finally, 802.11ac [5], which was just

approved by the IEEE standardization body early this year, promises speeds of over one

gigabits per second for the next generation of WiFi devices.

In general, each newer WiFi generation is entirely backwards compatible with

the older ones. For example, although 802.11b has been released for over a decade, it

remains widely supported in both deployed WiFi networks and the newest 802.11ac

chipsets (e.g., Broadcom 4335) and routers (e.g., Cisco EA6500). Interestingly, due to its

robust communication range and low cost, 802.11b is the only supported WiFi mode in

some special-purpose devices [24, 25, 67].

2.2.1 Physical Layer

The WiFi physical layer defines the means of transmitting and receiving data

frames over the shared wireless link. Over the years, WiFi has specified three modulation

standards (DSSS, CCK and OFDM) for encoding data on the wireless medium. All

WiFi generations, except the first generation which only supports DSSS and CCK, can

communicate with any of the three schemes. In this dissertation, our efforts are primarily

focused on DSSS and OFDM.

13

Direct Sequence Spread Spectrum

In DSSS, instead of transmitting an information bit directly, each bit is first

combined with a high-speed pseudo-random numerical sequence (also known as “chips”)

via a modulo-2 adder (XOR function). The output of the modulo-2 adder is then used for

transmission. As a result, the signaling rate (chip rate) is much higher than the information

bit rate as shown in Figure 2.1. Under the 802.11b specification, the eleven-chip Barker

sequence (+1,−1,+1,+1,−1,+1,+1,+1,−1,−1,−1) serves as the pseudo-random

sequence in the modulo-2 adder. At the receiver side, the incoming signal is correlated

with the eleven-chip Barker sequence, and the correlation output helps the receiver to

lock onto the received signal and start the decoding process. Depending on whether the

in phase component is used or not, the resulted data rate with DSSS is 1 or 2 Mbps.

Orthogonal Frequency-Division Multiplexing

OFDM is the dominant modulation scheme in WiFi, and has also been embraced

by many other communication systems. It divides the entire spectrum band into many

small and partially overlapping, but orthogonal, frequency bands known as subcarriers.

These subcarriers are then used to carry data without inter-carrier interference, eliminating

the need for guard bands. Each subcarrier could be independently modulated with a

different modulation scheme (e.g., phase-shift keying, quadrature amplitude modulation,

etc.), although all subcarriers are modulated using the same scheme under WiFi. As the

signal-to-noise ratio (SNR) gets higher, the per-subcarrier modulation scheme becomes

more dense. For example, 802.11a/g defines rates of 6, 9, 12, 18, 24, 36, 48 and 54 Mbps

where the modulation scheme on each subcarrier changes from binary phase shift keying

(BPSK) to 64 quadrature amplitude modulation (64-QAM).

14

2.2.2 Rate Selection

Given the wide range of transmission data rates, it is entirely up to the sending

node to determine which rate to use for transmitting a packet. Since the WiFi channel

condition varies across time and space, a smart WiFi sender will dynamically adapt its

modulation scheme to decide the bitrate employed. The ultimate purpose of rate selection

is to improve the network goodput between the sender and the receiver. In general, as

the SNR gets worse, for example when the node moves away from the access point, the

transmission data rate decreases. Although the selected data rate could vary significantly

from 1 to 54 Mbps, the transmission power remains approximately constant across the

entire range [28] assuming only a single antenna is used. Rate adaptation gets more

complicated for recent WiFi generations, such as 802.11n and 802.11ac, as more variants

are introduced in the selection process. For example, the sender now needs to decide how

many antennas to be used even for the same bitrate. In this dissertation, we focus our

discussion on the single-input-single-output (SISO) configuration of MIMO and assume

that there is only one active antenna at both the sender and the receiver side.

2.2.3 Media Access Control

Since the wireless channel is a shared medium, if multiple nodes transmit at the

same time, their transmissions will interfere with each other and lead to packet collision

where no transmission is successful. To prevent collisions, a media access control (MAC)

protocol is introduced to coordinate the channel access. In particular, WiFi uses the

carrier sense multiple access with collision avoidance (CSMA/CA) mechanism to mediate

access to the channel. If a node needs to send a frame, it will first sense the wireless

medium to determine whether there is any ongoing transmission, which is also known as

clear channel assessment (CCA). If the channel is sensed busy, the transmission attempt

is aborted and the node will wait until the channel is free again. Otherwise, if the channel

15

has been free for some period of time, the node transmits the frame. After receiving this

frame successfully, the intended receiver will reply back with an acknowledgment (ACK)

frame. If the sender receives the acknowledgment, it will remove the frame from its

transmission queue and conclude that this transmission is a success. On the other hand,

if the sender fails to receive an acknowledgment, for example when the transmission is

not successful due to insufficient SNR, the frame is assumed lost. The sending node will

back off and restart the transmission once the channel becomes available. Finally, the

packet is discarded after multiple failed attempts.

2.3 The Potential of Downclocking

Given that wireless link speeds continue to increase, mobile devices are more

and more likely to use only a small fraction of the channel capacity. With current

WLAN technologies, however, use of the network is an all-or-nothing affair in terms of

power. Said another way, technologies like WiFi are not power proportional with respect

to bandwidth for applications that require continuous, low-rate connectivity. While

applications that need only to transmit can simply power their radios down when not

in use, applications that must receive small but frequent packets are forced to leave the

radio on at all times, consuming essentially the same power as an application that was

receiving at full link rate.

In the past, system designers have used excess channel capacity to improve

reception rates by introducing redundant coding and/or reducing transmission power,

known as transmission power control. Lower link rates use more robust encoding and

signaling schemes that can be decoded at lower signal-to-noise ratios (SNRs), which

translate into longer range or the ability to decrease transmission power which, along

with the potential for power savings at the sender, can increase spatial reuse. We argue

that the time has come for WLAN designers to additionally consider the power required

16

to successfully decode the signal: in particular, one can instead turn excess channel

capacity into an opportunity to save power at the receiver.

The power consumption of a complementary metal-oxide-semiconductor (CMOS)

computing device is proportional to its clock rate [52]. In general, CMOS logic gates use

current when switching states. As the clock rate increases, gates switch more frequently,

which leads to increased power consumption. More specifically, the power consumption

P of CMOS circuits is directly related to the core operating voltage v and the clocking

frequency f based on the following relationship:

P ∝ f × v2.

Not surprisingly, dynamic frequency scaling (DFS) has long been used as a

technique to save power in a variety of computing domains [26, 66]. Indeed, DFS has

been part of the de facto feature set offered by modern microprocessors, i.e., to scale

the central processing unit (CPU) frequency up or down to save power, for decades in

commercial and industrial settings. For example, CPU frequency scaling is implemented

in the Linux kernel, and the cpufreq module is loaded automatically when the system

starts up. Fundamentally, the same rules apply to wireless transceivers: downclocking the

radio hardware can result in significant power savings. The challenge in downclocking

radio equipment, however, is that the receiver must sample the channel at least twice the

bandwidth of the signal [58]. As a practical matter, today’s WiFi devices are designed in

such a way that the frequency of the entire radio pipeline is gated by the sampling rate.

Figure 2.2 shows a typical WiFi transceiver architecture [13, 70]. The analog

baseband signal is first processed by a baseband filter to confine the signal to the desired

band. It is then sampled by an analog-to-digital converter (ADC) and data samples are

passed to the baseband processor, which decodes the signal and uploads the recovered

17

RF Switch

Rx

Tx

LNA

PA

Baseband

Logic

Frequency Synthesizers

BB Filter

Rx Radio

Tx Radio

DAC

ADC

Figure 2.2. A simplified WiFi card architecture.

frame to the host. The entire chipset is driven by a common crystal oscillator, which feeds

the frequency synthesizer and the phase-locked loop (PLL). The frequency synthesizer

generates the center frequency for radio frequency (RF) operation while the PLL serves

as the clock source for the ADC and baseband processor. For a 22-MHz 802.11b channel,

the radio runs at 44 MHz (or faster).

As a result, the channel sampling rate directly determines the permissible clocking

rate—and power consumption—of the WiFi card. Studies have shown that the power

consumption of popular WiFi chipsets (e.g., from Atheros and Netgear) does indeed vary

with frequency [13, 70], although the precise relationship depends on what the device is

doing (sending frames, receiving frames, or idling) and differs across chipsets. Table 2.1

shows the reported energy consumption of a popular WiFi chipset while operating at

various clock rates [70]. These measurements were obtained by varying the channel

width for a 6-Mbps OFDM 802.11g encoding, so the device was operating on channel

bandwidths of 5, 10, and 20 MHz, respectively.

The savings are sub-linear (e.g., 36% savings for a 50% clock rate reduction on

the Atheros 5414 chipset [70]), but current devices were not designed to be downclocked,

hence it is unlikely that they are optimized to be power-efficient at frequencies other

than their target operating point. Power savings can even be obtained on research-grade

software radio devices; the universal software radio peripheral (USRP) [23] achieves

a 22% power savings when downclocked by half [70]. Hence, we believe that future

designs can be refined to take greater advantage of downclocking opportunities.

18

Table 2.1. Power draw of the Atheros 5414 WiFi chipset in the LinkSys network interface

controller (WPC55AG) at various clock rates [70].

Clock rate 25% 50% Full rate

Idle 640 mW 780 mW 1200 mW

Reception (Rx) 980 mW 1440 mW 1600 mW

Transmission (Tx) 1210 mW 1460 mW 1710 mW

2.4 Downclocked Transmission

It is not obvious that downclocking a radio would be beneficial when transmitting

data: the lower the data rate, the longer the transmission takes. Hence, with existing

chipsets one should transmit as fast as possible and place the radio back into low-power

mode as soon as transmission is complete. Alternatively, one could realize similar

savings by transmitting at a low data rate and scaling back the transmission power. These

approaches, however, presume that the frequency and/or power of the transceiver can be

adjusted efficiently.

Moreover, even if a device only receives data, the 802.11 specification requires

that it transmit an ACK frame to confirm receipt of each data frame—and the ACK frame

must be sent within a strict, 20-µs inter-frame time (SIFS). As with reception, Nyquist

requires that the transceiver operate at twice the signal bandwidth to transmit the standard

Barker sequence. While some chipsets, such as the MAXIM 2831, are able to switch

back to full clock rate in time to transmit an ACK frame, others take substantially longer

(e.g., an Atheros 5414 takes roughly 125 µs to switch clock rates [70]). In such cases, to

realize the benefits of downclocked reception, the transceiver needs to transmit an ACK

frame at a slower clock rate than a standard-compliant WiFi transmitter will accept. (The

reception power draws in Table 2.1 assume the device remains downclocked for ACK

transmissions.)

19

The potential benefits of downclocked transmission go even further when consid-

ering the energy spent on clear channel assessment (CCA) when a node attempts to gain

access to the channel. Previous studies have shown that CCA is the dominant power drain

when there is a high contention level in the network [38, 70]. Most commercial WiFi

chipsets implement the carrier sensing component of CCA (i.e., determining whether

the channel is free) using energy detection, which can be conducted at virtually any

clock rate. Moreover, modern WiFi cards seem to be more power proportional when in

this so-called idle listening state. As shown in Table 2.1, the measured Atheros chipset

consumes 47% less power in idle listening mode when downclocked by a factor of four.

However, once the channel is detected to be idle, a WiFi station needs to attempt

to transmit a frame within a very short order (as little as 50 µs depending on its current

back-off interval). Given the switching times of commodity chipsets, these timing

requirements suggest that WiFi devices are likely to need to perform carrier sensing

and frame transmission at the same clock rate. In other words, to perform CCA while

downclocked, the WiFi device must be prepared to transmit while downclocked as well.

Finally, Table 2.1 also indicates that the power savings from downclocked trans-

missions themselves may be slightly less significant than reception (e.g., 29% for a 4×

clock rate reduction), but, when combined with the ability to remain in idle listening

states for longer periods of time, the savings can be dramatic.

2.5 Related Work

Energy management is crucial for battery-powered mobile devices, where network

activities can consume a significant portion of the available energy. For example, one

recent study showed that a popular smartphone consumes almost two orders of magnitude

(1114 vs 16 mW) more power when its WiFi device is active than when it is idle [8].

While vendors continue to improve the power efficiency of their WiFi chipsets, the fact

20

remains that they frequently account for a significant portion of the entire device’s energy

budget. Of course, most devices do not need to use WiFi all the time, and modern devices

actively manage their radios, shifting into low-power listening modes or even sleep

states whenever possible. There has been a great deal of work on improving the energy

efficiency of WiFi devices. These efforts can be broadly classified into three categories:

1) improvements to 802.11 power save mode (PSM), 2) systems that duty cycle the WiFi

device, and 3) attempts to decrease transmit power.

2.5.1 Efficient Power Save Modes

Most approaches rely on placing the device in a low-power sleep mode whenever

possible. The two basic alternatives are to coordinate these periods of sleep between the

access point and the device, either through periodic polling (as with the 802.11 PSM

standard) or deliberate scheduling [54]. Others have proposed dynamically adjusting

sleep periods based upon a client’s traffic pattern [9, 34]. Researchers have previously

noted the disparity between modern 802.11 link speeds and the traffic demands of many

clients. µPM suggests powering down low-demand WiFi clients between individual

frame transmissions [37], relying upon 802.11 devices retransmitting unacknowledged

frames to limit losses. Catnap [22] extends this approach by estimating bottleneck

throughput and scheduling client wake-ups based upon the predicted availability of data

from the wide-area network.

One challenge with these approaches is that, when awake, a WiFi device must

participate in the channel contention process to gain channel access. Studies have

shown that this process can consume considerable amounts of energy, especially in

dense deployments where nodes are in range of multiple APs. SleepWell coordinates

sleep cycles among neighboring APs to decrease contention during wake-ups, thereby

increasing client power efficiency [38].

21

Finally, even a well-defined sleep scheduling or policy implemented on the

WiFi chipset could be overridden by a user-specified WiFi sleep policy intentionally

or un-intentionally. For example, the Android framework (version 3.1+) exposes a

particular type of WiFi lock (WIFI MODE FULL HIGH PERF), which will keep a WiFi

device from entering PSM mode [11, 12]. Therefore, apps could force the WiFi card to

stay in constant awake mode (CAM) to reduce network response time for performance

improvements [17, 64]. Perhaps more devastating, these WiFi lock services might be

misused (e.g., bugs) and lead to WiFi energy wastage [4, 46].

2.5.2 Device Duty Cycling

Others take a more drastic approach: rather than entering low-power sleep modes,

they identify times when it is possible to simply turn a WiFi device off entirely. One

early system, SPAN [14], turns off entire nodes in multi-hop ad hoc wireless networks if

the connectivity of the network can be preserved without them.

In more general environments, systems have been designed to keep WiFi powered

down by default, and use an out-of-band signal to asynchronously alert the device of

pending data [8, 59]. Since smartphones may frequently be outside the coverage area of

a WiFi AP, the only reason to keep the WiFi transceiver powered is to determine when

coverage returns. Many systems have attempted to reclaim this energy by instead duty

cycling WiFi radios based upon predictions of WiFi availability. These predictions are

variously based upon the detection of nearby Bluetooth devices [10] or cell towers [53],

or historical device movement patterns [42].

2.5.3 Transmission Power Control

Finally, a direct approach to decreasing WiFi power draw while transmitting

is to reduce radiated energy. WiFi transceivers can leverage transmit power control to

22

emit signals using sub-mW energy when the SNR is high. Unfortunately, despite the

obvious attractiveness of such an approach, studies have repeatedly shown that adjusting

transmit power has little impact on the total power draw of commercial 802.11 devices

due to the limited power consumption of the power amplifier relative to the rest of the

electronics [28, 48].

2.5.4 Downclocking

Researchers have argued that devices could dynamically adjust their sampling

rate based upon the frequencies contained within the observed signal [20], but their

approach is not directly applicable to the encoding schemes employed by WiFi. Recently,

compressive sensing and sparse recovery have been applied to bring the sampling rate

below Nyquist. As a result, the clock frequency and hardware complexity can be reduced

substantially. For example, compressive sensing has been widely used in the field of

spectrum sensing, which could potentially lower the analog-to-digital converter (ADC)

sampling rate by orders of magnitude [49]. Hassanieh et al. [30] showed how to reduce

the runtime of Global Positioning System (GPS) synchronization by exploiting the sparse

nature of synchronization.

In the context of WiFi, recent proposals argue that next-generation systems should

support multiple channel widths and adapt their instantaneous channel width based on the

offered load [13],2 and develop mechanisms to detect packet arrivals in a downclocked

state [70]. Downclocking a receiver through dynamic frequency scaling has been applied

in the wireline context in the past [56], but we are not aware of any similar schemes in

the wireless domain.

2Although stations operating in different bandwidths cannot decode each other’s transmission and the

17-ms switching overhead makes co-existence challenging.

23

2.6 Summary

Given the importance of WiFi, not surprisingly there exists a rich body of existing

literature on WiFi energy efficiency. Broadly speaking, these efforts can be divided into

three areas: energy-efficient power save mode, duty cycling WiFi radio, and transmission

power control. We take a dramatically different approach to reduce WiFi energy con-

sumption by downclocking WiFi. A fundamental challenge with downclocking WiFi,

however, is the Nyquist sampling rate constraint. In the next two chapters, we will present

the techniques we developed to address the Nyquist challenge.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation 2013. Lu,

Feng; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was the primary

investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the

ACM Annual International Conference on Mobile Computing and Networking 2014. Lu,

Feng; Ling, Patrick; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was

the primary investigator and author of this paper.

Chapter 3

Downclocking 802.11b

In this chapter, we describe the design of SloMo, our prototype downclocked radio

for 802.11b. We start by discussing how compressive sensing can enable downclocked

WiFi frame reception under the direct sequence spread spectrum (DSSS) modulation

scheme. We then turn to downclocked transmission and describe our approach for

designing shorter chip sequences that are decodable by commercial WiFi chipsets. Next

we discuss the practical implementation issues of our downclocked design and network

impact due to downclocking. Finally, we evaluate the communication performance of

SloMo, such as frame reception rate and throughput, and show that SloMo attains nearly

identical performance as 100% clock rate in typical WiFi signal-to-noise ratio (SNR)

regimes.

3.1 Reception

Our receiver design is based upon an observation that the process of direct-

sequence spread spectrum (DSSS) modulation, as employed by the 802.11b standard,

bares a great similarity to a recently proposed compressive sensing (compressive sensing)

decoding scheme. When the data rate is 1 or 2 Mbps, only DSSS modulation is employed.

The difference between the 1 and 2-Mbps encodings lies in whether the quadrature

component of the carrier frequency is used: they employ binary phase shift keying

24

25

Scrambler
 Modulation
 Spreading

Pulse

shaping

Figure 3.1. Baseband processing Tx chain

(BPSK) and quadrature phase shift keying (QPSK), respectively. To ease our explanation,

we focus our discussion on the 1-Mbps BPSK scenario; the methods can be similarly

applied to 2-Mbps QPSK encoding as we demonstrate.

In their recent breakthrough, Tropp et al. observe that it is possible to employ

compressive sensing to decode digital signals while sampling at rates far below the

Nyquist rate, provided the signal is sparse in the frequency domain [62]. Their approach

mixes the sparse signal they wish to decode with a high-rate chip sequence to spread its

signal band. They show that in many cases the information contained in a sub-band of

the resulting spread signal turns out to be sufficient for recovering the original signal.

DSSS modulation is analogous to the first stage of this process: the baseband

signal is also spread over a wide range of bandwidth. Though the spreading in 802.11b is

designed to increase the SNR at the receiver, it also provides the opportunity to apply

compressive sensing by only looking at part of the band when SNR is not an issue.

3.1.1 DSSS Modulation

As shown in Figure 3.1, the transmission chain of a standard 802.11b implemen-

tation can be summarized as four steps: scrambling, modulation, spreading and pulse

shaping. The data is initially “scrambled” by XORing it with a fixed pseudo-random

sequence—to avoid long runs of ones or zeros—before being modulated (using BPSK in

the 1-Mbps case). The modulated baseband signal is then “spread” by replacing each

bit with an eleven-chip Barker sequence to expand the signal. The spreading process

serves several purposes. First, it enlarges the spectrum of the original baseband signal

by eleven times to make it more robust to channel noise. Secondly, due to the unique

26

Matched

Filter

analog baseband

signal

11/R MHz raw data samples

1Mbps scrambled bits

 rest of Rx chain
CS decoder

De-scrambler
ADC

Integrate-

and-

 Dump
 De-spreading

Figure 3.2. Original and modified baseband Rx processing chain. Compared to the

original Rx chain, the modified chain adds an additional integrate-and-dump component

and replaces the De-spreading part with the compressive sensing decoder.

properties of a Barker sequence, it enables the receiver to more easily synchronize with

the transmitted signal. In particular, a Barker sequence has low auto-correlation except

when precisely aligned with itself, so receivers can easily determine when they have

correctly synchronized with the incoming chip sequence.

Mathematically, one can consider the DSSS spreading process as computing

an eleven-chip signal, C, for each bit, C = M · bi, where bi is a 2× 1 sparse vector

(b1 = [0 1]T corresponds to a 1 and b0 = [1 0]T for a 0), and the Barker sequence M is

given by

M =







+1−1+1+1−1+1+1+1−1−1−1

−1+1−1−1+1−1−1−1+1+1+1







T

.

Note that the two rows of M are simply inverses of each other; hence, both Barker

sequences have identical auto-correlation magnitudes—they just result in either positive

or negative correlation.

Subsequently, the pulse-shaping stage ensures that the resulting signal spectrum

shape conforms to the IEEE 802.11b specification. In particular, the shaped signal has

a bandwidth of 22 MHz; therefore, a minimum sampling rate of 44 MHz is required to

meet the Nyquist sampling criteria at the receiver side.

Conversely, Figure 3.2 presents a high-level description of an 802.11b receiver

baseband processing chain. A matched filter recovers the chip values. In particular, the

matched filter correlates the incoming chip samples with the Barker sequence to locate

27

where the bit boundary is, i.e., the first chip in the bit. Once the signal is synchronized, it

is sampled every chip time. Therefore, over the course of a single bit duration, eleven

sample values will be collected corresponding to the eleven-chip Barker sequence. This

chip sequence is “de-spread” by once again correlating it with the Barker sequence to

determine whether a 1 or 0 was encoded, resulting in (hopefully) the original 1-Mbps bit

stream which is then de-scrambled by XORing with the same scrambler sequence.

3.1.2 Compressive Sensing

We implement compressive sensing using an integrate-and-dump sampler as

suggested by Tropp et al. [62]. As shown in Figure 3.2, we extend the match filter by

introducing an integrate-and-dump stage, which accumulates the output from the matched

filter for multiple chip durations, allowing for a lower sampling rate than the standard 11

MHz. The radio can then be downclocked appropriately to achieve a desired compression

ratio: sampling is performed on the accumulated output (as opposed to each chip) and the

discrete samples—which contain multiple chips—are fed to the rest of the receiver chain.

We can formalize the DSSS sampling process described in the previous subsection

as extracting a sample Y from the received signal, C̃ (which is the transmitted DSSS

signal C encoded as described above but distorted by the channel), with the diagonal

sampling matrix H:

Y = HC̃. (3.1)

In a standard receiver operating at full clock rate, H is an 11×11 identity matrix which

simply samples each chip exactly once. Y is then correlated with the Barker sequence M

to determine the transmitted bit.

With an integrate-and-dump sampler, the measurements can be viewed as a linear

combination of the original chip values. For example, suppose only three measurements

are desired (i.e., a downclocking ratio of 3/11). The measurements can be viewed as

28

substituting a compressive measurement matrix into Equation 3.1:

Ĥ =













1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 1













.

Here, our sampling matrix has only three rows because we intend to sample each bit’s

Barker sequence only three times. Because eleven cannot be evenly divided by three, the

integrate-and-dump sampler needs to accommodate varied accumulation length. (We

relax this assumption in a later subsection.) In this particular example, to reduce the

clock rate by 11/3=3.67×, we choose to take two samples of four chips and one of three.

Once the compressive samples are obtained, the baseband logic can be re-engineered

to work with the compressed measurements. For example, Davenport et al. show the

following decision rule1 can be used [19]:

di = (Y−HMbi)
T(HHT)−1(Y−HMbi). (3.2)

If d0 < d1, the bit is decoded as 0, and 1 otherwise. Our proposed receiver baseband

processing chain is also presented in Figure 3.2. Since only a single bit is decoded at a

time, the decision rule can be simplified as

di = YT(HHT)−1(HMbi). (3.3)

1The middle term (pre-whitened matrix) of Davenport’s decision rule is actually (HMMTHT) because

they assume the basis matrix M is applied during decoding after the signal has been received. In our DSSS

modulation scheme, the matrix is applied during transmission, so we can drop it from our rule.

29

3.2 Transmission

Recall from the previous section that one of the key roles of the Barker sequence

is to allow the receiver’s matched filter to identify the beginning of the bit sequence.

In particular, given 802.11b’s eleven-chip Barker sequence, a bit boundary is within

the next ten samples of any chip. Hence, the matched filter simply correlates the chip

samples at each of these eleven positions. Because of the auto-correlation properties of

the Barker sequence, the start of the bit sequence is clearly indicated by a correlation

peak. In theory, the Barker code’s correlation maximum is 11× larger than the second

maximum. However, when a signal is transmitted over the air, it may get distorted and

noise is added. Hence, real receivers never use a peak criteria as high as eleven; on the

contrary, commercial WiFi cards use much lower thresholds as our experiments reveal.2

Based on this observation regarding the decoding threshold, we design Barker-like

sequences whose auto-correlation properties are not as strong as regular Barker sequences,

but are still likely to satisfy the matched filter’s threshold to allow the receiver to properly

identify the bit boundary. Similarly, our sequences have the property that, when correlated

with a properly-aligned 802.11b Barker sequence, they can be successfully decoded.

(Recall that de-spreading is only performed on properly-aligned chip sequences.) Again,

they do not have perfect correlation with the true Barker sequence, but sufficiently high

enough to either exceed the threshold for 1s, or low enough to pass for 0s.

The key feature of our Barker-like sequences is that they are shorter than the

original Barker sequence, yet transmitted over the same time interval. As a result, each

chip in our Barker-like sequence lasts longer than a standard Barker chip. The exact

number of chips in the sequence—and, thus, the chip duration—can be chosen to match

an intended downclock rate. To search for these sequences, at a high level, we use

2For example, Sora [60] decides the maximum value is a peak if the maximum value is at least twice

the second maximum.

30

correlation peak-to-average ratio as a close approximation to decide how good the code

sequence is.

Let us represent the original Barker sequence as:

C(t) =
n−1

∑
i=0

ci ·g(t − iTc),

where each chip ci ∈ {−1,+1}, Tc is the chip duration, g(.) is a rectangular function with

duration [0,Tc], and n = 11. The Barker-like sequence we are looking for is denoted as:

C̄(t) =
m−1

∑
j=0

c̄i · ḡ(t − iT̄c),

where m is the number of chips in the Barker-like sequence and T̄c =
n
m
·Tc. This Barker-

like sequence is then intended for the clock to operate at m
n

of the full rate. Furthermore,

the chip values c̄ j remain restricted to -1 and +1 as in the original Barker sequence.

To construct a Barker-like sequence that can be successfully decoded, we consider

the correlation result:

fcor(iTc) =
∫ (i+n−1)Tc

iTc

C(t)∗C̄(t − iTc)dt. (3.4)

Notice that C(.) will repeat itself every nTc period in Equation 3.4 so we only need to

evaluate fcor from 0 to (n−1)Tc. For any particular m (we are interested in 1 < m < 11),

there are only a finite number of possible Barker-like sequences, so we search all possible

combinations and choose the one with the best auto-correlation property, i.e., maximum

correlation result when both sequences align with each other and nearly zero elsewhere.

Figure 3.3 shows some examples of the Barker-like sequences we obtain, and

how they compare to the original eleven-chip Barker sequence. To operate at a particular

downclocked rate of m/11, we select a Barker-like sequence of length m to use for

31

11

10

9

8

7

6

5

4

3

2

Figure 3.3. Spreading sequences of various lengths, including the 802.11-standard eleven

chip Barker sequence and the Barker-like sequences used by SloMo when downclocked

accordingly.

spreading. Because the radio is downclocked, each chip will last (11/m)× as long as a

standard chip,3 and the signal will be more narrow than usual. Specifically, the signaling

rate for a Barker-like sequence is smaller than that of the original Barker sequence,

given that bandwidth is proportional to signaling rate, we expect the signal spectrum of

Barker-like transmission to be narrower than the spectrum of standard WiFi. Figure 3.4

confirms that our Barker-like sequence transmission indeed occupies less spectrum in

proportion to downclocking rate for real SloMo (WiFi) packets captured over the air.

Our Barker-like sequences of length four and five deserve special mention. When

searching for sequences using Equation 3.4, we exhausted the entire search space without

identifying any sequences with only a single clear peak when aligned with the origi-

nal Barker sequence. Instead, we identified sequences that produce two peaks when

correlated with the original Barker sequence: one when perfectly aligned and another

when almost completely (roughly 60%) offset. Hence, the receiver will either correctly

identify the bit boundary, or be mis-aligned by roughly “half a bit.” In that instance, the

receiver will attempt to decode the latter half of one bit sequence and the first half of the

3Except when m = 2 where the two chips last for 6 and 5×, respectively, which we found to be more

reliable than two chips of 5.5× A caveat here is that the 6-and-5× design might increase the complexity of

clocking component substantially.

32

−30 −20 −10 0 10 20 30
−50

−40

−30

−20

−10

0

10

20

30

Frequency (MHZ)

P
o

w
e

r
/

fr
e

q
u

e
n

c
y
 (

d
B

/M
H

Z
)

barker−like signal

original 802.11b signal

Figure 3.4. Power spectrum density comparison between standard 802.11b and down-

clocked Barker-like transmission for real WiFi packets captured (downclocking rate:

27.2%).

subsequent bit sequence as one bit sequence. We selected our 4 and 5-chip Barker-like

sequences such that the decoding of this mis-aligned chip sequence will decode as the

inverse of the correctly aligned one. Because both BPSK and QPSK actually encode

data based on the transitions between bits (as opposed to their actual magnitude), either

sequence will be decoded correctly.

3.3 Practical Design Considerations

In the foregoing description of our compressive-sensing-based receiver, we as-

sume 1) that the bit boundary is known, 2) compressive measurements are only taken

over chips belonging to the same bit, and 3) the number of chips to be integrated varies

(as reflected in the measurement matrix given in Section 3.1.2). Here, we first relax the

latter two requirements and then return to address the former.

33

3.3.1 Fixed-Length Integrate-and-Dump

Rather than have variable-length integration periods, an alternative is to have

a fixed integration length l and occasionally integrate fractions of a chip value into a

measurement. For example, the following measurement matrix (which we employ when

the clock is operated at 4/11 of the original rate) serves as a concrete example:

H =



















1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0.5 0 0

0 0 0 0 0 0 0 0 0.5 1 1



















.

Note that the third and fourth samples each integrate a fraction of the ninth chip. Alterna-

tively, if integrating a fraction of the chip turns out to be challenging, we could integrate

a fixed number of chips and extend the decoding to multiple bits as a group.

At a raw data rate of 1 Mbps, Nyquist requires a minimum of two measurements

per eleven-chip sequence; we cannot downclock the receiver a full 11×. Hence, the

useful range of integration lengths is between two and five chips. Since eleven is a prime

number, for any integration length k (2 ≤ k ≤ 5), the number of compressed samples

is not an integer for a single bit. In fact, we need to perform compressive sensing over

a minimum of 11k chips to produce an integer number of measurements (i.e., eleven

measurements). Therefore, rather than decoding one bit at a time, we jointly decode k

bits in a group—which exactly corresponds to 11k chips. The same decoding rule (i.e.,

Equation 3.2) can be applied with slight modifications. In particular, bi is now a 2k ×1

sparse vector where only one element is 1 and the rest are 0; M is changed to a Barker

sequence matrix of size 11k×2k which enumerates all the 2k possible Barker waveforms

corresponding to k bits in its columns; finally, the sampling matrix H becomes a size

34

11×11k matrix and each row ri (0 ≤ i ≤ 10) contains k 1s starting from element index

(i−1)∗ k and 0s elsewhere.

3.3.2 Synchronization

Symbol synchronization is a fairly standard technique and is often implemented

in hardware [50]. Unfortunately, locating the bit boundary is slightly more challenging

when using compressive sensing. After passing through the integrate-and-dump circuit,

the compressed measurements no longer exhibit the excellent auto-correlation property

provided by the original Barker sequence. Therefore, the standard correlation and peak

searching-based method described in the previous section no longer suffices.

Recall that we are decoding our sample stream in groups of k bits at a time, where

each bit consists of eleven chips, but our integrate-and-dump sampler has reduced these

chips by a factor of k. Hence, we are always decoding exactly eleven samples at once. If

we knew where to start decoding, the first compressed measurement would correspond to

the sum of the first k chips of the first bit. Rather than trying to identify the bit boundaries

ahead of time, we observe that eleven is a prime number, so one and only one alignment

with the sample stream will produce successful decodings—all others will never align

regardless of the downclocking factor k.

Because we have no idea which one of the eleven compressed measurements

starts a group, we store the decoding results for each possible position simultaneously.

For implementation purposes, we keep eleven bit arrays (B0–B10). Suppose the incoming

compressed measurements are labeled S0, S1, · · · ; we decode S0–S10 and store the result

in B0, S1–S11 to B1, S2–S12 to B2, · · · , S10∗ j+i–S10∗ j+i+10 to Bi (0 ≤ i, j,≤ 10). Each

incoming compressed measurement will complete the decoding of one of the eleven-bit

arrays. Meanwhile, we look for the fixed bit pattern of the Start of Frame Delimiter

(SFD) among the eleven stored bit-arrays. Once the SFD is identified and found in one

35

of the arrays, we then know the correct bit boundary and only need to keep decoding in

one of the eleven arrays.

While the synchronization operation can be conducted in parallel, we implement

the process in a single software thread in SloMo as the synchronization stage only

lasts for the duration of the preamble (72 µs and 144 µs for short and long preambles,

respectively). The SFD is guaranteed to be found within this well-defined time bound (or

equivalently, a fixed number of decoded bits) for any valid frame. If no SFD is detected

after a reasonable amount of time, the synchronization process is aborted and we start to

search for the next packet.

3.4 Interacting with Existing Networks

Because SloMo requires modifications only to the downclocked wireless node

and is entirely 802.11b-compliant, it is fully compatible with existing WiFi deployments.

No changes need to be made to the access point or other devices on the network to support

SloMo. In this section, we discuss how SloMo interacts with a standard 802.11b/g/n/ac

basestation, as well the potential interactions with other client nodes due to its use of

802.11b (as opposed to 802.11g/n/ac).

3.4.1 Rate Selection

When operating in downclocked mode, a SloMo node can only decode frames

encoded using DSSS—in particular, it is not able to use complementary code keying

(CCK) encoding (i.e., 5.5 and 11-Mbps 802.11b frames) or communicate at 802.11g/n/ac

rates. Fortunately, the 802.11b standard includes mechanisms for the SloMo node

to convey these constraints to the access point (AP). If the SloMo node is currently

connected to an AP, before it goes into downclocked mode it can transmit a re-association

request frame to inform the AP it only supports 1 and 2 Mbps.

36

Even if a SloMo node fails to notify the AP of the supported rate change, most

APs employ a dynamic transmission rate adjustment algorithm that will throttle the

sending rate until it successfully communicates with the SloMo station: when the AP

fails to receive an acknowledge (ACK) for frames it transmits at a higher data rate, it will

retry at a lower rate and eventually step down to 1 or 2 Mbps.

3.4.2 Protocol Interactions

While SloMo devices must operate at 802.11b speeds, it is clearly desirable

to ensure that other network nodes can continue to transmit at 802.11g/n/ac rates if

they are so capable. The concern in such environments is that the SloMo node cannot

decode such frames, and might cause collisions. Luckily, collisions are straightforward

to avoid. 802.11b specifies three different clear channel assessment methods: energy

detection, frame detection, or a combination of the two. An 802.11b-compliant device

can implement whichever method it chooses. Relying on energy detection alone as its

clear channel assessment (CCA) method, our SloMo node could co-exist with any other

802.11g/n/ac node in the network without requiring them to turn on protection mode

to minimize the impact of throughput loss due to slower 11b rates. This approach may

require the network operator to manually turn off protection mode on the AP if SloMo

nodes are the only possible set of 802.11b clients.

Additionally, because 802.11b and 802.11g employ different inter-frame timings

(for example, the slot time is 20/9 µs for 802.11b/g with protection mode off), one might

be concerned about the potential unfairness in channel access contention. We could

modify the inter-frame timings for SloMo nodes to ensure fair channel access, but we

observe that the standard settings penalize the SloMo node, not the other nodes, and the

SloMo node is unlikely to have high demand for the channel given it has elected to go

into downclocked mode. Hence, we have not deployed this change on our prototype.

37

3.5 Network Impacts

Since SloMo only supports 1 or 2-Mbps data rates, an obvious concern is that

the lower bitrate transmissions require more airtime, thereby decreasing overall network

performance, or, worse, increasing the energy consumption of other nodes in the WiFi

network and negating the gains realized by the downclocked node. While certainly

possible in theory—or even in practice for highly congested networks [63]—its likelihood

depends both on the background usage level in the network and the communication

patterns of the downclocked node.

For example, for voice over Internet Protocol (VoIP) applications the typical

packet size is roughly 40 bytes, implying that a VoIP node’s air time usage is dominated

by inter-frame spacing and channel contention resolution rather than data transmission

or reception [63]. Hence, a VoIP flow’s impact on network throughput is likely to be

negligible regardless of the bitrate (clock rate) the node chooses to employ. In other

scenarios, however, where the downclocked node is transmitting or receiving large

packets, or the network is already reaching maximum capacity, the impact may be

noticeable. We observe that both the station and the AP could detect and address such

situations. In particular, an AP can monitor the current traffic load on the network,

number of power save mode (PSM) clients, and any other pertinent information. For

severely congested networks, the downclocked operation may not be allowed. In practice,

for most of the popular smartphone apps we study, the impact on free channel airtime is

limited.

Moreover, many networks are lightly loaded. For example, a study of our

department’s wireless network found that 60% of all frames are transmitted without

contention—i.e., the initial back-off counters expire without needing to wait for other

channel activity [16].

38

3.6 Prototype

To assess the feasibility of our approach, we implement a prototype compressive-

sensing-based 802.11b transceiver architecture in Microsoft Sora, a fully programmable

software-defined radio [60]. We show that compressive sensing achieves similar packet

reception rates as standard WiFi under reasonable network conditions, even when clock

rates are reduced by a factor of five. We also show that downclocked transmission using

short Barker-like sequences is feasible when communicating with standard WiFi devices.

3.6.1 Implementation

To allow maximum generality of their radio platform, the Sora architecture differs

from the typical WiFi chipset design discussed previously. Rather than implementing

a matched filter in hardware and sampling thereafter, the Sora radio board has a fixed

sampling rate of 44 MHz and passes the raw data samples directly to the processing

pipeline. The matched filter and decoding stages are all implemented in software.

We modify the Sora code by adding an integrate-and-dump sampler into the

receiver chain and re-design the bit-decoding algorithm as described by Equation 3.3.

We implement both versions of the integrate-and-dump sampler (variable and fixed

length). Since Sora’s clock rate is fixed at 44 MHz, we are unable to downclock it

while transmitting. Instead, we emulate downclocked transmission by repeating data

samples to effectively simulate a slower clock. We then employ a root-raised-cosine

filter for pulse shaping. Since Sora does not have an on-board automatic gain control

(AGC) circuit, we have to realize the AGC in software. Finally, to compensate for the

clock oscillator difference between transmitter and receiver, we also implement a phase

tracking component to ensure correct decoding of multiple-bit groups. We describe both

implementations below.

39

3.6.2 Phase Tracking & Automatic Gain Control

Recall from Equation 3.3 that the receiver multiplies the compressed measure-

ments (Y) with a set of known coefficients (H,M, and bi). However, since in practice

we need to decode multiple bits at a time, we have to subtract a set of reference values

(constellation points) from the compressed measurements. Subtraction requires the mag-

nitude of the signal to be properly matched to the reference values. This equalization

is typically achieved through an automatic gain control (AGC) circuit. Unfortunately,

Sora does not have a hardware AGC on board so we have to estimate the measurement

magnitude in software.

For BPSK and QPSK without compressive sensing, channel samples are taken

either from the Barker sequence (representing bit 1) or a negative copy of itself (repre-

senting bit 0). Both channel samples are therefore of equivalent magnitude. However,

with compressive sensing, the set of chips underlying each measurement are unknown a

priori. To address this issue, we search for multiple samples with constant magnitude

regardless of the underlying data bits. Fortunately, for the general integrate-and-dump

design, we can locate such measurements for all possible integration lengths.

Controlling for the signal’s magnitude solves half the problem. Because clock

oscillators on the transmitter and receiver never perfectly synchronize with each other,

constellation points start to rotate unless phase tracking is performed to compensate. In

particular, when decoding a group of bits, a bit error will occur whenever the constellation

point drifts across an axis (either imaginary or real). We leverage the fact that when a

constellation point is not crossing an axis, the results from both in-phase and quadrature

phase are valid. When one component is about to cross an axis, the magnitude of the

other component is significantly larger. We then quickly switch the decoding results

based on the larger one (whose sign remains unchanged).

40

3.6.3 Experimental Evaluation

In this section, we empirically study the impact on communication performance

due to downclocking. First, we measure the frame reception rate for downclocked

reception and transmission under different SNR and clock rate combinations. We then

evaluate the network throughput under downclocking, and show that the SloMo design is

not tied to a particular commercial WiFi chipset. Finally, we demonstrate that it is also

possible to run unmodified real application (e.g., Skype) on SloMo.

We conduct most of our experiments using two nodes, a Sora node running

our SloMo implementation and a laptop with a commercial WiFi device. The Sora

hardware is a Shuttle XPC SX58J3 machine with eight central processing unit (CPU)

cores configured with a Sora radio control board and an Ettus Research XCVR2450 radio

transceiver. It runs Windows XP modified to support the baseline Sora software and our

SloMo modifications. The laptop is a Lenovo T410 with two CPU cores running Ubuntu

10.04 with an Intel 6200 WiFi card. We operate the Sora node and laptop as an ad-hoc

network for flexibility. By default we perform our experiments using the 1-Mbps link

rate of 802.11b (experiments using 2-Mbps double application throughput as expected).

To experiment with different network conditions, we vary the distance and path

between nodes: we fix the location of the SloMo node in a room, and move the laptop to

various locations inside the building.

Downclocked Reception

We start by evaluating downclocked reception in isolation using compressive

sensing. We transmit packets using the commercial WiFi device on the laptop to our

experimental Sora node, which receives them using compressive sensing with a config-

urable decoding clock rate. For each clock rate and location, we transmit 1,000 User

Datagram Protocol (UDP) packets (each 1,000-bytes long) paced to allow the network

41

to settle between transmissions. We repeat each experiment ten times to account for

variations. We perform the experiment across a wide range of clock rates, and in different

locations that result in a variety of network conditions. In each case we record the fraction

of transmitted packets successfully received and decoded using compressive sensing on

the Sora node, and also report the corresponding SNR value for each location.

Figure 3.5 shows that downclocked reception operates nearly as well as standard

WiFi across a wide range of decoding clock rates. Each point is the average of ten runs,

and the error bars show the standard deviation. A clock rate of 100% corresponds to

standard WiFi processing as the baseline, and smaller rates correspond to more aggressive

use of compressive sensing with lower power requirements. When the SNR is good (≥48

dB), packet reception using compressive sensing is nearly equivalent to standard WiFi,

even for very low clock rates of 18–36%. Recall from Section 2.3 that downclocking at

such rates corresponds to ≥ 40% savings in power consumption for a WiFi chipset.

Unfortunately, our ability to evaluate SloMo downclocked reception performance

for a wider range of SNRs is limited by the Sora platform. We observe that Sora has a

rather narrow dynamic range in terms of receiver sensitivity and exhibits a sharp cut-off

behavior when the SNR is around 46 dB, likely due to the lack of hardware automatic

gain control. While operating in this regime, Sora’s standard WiFi implementation only

achieves a 53% reception rate, and compressive sensing delivers 73% of that performance

at the lowest clock rate.

Downclocked Transmission

Next we evaluate downclocked transmission in isolation using the shorter “Barker-

like” sequences. We send packets from our experimental Sora node using downclocked

transmission to the commercial WiFi device on the laptop, and record the fraction of

transmitted packets successfully received and decoded by the commercial device. We use

42

% of Full Clock Rate

F
ra

m
e

 R
e

c
e

p
ti
o

n
 R

a
te

 (
%

)

20 30 40 50 60 70 80 90 100

0
2
0

4
0

6
0

8
0

1
0
0

66 dB 56 dB 48 dB 46 dB

Figure 3.5. Frame reception rates using downclocked compressive sensing at SloMo

node for packets sent by commercial WiFi device. As a baseline, the 100% clock rate

corresponds to using the default 802.11b implementation.

the same methodology as with compressive sensing: ten runs of 1,000 UDP packets at

each combination of downclock rate and network location. We also experiment with two

packet sizes. The first is a small packet size of 60 bytes, corresponding to apps sending

small data packets and sending ACKs in response to a packet received using compressive

sensing. The second is a larger packet size of 1,000 bytes.

Figures 3.6a and 3.6b show the results for downclocked transmission for small

and large packets, respectively. Compared to downclocked reception with compressive

sensing, we note that the operational SNR range is much larger; commercial WiFi cards

have much better receiver sensitivity than Sora.

Focusing on results relative to the commercial WiFi baseline, however, shows that

downclocked transmission using shorter “Barker-like” sequences more strongly depends

on network conditions, clock rate and packet size. A clock rate of 100% transmits using

the full Barker sequence in standard WiFi, and smaller rates correspond to transmission

43

% of Full Clock Rate

F
ra

m
e
 R

e
c
e
p
ti
o
n
 R

a
te

 (
%

)

20 30 40 50 60 70 80 90 100

0
2

0
4

0
6

0
8

0
1

0
0

66 dB 46 dB 26 dB 13 dB 6 dB

(a) 60-bytes packets

% of Full Clock Rate

F
ra

m
e
 R

e
c
e
p
ti
o
n
 R

a
te

 (
%

)

20 30 40 50 60 70 80 90 100

0
2

0
4

0
6

0
8

0
1

0
0

66 dB 46 dB 26 dB 13 dB 6 dB

(b) 1,000-bytes packets

Figure 3.6. Frame reception rates at commercial WiFi device for packets sent by SloMo

node using downclocked Barker-like transmission. As a baseline, the 100% clock rate

corresponds to using the default 802.11b implementation.

44

using increasingly shorter Barker-like sequences (Figure 3.3); the lowest transmission

clock rate is 20%, which corresponds to transmitting with just two chips (Section 3.2).

As shown in Figure 3.6a, with small packet sizes downclocked transmission is nearly as

good as standard WiFi for moderate and good network conditions (≥ 26 dB) for nearly

all downclock rates (at the lowest 20% clock rate, reception rates are 10–20% below the

baseline). With larger packets sizes, as shown in Figure 3.6b, downclocked transmission

continues to do well for the majority of clock rates.

Note that downclocked rates of 73% and 82% underperform other clock rates by

7–10% when the SNR is moderate or low (≤26 dB). This variation is due to how well a

“Barker-like” sequence approximates the original Barker sequence; a longer sequence

(higher clock rate) does not necessarily yield better correlation results. As with small

packets, the lowest clock rate of 20% substantially degrades reception relative to the

baseline, pushing the limit of downclocking.

Overall, when SNR is poor (≤ 13 dB), downclocked reception rates are on average

10% less than the standard WiFi implementation; otherwise, the packet reception rates

are approximately the same. These results indicate that downclocked transmission is

feasible for a wide range of SNR scenarios, especially transmitting ACKs at the same

downclocked rate used to receive data frames.

Transport Layer Throughput

To stress SloMo’s downclocking implementation, we next evaluate application

throughput at both 1-Mbps and 2-Mbps link rates. We use iperf to transmit 1,000-

byte UDP packets as fast as possible between the laptop and Sora node, repeating the

application ten times. We perform the experiment at three clock rates, including 100% as

the standard WiFi baseline, and at two locations where the SNR condition is excellent

and good, respectively.

45

0 11 22 33 44 55 66 77 88 99 110

0
2
0
0

5
0
0

8
0
0

1
1
0
0

1
4
0
0

Percentage of Full Clock Rate

T
h
ro

u
g
h
p
u
t
in

 k
b
p
s

Excellent

Good

(a) 1 Mbps

0 11 22 33 44 55 66 77 88 99 110

0
2
0
0

5
0
0

8
0
0

1
1
0
0

1
4
0
0

Percentage of Full Clock Rate

T
h
ro

u
g
h
p
u
t
in

 k
b
p
s

Excellent

Good

(b) 2 Mbps

Figure 3.7. UDP throughput using iperf sending packets from the commercial WiFi

device to the SloMo Sora node using downclocked reception with compressive sensing.

46

0 11 22 33 44 55 66 77 88 99 110

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Percentage of Full Clock Rate

T
h
ro

u
g
h
p
u
t
in

 k
b
p
s

Lenovo

Mac

Figure 3.8. Comparing UDP throughput when sending from two different commercial

WiFi devices to the SloMo Sora node.

Figures 3.7a and 3.7b show the iperf throughput results for link rates of 1 Mbps

and 2 Mbps, respectively. These results evaluate downclocked reception using compres-

sive sensing: iperf runs on the laptop with the commercial WiFi card and sends UDP

packets to the SloMo Sora node, which receives the packets at downclocked rates. For the

“good” and “excellent” network conditions, application throughput at the downclocked

rates is nearly equivalent to throughput using standard WiFi. Figure 3.7b shows that

downclocked reception indeed can take full advantage of 2-Mbps link rates under rea-

sonable network conditions. For “good” and “excellent”, the application throughputs at

2 Mbps are double those at 1 Mbps.

Hardware Heterogeneity

To test the sensitivity of SloMo to specific commercial WiFi implementations,

we performed similar throughput experiments between the Sora node and a Macbook

47

0
.0

1
.0

2
.0

3
.0

4
.0

V
o

IP
 M

O
S

 V
a

lu
e

Full (100% clk rate)
5/11 (45% clk rate)
2/11 (18% clk rate)

Excellent Good Poor

Network Condition

Figure 3.9. The Mean Opinion Score (MOS) for VoIP calls using Skype at different

downclocked rates and network conditions. The SloMo node uses both downclocked

reception and transmission.

Pro laptop with an Apple Airport Extreme WiFi card using the Broadcom BCM43xx

firmware. As above, we used iperf to send 1,000-byte UDP packets as fast as possible

for combinations of downclock rates and network conditions, repeating each run ten

times. We found that both downclocked reception and transmission operated as expected

between SloMo and both commercial WiFi devices on the laptops. Figure 3.8 shows

the iperf results for downclocked reception. Although application throughput with the

Intel card on the Lenovo was consistently 5–10% higher than with the Airport Extreme

on the Macbook, this difference was independent of whether we were using normal or

downclocked communication, clock rate, and network location. We also performed the

same experiment in the reverse direction—using iperf to send packets from the SloMo

Sora node using downclocked transmission to the laptops—and experienced the same

behavior.

48

Skype Application

Finally, we combine downclocked reception and transmission in an application-

level experiment that evaluates the quality of Skype VoIP communication using SloMo.

The Lenovo laptop communicates directly with the SloMo Sora node, which acts as a

bridge to our LAN. One Skype user is on the Lenovo laptop, and the second is on a

Macbook laptop connected to the LAN such that the Skype connection flows through the

SloMo Sora node. The SloMo Sora node receives Skype data and ACK packets from the

Lenovo laptop using downclocked compressive sensing, and transmits ACKs and data

packets to the laptop using the downclocked short “Barker-like” sequences.

We make Skype calls between the two users in the three network locations and at

three clock rates: standard WiFi (100%), 5/11 (45%), and 2/11 (20%). For each location

and clock rate combination, we make ten calls lasting between 25–30 seconds and record

packet traces for the connections. With the packet traces, we use the methodology

described by Verkaik et al. [63] to calculate the Mean Opinion Score (MOS) for each call,

a standard metric for scoring call quality that ranges from 5 to 1 (good to bad). Similar as

Verkaik et al. [63], we calculate a version of MOS based on network-level characteristics

(jitter, packet loss, etc.) derived from packet traces [18] that are further calibrated using a

model tuned to the particular codec used [21].

Figure 3.9 shows that downclocked communication using SloMo only signifi-

cantly degrades call quality when network conditions are poor, as expected. The points

show the average MOS score across calls made in each configuration, with the standard

deviation as error bars. The full-clock-rate curve corresponds to standard WiFi, and the

other curves are for downclocked SloMo. When network conditions are “good” and

“excellent”, VoIP calls even using an 18% downclock rate achieve MOS scores that are at

least 90% of the MOS scores using standard WiFi. When network conditions are poor,

49

calls at the 45% downclock rate are still comparable (MOS scores are 96% of standard

WiFi), but the quality of calls at the 18% downclock rate suffers: the already low MOS

scores are just 66% of standard WiFi. As with previous experiments, when network

conditions are very poor only moderate downclocking works well.

3.7 Summary

Leveraging the inherent information sparsity in DSSS modulation, we illustrate

how to design and implement a compressive sensing based 802.11b receiver that decodes

standard WiFi frames sent at 1 or 2 Mbps. In addition, we notice that there exists

large bit-decision headroom for WiFi (DSSS) frame reception on commercial WiFi

devices. Based on this observation, we propose “Barker-like” sequences with chip

rates that are much smaller than the standard Barker sequence, which essentially enable

downclocked WiFi transmission. We have also carefully addressed the intricacies of

making a SloMo receiver practical, i.e., fixed-length integrate-and-dump, synchronization,

network protocol interactions, etc. We then implement our design on a software-defined

radio platform and demonstrate that SloMo can seamlessly communicate with existing

commercial WiFi chipsets. Under moderate SNR conditions, the performance of SloMo

is almost identical to a standard 802.11b transceiver. However, the SloMo system is

limited to 1 and 2 Mbps data rates, which may not be sufficient to support bandwidth

hungry applications. In the next chapter, we discuss how our WiFi downclocking design

can be extended to higher data rates.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation 2013. Lu,

Feng; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was the primary

investigator and author of this paper.

Chapter 4

Downclocking 802.11a/g

The previous chapter showed that downclocked 802.11b reception and transmis-

sion using compressive sensing and Barker-like sequences are both practical and useful.

However, the supported data rates are somewhat limited with these approaches. In this

chapter, we show how to extend our downclocking design to higher data rates in WiFi

with Enfold, in particular orthogonal frequency division multiplexing (OFDM) modulated

WiFi frame reception. First we describe the fundamental underpinnings of the Enfold

design which exploits the aliasing effect that is inherent in under-sampling an OFDM

signal. We then survey the practical challenges of implementing a real downclocked

OFDM WiFi receiver, such as synchronization, frequency offset and phase recovery,

and describe techniques that address the various challenges in addition to decoding. We

next present an implementation of our Enfold design on the Microsoft Sora platform

and the modifications needed to support downclocked OFDM reception on existing

infrastructure. Finally, we evaluate the Enfold system both in simulation and in practice

with real WiFi devices, and demonstrate that Enfold can attain greater than 96% and 83%

packet reception rates for moderate signal-to-noise ratio (SNR) while reducing the clock

rate by two times and four times, respectively.

50

51

4.1 Harnessing Aliasing

Unlike the direct sequence spread spectrum (DSSS) modulation scheme used in

802.11b, OFDM signals are extremely dense as data bits are encoded on all subcarriers

across the entire frequency spectrum. Therefore, compressive sensing techniques are no

longer applicable in downclocked OFDM reception. When the sampling rate is below

the Nyquist rate, aliasing occurs, where the signal spectrum folds up and the transmitted

signal is no longer recoverable. However, we observe that there exists well-defined

structure in terms of how the signal spectrum folds up under aliasing. Based on the

design of OFDM communication systems, we show how the structure can be exploited to

enable downclocked operation.

4.1.1 Downclocked OFDM Modulation

At a high level, an OFDM communication system is defined by the inverse fast

Fourier transform (IFFT) and fast Fourier transform (FFT) operations. In the context

of 802.11, this implies the following: a) data bits are modulated and coded on a num-

ber of subcarriers and inverse FFTs are taken over these coded values to produce the

time-domain signal at the transmitter; and b) the time-domain signal is sampled at the

receiver, which then performs FFTs over these data samples to recover the encoded

values. To convey the essence of our idea, we defer details related to timing, frequency

synchronization, channel estimation, etc., to later sections, and focus for the moment

entirely on modulation.

Here, we consider a single OFDM symbol and denote the data encoded on each

subcarrier as Ci, and channel impulse response for each subcarrier as Hi, where 0≤ i≤ 63

in the case of 802.11a/g. Thus, the sampled signal at the receiver, when expressed in the

frequency domain, will be CiHi for subcarrier i. Correspondingly, the 64 time-domain

52

data samples at the receiver can be written as:

Dk =
1

64

63

∑
i=0

CiHie
j2πki/64 +Wk, k = 0, . . . ,63. (4.1)

where Wk is the channel noise. To recover the transmitted data, the receiver performs

FFT on the 64 data samples, Dk, and the resulting frequency response is expressed as:

Fl =
63

∑
k=0

Dke− j2πkl/64, l = 0, . . . ,63. (4.2)

Now let us substitute Eq. (4.1) to Eq. (4.2):

Fl =
63

∑
k=0

(
1

64

63

∑
i=0

CiHie
j2πki/64 +Wk)e

− j2πkl/64

=
1

64

63

∑
i=0

63

∑
k=0

CiHie
j2πk(i−l)/64 +Nl

=ClHl +Nl.

where Nl = ∑
63
k=0Wke− j2πkl/64 is the channel noise expressed in the frequency domain at

subcarrier l, which results in a non-zero decoding error. Subsequently, the transmitted

data is estimated as Fl/Hl .

Now let us suppose the incoming data is sampled at a 50% clock rate. 32 samples

will be produced, i.e., D2k(k = 0, . . . ,31). Correspondingly we perform a 32-point FFT

53

operation on these data samples to yield the following frequency response:

F̃l =
31

∑
k=0

D2ke− j2πkl/32

=
31

∑
k=0

(
1

64

63

∑
i=0

CiHie
j2π2ki/64 +W2k)e

− j2πkl/32

=
1

64

63

∑
i=0

31

∑
k=0

CiHie
j2πk(i−l)/32 + Ñl

= 0.5∗ (ClHl +Cl+32Hl+32)+ Ñl.

(4.3)

Notice that ∑
31
k=0CiHie

j2πk(i−l)/32 equals to 0 if (i− l)/32 is not an integer. We refer

to 0.5 in Eq. (4.3) as the downclocking scaling coefficient. One way to interpret the

aliasing effect given in Eq. (4.3) is that the frequency response for subcarrier l is the

average of the responses for subcarrier l and l +32 (if they were sampled at full rate),

for l = 0, . . . ,31. Similarly, the frequency response for subcarrier l at a 25% clock rate

would be the sum of the responses for subcarrier l, l +16, l +32, and l +48 (should the

full sampling rate have been applied), scaled by the downclocking coefficient, 0.25.

Hence, aliasing effectively transforms the original n-QAM (quadrature amplitude

modulation) system to n2-QAM at the receiver side for a 50% clock rate. For example, if

BPSK (binary phase shift keying) is used at the sender, the resulting modulation due to

aliasing would be 4-QAM. Similarly when downsampling at 25% clock rate, n-QAM

transmissions will be transformed into n4-QAM. Figure 4.1 shows the constellation

diagram for a subcarrier of two real WiFi packets when received at 50% and 25% clock

rates, respectively, which serves as a concrete example of how the modulation scheme is

transformed.

In sum, when aliasing happens the signal spectrum folds up and superimposes

on itself in a well-defined manner, thereby enabling a systematic decoding of the com-

pounded frequency responses.

54

−1500 −500 0 500 1000 1500

−
1

0
0

0
−

5
0

0
0

5
0

0
1

0
0

0

Re

Im

(a) 50% downclocking.

−3000 −1000 0 1000 2000 3000

−
2

0
0

0
0

1
0

0
0

Re

Im

(b) 25% downclocking.

Figure 4.1. Frequency response (constellation diagrams) on subcarrier 6 for two real

WiFi packets under 50 and 25% downclocking. Notice how the constellation diagram

changes as clock rate decreases.

55

4.1.2 Decoding Aliasing Induced Modulation

We now explain how to decode the original data bits. We choose 802.11a/g

6-Mbps transmissions and a 50% reception clock rate as an example to illustrate our

idea with an understanding that the approach holds for other rates and downclocking

options. At 6 Mbps, a group of 48 bits are mapped into 48 complex numbers during the

modulation mapping, where each bit is mapped to either 1+0 j or −1+0 j using BPSK

modulation. These 48 complex numbers are then encoded on 48 out of the 64 subcarriers.

Recall from Eq. (4.3) that the frequency response is the sum of ClHl and Cl+32Hl+32 for

subcarrier l at the receiver side. Given the values of Cl the frequency response Fl takes

one of the four values, 1
2
(±Hl ±Hl+32), depending on the bits mapped to subcarrier l and

l+32 on the sender side (e.g., 00, 01, 10, and 11). This encoding functions identically to

4-QAM: two bits are mapped to one of four complex numbers.

Therefore, similar to how a QAM system is decoded, we employ minimum dis-

tance decoding to recover the original bits. However, since the modulation transformation

is induced by aliasing, and the channel response for subcarriers is random,1 the resulting

4-QAM modulation differs from a standard one. In a standard 4-QAM scheme, two bits

are mapped to one of the four complex numbers (also known as constellation points)

equispaced around a circle. On the other hand, with aliasing induced modulation, the four

code points could be anywhere in the constellation diagram depending on the channel

response. Their separation depends on the relationship between the channel responses.

In the absolute worse case where Hl = Hl+32, two constellation points collapse into

one, which leads to at least a 25% bit error rate (BER). We observe, however, that this

devastating scenario is unlikely in practice (see Section 4.5.2). Similarly, when a 25%

clock rate is used, the original BPSK modulation becomes 16-QAM modulation. Aliasing

1Subcarrier response is not entirely independent, but we defer a careful study of the impact of this

phenomena to future work.

56

S S S S S S S S S S L L Header Data CRC

Preamble

Figure 4.2. WiFi (802.11a/g) packet structure.

induced modulation can be extended to other rates (e.g., 12 Mbps and higher) as well;

the resulting modulation scheme would simply yield more densely packed constellation

points compared to the original scheme.

4.2 WiFi Reception

Recent WiFi generations (e.g., 802.11a/g/n/ac) are all OFDM-based communi-

cation systems. We showed in the previous section that it is entirely possible to decode

OFDM signals by exploiting the frequency spectrum structure under aliasing. However,

real communication systems are much more complex than what we have discussed so far

and there are many other components that need to be in place before a receiver is in a

position to decode an actual OFDM symbol.

The designers of WiFi obviously never anticipated it would be used by down-

clocked radios, so existing approaches to clock synchronization, frequency compensation,

pilot tracking, etc., might not function when downclocked. We start in this section with a

brief overview of the 802.11 a/g frame structure and the typical decoding pipeline of a

standard, full clock rate 802.11a/g-based WiFi receiver, and then address the challenges

imposed by downclocked operation in the following section.

4.2.1 Frame Structure

Two key tasks for any OFDM communication system are timing synchroniza-

tion and frequency offset compensation. To meet these requirements, a WiFi frame is

prepended by a preamble, which serves the purpose of preparing the receiver to decode

57

the actual data part. Figure 4.2 shows the detailed structure of an 802.11a/g WiFi frame.

The preamble consists of ten identical “short” OFDM symbols and two identical “long”

OFDM symbols, with durations 0.8µs and 4µs, and sequence lengths 16 and 64 (80

including the cyclic prefix), respectively. We explain below how a receiver uses the

repetitive structure of the preamble to perform both time and frequency synchronization.

Immediately following the preamble is the physical layer (PHY) header, which

contains information such as the data encoding rate, payload length, service field, etc.

The first 24 bits of the PHY header are encoded at 6 Mbps while the remaining 16 bits are

encoded at the same rate as the actual data; depending on the current channel condition,

the data may be transmitted at different modulation rates. In most WiFi devices, the PHY

header (first 24 bits) is added by the hardware without the driver’s intervention.

4.2.2 Reception Pipeline

In addition to decoding, a receiver performs five important steps to correctly

recover the transmitted signal.

Timing synchronization. A WiFi receiver will continuously sample the channel

to look for a preamble. The ten short OFDM symbols in the preamble help the receiver

to lock onto the data stream and define the OFDM symbol boundary. Once the symbol

boundary is determined, FFT can be performed on the time-domain samples to obtain

their corresponding frequency-domain values.

Frequency compensation. Before computing the FFT, however, since the clock

oscillator frequency is never exactly the same at the sender and receiver, the frequency

offset needs to be estimated and compensated. Otherwise, orthogonality among sub-

carriers will be compromised and data transmitted on one subcarrier would interfere

with another. Hence, receivers also use both the short and long OFDM symbols in the

preamble to perform frequency offset estimation (or frequency synchronization).

58

Channel estimation. Once both timing and frequency are synchronized, the next

decoding stage estimates the wireless channel response, i.e., channel estimation. With

the estimated channel response, the results of computing the FFT on the time-domain

samples can be mapped to the actual data bits transmitted.

Viterbi decoding. To compensate and correct for bit errors, the raw decoded bits

are fed into a Viterbi decoder [65], whose output is de-scrambled and subsequently passed

on. (Obviously, symmetric operations are performed at the sender before transmission.)

Phase compensation. There is one additional step that is performed throughout

the entire data decoding process: phase compensation. Since the sampling clock could

drift slowly as time goes by, FFT results might vary even when the same OFDM symbol

is transmitted repeatedly. Therefore, phase compensation is used to correct the variation

of FFT results across OFDM symbols.

Viterbi decoding, scrambling, and subsequent stages work on the decoded data

bits and are therefore entirely agnostic to the underlying clock and sampling rate. The

remaining stages of the pipeline—timing synchronization, frequency compensation,

channel estimation, and phase compensation—operate on the time-domain data samples,

and are impacted by operating at lower clock rates.

4.3 Downclocking WiFi

In this section, we systematically examine the impact of downclocking in detail

and propose a series of techniques to address these challenges.

4.3.1 Timing Synchronization

The purpose of timing synchronization is to enable the receiver to first detect

the presence of a valid WiFi packet and then correctly locate the boundary between

adjacent OFDM symbols. Timing synchronization uses the short preamble only, i.e.,

59

the ten repetitive short OFDM symbols. The IEEE 802.11 specification [33] does not

mandate any particular timing synchronization algorithm. Although there are many

timing synchronization algorithms for OFDM, we, like many others, use the auto(cross)-

correlation approach [41, 60, 69].

The short OFDM symbol has a sequence length of 16 and exhibits very good

cross-correlation properties. Let us denote the incoming time-domain data samples as

r(.). Then the cross-correlation is computed as:

cros(i) =
∑

15
j=0 r(i+ j)S∗(j)

∑
15
j=0 |S(j)|2

, (4.4)

where S∗(.) is the complex conjugate of the short OFDM sequence expressed in the

time domain. If sampling at full clock rate, there will be 16 time-domain samples

corresponding to one short OFDM symbol, and S(.) has the same length. The correlation

output, cros(i), produces a peak only when the incoming signal r(.) fully aligns with

S(.), i.e., r(i+ j)≈ S(j) (the approximation is due to the presence of noise). Otherwise,

the magnitude of the correlation output is much smaller than the peak value. Thus, the

cross-correlation peak enables accurate OFDM symbol boundary detection (i.e., fine

timing synchronization).

Due to the repetitive structure of the short preamble, a receiver can correlate the

received data samples with themselves at one short OFDM symbol delay. Specifically,

the receiver tracks the following auto-correlation output:

auto(i) =
15

∑
j=0

r(i+ j)r∗(i+ j+16). (4.5)

The rational is that, when a valid WiFi frame is present, r(i) = r(i+16) as 16 samples

correspond to one short OFDM symbol duration. When the auto-correlation index i

60

is within the range of the short preamble, the output from Eq. (4.5) spikes and stays

high. This auto-correlation result produces a plateau over time, which is known as coarse

timing synchronization. Clearly, the cross-correlation peak defined in Eq. (4.4) must

happen within the plateau to be meaningful. Thus, by combining the outputs of both

results, we can safely detect the presence of a WiFi frame and correctly identify symbol

boundaries.

Downclocking reduces the number of time-domain samples by half (or a quarter)

depending on the clock rate. First we note that, regardless of the sampling rate, Eq. (4.5)

will hold when r(i) = (i+ 8) or r(i) = (i+ 4) if sampling at 50% or 25% clock rates,

although the noise floor (when the auto-correlation is failing within the short preamble)

approaches the plateau. Nevertheless, the plateau could still have separation and, perhaps

more importantly, its width roughly equals the duration of the short preamble, which is

invariant among different clock rates (see Figure 4.3a).

Unfortunately for cross-correlation, the downsampled sub-sequences no longer

exhibit convenient correlation properties: there could be multiple comparable peaks

within one short OFDM symbol. So we turn to the long OFDM symbols and evaluate its

cross-correlation properties. It turns out that the long preamble sequence (consisting of

128 samples across two symbols) also exhibits excellent cross-correlation properties, in

part because its time-domain samples are generated similarly to the short preamble.

Figure 4.3b illustrates the effect of using the 128-sample long OFDM symbols

for timing synchronization on an actual WiFi packet. The cross-correlation output

produces three peaks. The middle peak corresponds to full alignment, while the first

corresponds to a partial alignment with the first OFDM symbol and the third corresponds

to a partial alignment with the second OFDM symbol. These correlation peaks make it

straightforward to identify the starting sample index for the remaining OFDM symbols.

We also note that the peaks for different clock rates are superimposed on each other,

61

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (µs)

N
o
rm

a
liz

e
d
 A

u
to

−
C

o
rr

e
la

ti
o
n
 O

u
tp

u
t

100%

50%

25%

(a) Auto-correlation on short sequence.

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (µs)

N
o
rm

a
liz

e
d
 C

ro
s
s
−

C
o
rr

e
la

ti
o
n
 O

u
tp

u
t

100%

50%

25%

(b) Cross-correlation on long sequence.

Figure 4.3. Correlation responses at 100%, 50% and 25% clock rates for raw data

samples of a real WiFi packet captured by Universal Software Radio Peripheral (USRP).

62

confirming that the approach works for all clock rates. In Section 4.5.1, we show in

practice that timing synchronization works quite well even for a 25% clock rate at low

signal-to-noise ratio (SNR) values.

4.3.2 Frequency Compensation

Standard frequency compensation algorithms explore the following relationship

between two transmitted back-to-back identical OFDM symbols. Let r(1), . . . ,r(n)

and r(n+1), . . . ,r(2n) correspond to the time-domain samples at the receiver for two

identical OFDM symbols, respectively. Then the following property always holds for

any 1 ≤ i ≤ n:

r(n+ i) = e j2π∆ fcT r(i), (4.6)

where ∆ fc is the frequency offset and T is the OFDM symbol duration. Hence the

frequency offset is estimated as the ratio between r(n+ i) and r(i), taking the average for

all possible values of i.

With downclocking, the relationship described by Eq. (4.6) still holds for data

samples spaced by one symbol duration, although the average is now taken over fewer

samples. Since downclocking will only use half or a quarter of the samples compared to

the full clock rate, the frequency offset estimation accuracy is reduced by 3 dB and 6 dB,

respectively. As discussed in the previous section, the preamble consists of ten repetitive

short OFDM symbols and two repetitive long OFDM symbols. When downclocking, we

use both for frequency offset estimation (i.e., coarse and fine frequency synchronization),

taking the average over fewer data samples.

As with timing synchronization, in Section 4.5.1 we show that our frequency

compensation technique also works well in practice.

63

4.3.3 Channel Estimation

Once timing and frequency synchronization are achieved, the next step is to

understand the channel response. In a WiFi frame, the long preamble supports channel

estimation because the data bits encoded on each subcarrier are known a priori. Let us

assume that the FFT results for the long OFDM symbol are F0,F1, . . . ,F63; the wireless

channel response is estimated as

Hi = Fi/Ci, 0 ≤ i ≤ 63. (4.7)

where Hi is the channel response for subcarrier i and Ci is the data encoded on subcarrier i

(known to both sender and receiver). However, when downclocking, the channel response

will fold up and estimating individual subcarrier channel responses is no longer feasible.

While there are approaches in the literature that determine channel responses under such

conditions [39, 61] using compressive sensing, they make certain assumptions regarding

the channel. Unfortunately, these assumptions are not necessarily true in general for the

WiFi environment. Hence, we develop an alternative method to find the per-subcarrier

channel response (coefficients).

The aliasing effect, when translated into the frequency domain, is equivalent

to summing the channel coefficients at indices spaced by 32 or 16, depending on the

downclocking rate. More specifically, when sampling at full clock rate, FFT is taken

over 64 time-domain samples and produces 64 subcarrier responses, which are used to

estimate channel response as defined by Eq. (4.7). Now when sampled at 50(25)% clock

rate, we obtain 32(16) equations after performing FFT, where each equation consists of

two(four) unknowns (see Eq. (4.3)). We leverage the fact that the WiFi channel response

remains relatively invariant over the course of a single packet. Therefore, if we transmit

multiple known OFDM symbols (e.g., training symbols), we could potentially recover all

64

the unknowns by collecting equations from multiple symbols. One caveat is that all the

training OFDM symbols must be phase compensated.

4.3.4 Phase Compensation

To compensate for any possible phase shift across OFDM symbols, the WiFi

standard inserts known data in certain subcarriers (pilots) for every OFDM symbol. By

comparing the pilot subcarrier responses between symbols, the phase shift is estimated

and the data subcarrier values are compensated accordingly. Unfortunately, due to the

particular set of subcarriers selected to be pilots, when downclocking the pilot subcarriers

fold on top of data subcarriers (which contain unknown data). Hence, downclocking

cannot use the pilots to compensate the phase difference. We could redefine the pilot

subcarriers such that their indices are spaced by 16 so that one pilot subcarrier will always

add up with another pilot under downsampling rate of 50% or 25%. However, doing so

would violate our goal of being entirely 802.11 standard compliant.

4.3.5 Data Precoding

Rather than change the WiFi frame structure or how the subcarriers are mapped,

we elect to transmit additional symbols in the payload of the frame. At a high level, we

re-encode the original data bits such that: 1) additional channel training symbols are

introduced; 2) pilot structure is restored. It is non-trivial to realize both (1) and (2) for a

number of reasons, however.

From Bits to Subcarriers

Up to now, our discussion has primarily centered around coded values on subcar-

riers. However, there are multiple stages such as scrambling, convolutional encoding,

interleaving, and subcarrier mapping sitting between raw data bits and the values en-

coded on the subcarriers. In particular, the transmitter will first XOR the raw bits with

65

scrambler bits, and then pass the XOR-ed bits to a convolutional encoder. The output of

the convolutional encoder not only depends on the current bit but also the past bit history,

where the history length depends on the size of the convolutional encoder register. In

the context of 6-Mbps WiFi, the transmitter produces a block of 48 bits for every 24

scrambled input bits after the convolutional encoder, i.e., input bit k leads to output bits 2k

and 2k+1, where 0 ≤ k ≤ 23. Finally, the transmitter generates a single OFDM symbol

by performing interleaving, modulation mapping and subcarrier assignments on these

48 bits. For the generated OFDM symbol, there is a fixed one-to-one correspondence

between the 48 bits and the 48 (out of 64) subcarriers. For example, bit 16 maps to

subcarrier 39: the coded values on subcarrier 39 will be 1+0 j(−1+0 j) if bit 16 is 1(0).

Conversely, if we want to set the coded value on subcarrier 39 to be 1+0 j (i.e.,

for use as a pilot), we need to ensure that bit 16 is 1. Since the convolutional output bit is

produced by taking XOR operations among the current input bit and some past input bits,

there always exists some input bit value (i.e., could be 0 or 1) such that the output bit

has the desired value. Therefore, we try both values for input bit 8 and check which one

produces a value 1 on output bit 16.

Pilot Restoration

For 802.11a/g, the four pilots are inserted at the following subcarriers: 7, 21, 43

and 57. Under downclocking, these pilots will fold up with various data subcarriers,

which we coin pilot-images. For example, the pilot-image for subcarrier 7 is subcarrier

39 under 50% sampling rate. To restore these pilots with downclocking, the pilot-images

have to be encoded with known values. To simplify our design, we set the data encoded

on a pilot-image subcarrier to be the same as its corresponding pilot. To enforce the

same data encoded on both pilot and pilot-image, we modify the input bit stream to the

convolutional encoder in the following way.

66

Let us denote the original raw input data bits (excluding the additional training

symbols) as b0, b1, . . . , bn and the scrambler sequence output as x0, x1, At 6 Mbps,

the transmitter will map a group of 48 convolutional encoder output bits to one OFDM

symbol (48 out of 64 subcarriers). We run the convolutional encoder as normal while

the input bits are coming through. The transmitter XORs each incoming data bit bi with

some scrambler output x j, and feeds the scrambled bit into the convolutional encoder and

generates two output bits as a result. Whenever we are about to produce an output bit

that is going to be mapped onto a pilot-image subcarrier, we “pause” the input bit stream

to the convolutional encoder and instead insert a new bit c such that the value encoded on

the pilot-image subcarrier is the same as the corresponding pilot value.

For example, if output bit 16 is about to be produced (mapped to subcarrier 39),

we check the current value of pilot subcarrier 7. If subcarrier 7 has value 1+0 j, we need

to ensure that output bit 16 is 1, and 0 otherwise. The newly inserted bit c is selected such

that bit 16 yields the desired value. The two convolutional encoder output bits (generated

by the same input bit) are never mapped onto pilot-image subcarriers at the same time,

thus there always exists a bit c such that the pilot-image subcarrier possesses the same

value as its respective pilot. We update the convolutional encoder with bit c.

Next, given the desired input bit c, we then XOR it with the current scrambler

bit, say xk, to produce the raw data bit c̃. Afterwards, xk is discarded and the next raw

data bit bi is scrambled with xk+1 to produce the new input bit for the convolutional

encoder, which resumes normal operation. Correspondingly, the precoded data will

be: . . . ,bi−1, c̃,bi, This process is repeated until all input bits are exhausted and

c̃ is inserted for every pilot-image subcarrier encountered. Since the positions of the

convolutional output bits that are mapped to pilot-images are fixed, the bit indices for

inserted bits c̃ are known as well. Hence, the receiver can simply discard the inserted

pilot bits c̃ to recover the original data.

67

Training Symbols

We describe how we generate the additional training symbols with reference to a

50% clock rate; the same strategy applies for a 25% clock rate. With 50% downclocking,

the FFT is performed over 32 data samples for one OFDM symbol. Let us denote the data

encoded on subcarrier i as Ci at the sender side and the channel response for subcarrier i

as Hi (0 ≤ i ≤ 63); the frequency responses after FFT can be written as:

F̃j =
H j

2
C j +

H j+32

2
C j+32,0 ≤ j ≤ 31.

To recover the channel coefficients H js, we need at least two such equations and thus

two OFDM training symbols. Furthermore, the two equations must be independent from

each other, i.e., (C j,C j+32) from symbol one and (C j,C j+32) from symbol two must form

a full rank 2×2 matrix.

We first generate a random binary string of 48 bits (sufficient for two OFDM

symbols) and precode these bits so that the pilots are restored. We then compute the

rank of the resulting matrix (e.g., [C j,C j+32]
S1 , [C j,C j+32]

S2) for each subcarrier, where

Si is the ith OFDM symbol. If all the matrices have a rank two, we use S1 and S2 as the

training symbols. If not, we repeat until they do. This offline process only needs to be

executed once and the resulting training symbols are used for every precoded packet.

4.3.6 Additional Considerations

So far we have covered the main components in enabling downclocked OFDM

frame reception. Here, we mention a few additional details that are important for a

standards-compliant design.

Transmission. While our approach allows downclocked reception of OFDM

symbols, we cannot transmit OFDM symbols while downclocked. There are two options.

68

First, some WiFi chipsets (e.g., MAXIM 2831 [70]) are able to switch their clocks within

9 µs (i.e., less than SIFS), which would allow the WiFi chipset to spend most of the

time in downclocked mode and only switch back to full clock rate for transmission.

Alternatively, we could transmit using 802.11b encodings while remaining downclocked

as shown in Chapter 3. We experimentally verify that a WiFi device will accept 802.11b

(DSSS) frames, e.g., layer-2 ACKs, when sending 802.11a/g (OFDM) frames. We use a

commercial WiFi network interface controller (Intel 6200) to send OFDM frames to our

prototype while the latter replies with DSSS frames. Both nodes are able to communicate

with each other without any problem.

Scrambler Seed. Our design assumes that the scrambling sequence is known,

which can be derived deterministically from the scrambler seed. Commercial network

interface controllers (NICs) often use an internal linear feedback shift register (LFSR)

to generate the scrambler seeds. If the LFSR design and its initial seed are exposed, we

could potentially determine the current scrambler seed at any moment. Unfortunately, we

are unable to find a specific NIC that currently does so. The closest that we have found is

the Atheros 93xx series chipset, where the scrambler seed can be temporarily disabled by

configuring the MAC PCU DIAG SW register. When scrambling is disabled, we could

implement a soft scrambler in the driver to avoid long runs of 1s and 0s. We believe there

is no reason the NIC could not expose either the scrambler seed or the LFSR directly to

the driver.

Extension to 802.11n/ac. Although our discussion focuses on 802.11a/g, our

approach is generic to other OFDM communication systems. The newer WiFi specs

such as 802.11n and 802.11ac are based on OFDM as well. A direct way of applying

our solution to 802.11n/ac is to configure these systems to operate in single-input-single-

output (SISO) mode [28], which is similar to the setup of 802.11a/g we described here.

In fact, 802.11n/ac include a channel-sounding process to estimate channel response

69

and could apply channel precoding for transmitted frames, leading to both simplified

downclocked decoding at the receiver and better performance. We leave combining

multiple-input-multiple-output (MIMO) and downclocking for future study.

Added Complexity. Both Enfold transmitters and receivers have additional tasks

to perform when compared to regular nodes. However, most of these tasks employ

standard communication algorithms such as minimum-distance decoding, correlation,

etc. Therefore, the additional computation power incurred is negligible compared to the

communication cost. Although downclocking does convert the modulation scheme into a

denser one, the power required to decode does not depend significantly on constellation

density in existing chipsets [28].

4.4 Implementation

We implement Enfold on the Microsoft Sora software-defined radio platform [60].

The modifications are standards compatible and do not require any sender hardware

changes.

4.4.1 Sender

Since Sora uses a fixed scrambler sequence for all packets, i.e., a constant scram-

bler seed, we take advantage of this fixed sequence to precode data before it is transmitted

by the NIC. Depending on the downclocked clock rate at the receiver (50% or 25%), we

add two or eight channel training symbols as part of the encoded data payload.2 The pilot

restoration logic described in Section 4.3.5 consists of about 300 lines of code (LoC).

Since our modifications are restricted to the data portion only, the NIC generates

a standard physical layer packet header and cyclic redundancy check (CRC). As a result,

the OFDM symbols corresponding to the header and CRC cannot be phase compensated

2We tried other numbers of channel training symbols as well; two and eight yield a good balance

between overhead and estimation accuracy.

70

S S S S S S S S S S L L Header Data CRC

Preamble

(a) Original

S S S S S S S S S S L L Header TS ... TS Len Precoded Data CRC

(b) Precoded

Figure 4.4. WiFi packet structure for both original and precoded versions. Note that our

modifications are restricted to the data payload only (gray area).

by a downclocked device. Therefore, on the sender side we also include the original CRC

(computed based on the uncoded data) as part of the precoded data. To ensure that the

precoded data is an integral number of OFDM symbols—so that the entire coded data

portion can be phase compensated—we add trailing zero bits at the end. As a result, we

also include an additional OFDM symbol to encode the length of the original data so that

the receiver knows when to stop decoding.

Figure 4.4 shows the structure of a precoded WiFi packet. At a 50% downclock

rate, the new pilots are subcarriers 7 and 21, and the pilot-image subcarriers 39 and 53

are used to code pilot values. Similarly for 25% downclocking, the new pilots are 7 and

11, and the pilot-image subcarriers are 11, 23, 39, 55 and 59. As a result, the effective

throughput for 50% and 25% downclocking are 91.6% and 79.1% of the original data

rate (6 Mbps). In our experiments, two pilot subcarriers are sufficient to bound the phase

estimation error within 0.12 radians (6.8 degrees).

Any non-Enfold node can receive and decode an Enfold-precoded WiFi packet;

the data content would simply not be recognizable, similar to encrypted data.

4.4.2 Receiver

As before, we emulate downclocking in Sora by decimating every-other raw

channel sample at for a 50% rate, and three-of-every-four samples for a 25% rate.

71

We modify and reimplement the timing and frequency synchronization modules to

accommodate downclocked rates. We postpone decoding the physical layer header (one

OFDM symbol), which contains the packet length and payload modulation scheme, until

after the channel has been estimated.3

As the header symbol is not phase compensated, we exploit the fact that there are

limited possibilities (4 and 16 possibilities for 50% and 25% downclocking, respectively)

that a data subcarrier could be. Therefore, we use a data subcarrier as the pilot by

enumerating all 4(16) possibilities (obtained from the training symbols) when decoding

the header symbol. The header symbol contains sufficient information (e.g., parity and

modulation) to enable Enfold to determine the correct output among all possibilities.

Once the header is decoded, the number of data OFDM symbols is known.

For each incoming OFDM symbol, we first apply phase compensation and then use a

minimum distance decoder to determine the data bits. These data bits go to the Viterbi

decoding chain and are subsequently de-scrambled. Once all symbols are decoded, we

start to decode the precoded data payload by essentially discarding the inserted pilot bits.

Finally, we compare the computed CRC with the CRC included as part of the precoded

data payload; we ignore the default media access control (MAC) layer CRC.

One subtlety not discussed earlier is the service field, which consists of 16 bits

with the first 8 bits set to zero so that the receiver can determine the scrambler seed. In

our implementation, we include the service field as part of the training symbol since the

receiver knows the scrambler seed. In the general case where the scrambler seed is not

known at the receiver, we can place a known bit pattern on the eight reserved bits and

use the same approach for decoding the service field as the header symbol.

3Since our implementation currently assumes that the data payload is fixed at 6 Mbps, we do not rely

on the packet header to determine the payload modulation scheme.

72

4.4.3 Network interactions

In this section, we discuss how Enfold nodes interact with the Access Point (AP)

and share the network with regular nodes, in particular the modifications needed to

support Enfold in existing deployed infrastructure.

Precoding at AP. Given the current pilot subcarrier placement, an Enfold-capable

AP has to precode the data to restore pilot structure at downclocked receivers. To remain

802.11-standard compliant, we implement the precoding step in Sora’s link-adaptation

layer, leaving the lower MAC/PHY layer untouched. To verify that our implementation

is truly standard compliant, we transmit a stream of User Datagram Protocol (UDP)

packets with our prototype Enfold AP and use Wireshark on a Macbook Pro to capture

(in promiscuous mode) the precoded WiFi packets and apply a corresponding decoding

process on the dumped packet trace. All packets sent by the Enfold transmitter are

correctly decoded, thus confirming the standard—or at least Apple—compatibility of

Enfold.

Beacon and Scanning. Although Enfold-precoded packets can be correctly re-

ceived by non-Enfold nodes, they would need to apply the corresponding decoding

process to recover the original data. Therefore, broadcast packets, such as beacon frames,

are unlikely to be understood by both Enfold and non-Enfold nodes simultaneously.

Hence, to support Enfold-enabled nodes, an AP would need to broadcast two types

of beacon frames, original and precoded. To reduce the network overhead due to two

beacon frames, the AP could broadcast Enfold beacons at larger time interval (e.g.,

every few hundred milliseconds). The reduced beacon time is unlikely to impact the

scanning and association process, given these happen on the order of several seconds. For

traffic indication purposes during power save mode (PSM), since Enfold nodes choose

to operate in downclocked mode, it is very unlikely that the incoming network traffic is

73

frequent. Waking up on a larger interval would not impact app-level performance such as

user-perceived response time.

Managing Downclocked Mode. Depending on the current network traffic and

SNR conditions, an Enfold node may choose to switch from downclocked to normal

mode and vice versa. Since the AP must precode data for downclocked operation, it

needs to be notified of such mode transitions. We envision two ways of realizing this

process. Clearly, one could design customized packets and a protocol for such a purpose.

Alternatively, realizing that most deployed WiFi networks have good SNR [15], lower

data rates such as 6/9 Mbps may never be picked by the rate selection algorithm of

non-Enfold nodes. Thus, an AP could dedicate 6 and 9 Mbps for downclocked operation,

and the AP would by default send precoded frame for 6 and 9 Mbps. As a consequence,

Enfold nodes could leverage the existing re-association request frame to inform the AP

that it only supports 6/9 Mbps and enter downclocked mode. An obvious concern is the

potential loss of energy savings by not using higher data rates while in downclocked

mode. However, as demonstrated in Chapter 5, the majority of the energy saving benefits

can be attained with 6 and 9 Mbps for most smartphone apps.

4.5 Evaluation

In this section we evaluate downclocked OFDM reception in practice. We first

evaluate specific steps of frame decoding on raw channel samples captured on the GNU

Radio Universal Software Radio Peripheral (USRP) [23], which allows us to control

SNR over a wider range. We then evaluate the Enfold prototype system implementation

on Sora [60] to understand packet reception rates under downclocking under SNR and

environment variations.

74

Table 4.1. Probability of detection Pd with different SNRs at 50% and 25% downclock

rates.

Clock Rate Pd(9 dB) Pd(14 dB) Pd(24 dB) Pd(34 dB)

50% 0.993 1.0 1.0 1.0

25% 0.958 1.0 1.0 1.0

4.5.1 Microbenchmark Results

For our microbenchmarks we use the GNU Radio USRP platform to capture raw

channel samples of 802.11a/g packets sent by a Sora node. We use the USRP board for

packet capture because, unlike Sora, it has a hardware automatic gain control (AGC)

on-board whose gain is adjustable. By varying the hardware AGC gain from 0 to 50, we

can experimentally sweep the SNR range from 9 dB to 35 dB (a gain above 50 leads to

saturation in our experiments).

For each gain setting we capture ten seconds of raw channel samples, containing

approximately 3,000 WiFi packets. With the raw channel samples, we can emulate the

effect of downclocking on various aspects of frame reception on the same data at all

clock rates. At the full 100% clock rate, we use all the samples. At 50%, we use every

other sample, and at 25% we use every fourth sample.

Packet Detection

First, we show that packet detection is not a constraint for OFDM decoding

at downclocked rates. We employ a simple energy-based detector which tracks the

average energy for a fixed duration and compares the output with a pre-defined threshold.

Table 4.1 shows the detection probability for a range of SNR values. We treat the

detection results at the normal clock rate of 100% as ground truth. If using the detection

algorithm at full clock rate signals a packet, but using it at a lower clock rate does not,

then we count the detection as having failed at the lower clock rate.

75

When SNR is extremely poor (9 dB), Enfold operating at 50% and 25% clock

rates can still detect over 99% and 95% of the packets, respectively. For SNRs of 14 dB

(which is still very poor) and above, both clock rates yield a 100% detection rate. These

results indicate that packet detection is invariant with respect to clock rate for much of

the SNR range, and certainly for SNR regimes expected of 802.11 communication.4

Conversely, we find only 10–20 falsely detected packets (out of the roughly 3,000 packets

captured in ten seconds) when downclocked.

Timing Synchronization

Next, we confirm that we can make timing synchronization also perform well for

downclocked OFDM decoding. Recall from Section 4.3.1 that, since the sub-sampled

short preamble sequence no longer exhibits excellent cross-correlation properties at

downclocked rates, we instead perform cross-correlation on the long preamble sequence.

Figure 4.5 shows the timing-estimation error (measured in number of samples) for both

50% and 25% downclock rates relative to the timing-estimation error at the full 100%

clock rate. In effect, it measures the additional error of downclocking relative to the

baseline error at 100%. Error bars show the standard deviation among the packets

captured at each SNR.

When the SNR is extremely poor (9 dB), the synchronization error is substantial

for downclocking at 25%. However, the synchronization error quickly converges to

zero at 13 dB and above, and certainly for the expected SNR operating regime for

802.11. These results confirm our initial hypothesis that auto-correlation, which looks

for repetitively transmitted symbols, will perform poorly when the noise level is very

high. At such high noise levels, interference adds together rather than canceling out as in

the cross-correlation case. Since we rely on the output of auto-correlation to begin the

4To place these values in context, many vendors (e.g., AT&T [1], Blackberry [2] and Cisco [3])

recommend coverage with a minimum of 25 dB when planning WiFi deployments.

76

● ● ● ● ● ●

10 15 20 25 30

−
5

0
5

1
0

SNR (dB)

T
im

in
g

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

● ● ● ● ● ●

● 50%

25%

Figure 4.5. Timing synchronization offset error with downclocking at 50% and 25%.

search for cross-correlation peak, at 9 dB SNR, the 25% auto-correlation output already

differs significantly from the 100% output. However, even with just slightly lower noise

levels (at 13 dB in our case), our method can accurately determine symbol boundaries.

Frequency Offset Estimation

In Section 4.3.2, we showed theoretically that frequency offset estimation is

oblivious to clock rate. As a final microbenchmark, we confirm that it is also not a

constraint for downclocked OFDM decoding in practice. As above, we consider the

frequency offset estimation obtained from decoding at the 100% clock rate as the ground

truth for comparing estimations performed at the 50% and 25% clock rates. For the SNR

range we could measure across (9–35dB), the estimation error at 50% and 25% clock

rates are within 2.2% and 6.8% of the 100% rates on average. Previous work [35] has

characterized that a frequency estimation error of 10% leads to ≤ 2 dB reduction in SNR,

which is almost negligible for the SNR regime we consider.

77

4.5.2 Prototype System Evaluation

Our second set of experiments evaluates the Enfold implementation on the Sora

platform at 6-Mbps data rates.5 In particular, we explore the decoding performance of

individual subcarriers, the decoding performance of entire packets across a range of SNR

values, and the ability to trade decoding performance with raw data rate at very fine

subcarrier granularities. Note that, since the Sora radio board does not have hardware

AGC, in these experiments we use their provided HWVeri tool [6] to calibrate the SNR

of two Enfold nodes at the start of each experiment.

Aliasing Induced Modulation

As discussed in Section 4.1.2, aliasing-induced modulation introduces additional

constellation points that could lead to decoding errors. Our first experiment with the

prototype explores the effect of aliasing on the constellations in practice. Lacking a

precise metric to quantify this impact, we calculate what we term the blocking distance

in constellations.

Each subcarrier at the original 100% clock rate will have a BPSK constellation

diagram. At a 50% clock rate, two subcarriers will be aliased into a single 4-QAM

constellation (twice the number of points). And at 25%, four subcarriers will be aliased

into a single 16-QAM constellation (eight times the number of points). Since decoding

performance fundamentally depends upon a distance threshold in the constellation, we

calculate a minimum distance among constellation points to capture the effect of aliasing-

induced modulation. To be more specific, if aliasing multiple subcarriers introduces

many bit errors, the constellation points would have poor separation as represented by

too small of a minimum distance.

59 Mbps shares the same BPSK modulation scheme per-subcarrier as 6 Mbps while the coding rate

changes to 3/4.

78

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normalized Blocking Distance

C
D

F

50%

25%

Figure 4.6. Cumulative distribution function (CDF) of normalized blocking distance

(relative to 100%) for 2,000 WiFi packets.

As an example, consider the set of four subcarriers {10, 26, 42, 58} which would

be aliased together when downclocking at 25%. At a 100% clock rate, these subcarriers

would each have their own BPSK constellation diagram. At 50%, though, there will be

just two 4-QAM constellations for the subcarrier pairs {10, 42} and {26, 58}, and at

25% there will be just one 16-QAM constellation for all four.

For each packet, we calculate the minimal of minimum distances for all con-

stellation diagrams for a particular clock setting. At 100%, we calculate the minimum

distance among constellation points for each subcarrier and record the minimal among

the four subcarriers; at 50% it is the minimal among two constellations, and at 25% it

is the minimum of the one resulting constellation. For each clock rate, we term this

minimal distance the blocking distance. In an ideal decoding situation for downclocking,

the blocking distance at 50% would be exactly half the blocking distance at 100%, and

similarly the blocking distance at 25% would be one quarter of 100%.

79

Figure 4.6 shows the CDF of the blocking distance for constellation diagrams for

the 50% and 25% clock rates normalized to the blocking distance at 100%. Each curve

is a distribution over 2,000 packets received by our Sora implementation. We focus on

just the four subcarriers {10, 26, 42, 58}, which are representative of the other subcarrier

sets.6 The distribution of blocking distances at the 50% clock rate is close to ideal:

nearly 90% of the packets have a blocking distance that is half of the 100% distance.

Performance at 25%, though, is notably worse: the blocking distances range from 0.03 to

0.25, with a median of 0.16; only 20% of the packets have a blocking distance close to a

quarter of the 100% distance. This large variation at a 25% clock rate is not surprising.

With four subcarrier responses added together, there will be more randomness in the

aliasing induced constellation diagram.

Translating these blocking distances into SNR for per-subcarrier signal quality

degradation, the penalty due to downclocking is 3 dB and 7.9 dB for 50% and 25% at

medium, respectively. In our next experiment we show how this degradation impacts

overall packet reception, which of course requires all subcarriers to be successfully

decoded.

Packet Reception Rate vs SNR

With a sense of per-subcarrier decoding performance at downclocked rates, we

now measure the overall packet reception ratio (PRR) of our prototype implementation

under a range of SNR conditions. We measure packet decoding in two rounds of different

packet sizes, one with small packets (100 bytes) and another with large packets (1,000

bytes). Each round of packet sizes consists of 50 runs, where each run has 100 back-

to-back packet transmissions and attempted decodings. We disable retransmissions.

6Standard 802.11 uses only 52 subcarriers (including four pilot subcarriers) out of 64. The unused 12

subcarriers are set to zero, which makes downclocked decoding involving these subcarriers easier. In this

experiment, we avoid these 12 subcarriers in the set we chose.

80

We transmit the two rounds back-to-back at a 100% clock rate, and then repeat the

transmissions at 50% downclocked decoding rates and again at 25%. Altogether, the

experiment transmits 30,000 packets.

We also vary the distance between the two Enfold nodes to induce different SNRs.

Unfortunately, as noted above, due to the lack of hardware AGC on the Sora platform

our SNR dynamic range is rather limited (20–30 dB as reported by Sora). As discussed

above, this SNR range is at the very low end for recommended 802.11 operation, with

25 dB the recommended minimum when planning coverage. We could not receive any

packet below 20 dB, i.e., it represents a sharp cut off in terms of PRR.

Figure 4.7 shows the results of these experiments. When SNR is at least 25 dB

(the recommended minimum SNR for enterprise WiFi networks [1, 2, 3]), decoding at

both 100% and 50% clock rates achieve ≥ 95% PRR for both packet sizes. For these

operating regimes, the performance difference between the two clock rates is negligible.

Below the 25 dB threshold, downclocking at 50% has a 67–75% PRR. Although lower

than decoding at the full 100% rate, it is quite reasonable at such a low SNR.

For the challenging 25% clock rate, when SNR is 30 dB (5 dB above the rec-

ommended minimum), Enfold achieved 83% and 52% PRR for small and large packet

sizes, respectively. For small packets, such a PRR translates to reasonable application

performance with retransmissions, but the PRR for large packets will have a noticeable

impact. At the edge SNR (25 dB), downclocking at 25% had poor performance, achieving

46% (small) and 20% (large) PRRs, respectively. Below 25 dB, downclocking at 25% is

unusable for both packet sizes.

In sum, we find these results very promising. Note that the highest SNR we could

achieve with the Sora platform was 30 dB, which is below typical operating conditions.

A recent measurement study [15] of deployed university WiFi networks indicates that

only 3% of WiFi frames experience retransmission (PRR is roughly 97%). According to

81

20 22 24 26 28 30

0
2

0
4

0
6

0
8

0
1

0
0

SNR (dB)

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
te

 (
%

)

100%

50%

25%

(a) Small packet (100 bytes)

20 22 24 26 28 30

0
2

0
4

0
6

0
8

0
1

0
0

SNR (dB)

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
te

 (
%

)

100%

50%

25%

(b) Large packet (1,000 bytes)

Figure 4.7. Packet reception rate as a function of SNR.

82

a WiFi hotspot study conducted by Pang et al. [43], a near 100% PRR corresponds to an

SNR regime around 40 dB or more. On the other hand, when SNR goes below 20 dB,

nodes struggle to even obtain Internet Protocol (IP) addresses after association (9 out of

181 successful Dynamic Host Configuration Protocol (DHCP) attempts) [29]. Although

we could not measure at higher SNRs, our results show that downclocking at 50%

already achieves excellent results even at low SNRs, nearly matching the performance of

decoding at 100% at 25 dB. When downclocking at 25%, the situation is more complex.

Our results up to 30 dB show that PRR is increasingly close to maximum performance

for small packets. However, there is still substantial headroom for large packets and we

cannot yet estimate at what SNR both curves will approach 100%. Thus, for poor or

moderate SNRs with 25% downclocking, it remains an open question as to whether and

when it is worthwhile trading off PRR for energy savings.

Impact of Wireless Environment

As measured in Section 4.5.2, the performance of aliasing induced modulation

entirely depends on the surrounding wireless environment, reflected in the blocking

distance. In the extreme case where the channel response is flat for the entire spectrum,

given how bits are mapped under BPSK, multiple constellation points would collapse

onto each other under aliasing. In our previous experiments, all nodes were in the same

room (a seven-person office). In this experiment, we vary locations to evaluate the

performance of downclocking under a much wider range of wireless conditions.

We repeat the experiments in Section 4.5.2 at four additional locations in the

same building but with significantly different propagation environments. These locations

are a meeting room (smaller than the office), a long hallway, a floor lobby of mixed open

space and furniture, and a lab (much larger than the office). In all locations we use a

fixed SNR of 30 dB.

83

Hallway Lab Lobby Meeting Room Office

Location

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
te

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0

100% 50% 25%

(a) Small packet (100 bytes)

Hallway Lab Lobby Meeting Room Office

Location

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
te

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0

100% 50% 25%

(b) Large packet (1,000 bytes)]

Figure 4.8. Raw packet reception ratio for different clock rates at five different locations.

84

Figure 4.8 shows the packet reception ratios for all locations and both packet

sizes. Error bars show the standard deviation across 50 runs. For both the 100% and

50% clock rates, the PRRs are indistinguishable for all locations regardless of the packet

size. For the 25% downclock rate, though, the PRR does vary across locations. The PRR

varies moderately for small packets (78% to 85%), but has a larger variation for larger

packets (48% to 63%). These results confirm that the downclocking performance Enfold

achieves is stable across different wireless environments, and is not tied the opportune

conditions of just one environment.

Trading Throughput for PRR

In the last set of experiments, we explore one of the design freedoms offered by

Enfold. Recall from Section 4.3.3 that we restore the pilot subcarriers by placing known

values on selected subcarriers. We explore this design parameter further by putting

known values on other data subcarriers. The benefits are twofold: these known values

(bits) improve the performance of the Viterbi decoder and they help to reduce the size

of constellation diagram. For instance, for the subcarrier set from the experiment in

Section 4.5.2, if we put a known data value on subcarrier 10, the resulting constellation

diagram under 25% clock rate will degenerate to 8-QAM instead of 16-QAM. However,

using more subcarriers will reduce the effective data throughput. In situations where

both power and interference are challenging, such as sensors, applications might want to

trade off reliability for throughput at lower power. To explore this trade-off, we repeat the

experiment in Section 4.5.2 at a 25% clock rate while adding known bits to subcarriers.

Figure 4.9 shows the PRR and effective data rate with respect to the number

of known bits sent (zero additional bit corresponds to the results for 25% at 30 dB in

Section 4.5.2). As discussed above, 802.11 only uses 52 out of 64 subcarriers for data.

As a result, only 3 out of the 16 subcarriers are 16-QAM modulated at 25% clock rate.

85

0 1 2 3 4 5 6 7

0
2

0
4

0
6

0
8

0
1

0
0

Number of Added Bits

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
te

 (
%

)

small packet

large packet

0
1

2
3

4
5

E
ff
e

c
ti
ve

 D
a

ta
 R

a
te

 (
M

b
p

s
)

Figure 4.9. PRR with additional known bits on subcarriers for a 25% downclock rate

(SNR = 30dB). The right y-axis shows the corresponding effective throughput.

Therefore, we put the known bits on these three subcarriers first, which helps PRR

by reducing the original 16-QAM modulation to 8-QAM. Consequently, PRR improves

substantially for both small and large packet sizes. For example, with three known bits

added, PRR jumps to 96% and 85% for small and large packets, respectively. After

adding three bits, all constellation diagrams on the 16 subcarriers are 8-QAM modulation

(except subcarrier 0 which is 4-QAM). Each additional bit then transforms one of the

8-QAM constellation diagrams to 4-QAM. As expected PRR continues to improve, but

with a smaller delta than when transforming 16-QAM to 8-QAM.

The trade-off in improved PRR is a reduction in data throughput in proportion

to the number of additional known bits used for pilots. The PRR eventually reaches

excellent PRRs of 99.6% (small) and 94.7% (large) when adding seven bits, but at that

point the effective data rate drops to 3 Mbps (half of the raw PHY layer data rate).

In summary, Enfold provides the flexibility to trade off effective data rate for PRR

86

performance, improving Enfold’s applicability in poor SNR regimes where applications

favor such a trade-off.

4.6 Summary

In this chapter, we presented an approach for successfully receiving and decoding

OFDM modulated WiFi signals while sampling below the Nyquist frequency. We exploit

the aliasing that results from under-sampling and observe that there exists well-defined

structure in terms of how OFDM signals are “folded up” under aliasing. In particular, we

show that a standards-compliant 802.11a/g frame can be detected, received, and decoded

by a receiver running at a 50% or even 25% clock rate given sufficient channel quality.

We design and implement a standards-compliant 802.11 receiver on the Sora platform

and experimentally show that our aliasing induced modulation can attain greater than

96% and 83% raw packet reception rates while reducing the clock rate by 2× and 4×,

respectively. Given that both SloMo and Enfold trade SNR (throughput) for energy

savings, we evaluate whether such a trade-off is worthwhile for typical smartphone

applications in the next chapter.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of the

ACM Annual International Conference on Mobile Computing and Networking 2014. Lu,

Feng; Ling, Patrick; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was

the primary investigator and author of this paper.

Chapter 5

Energy Consumption Evaluation

Our experiments with both SloMo and Enfold demonstrate the feasibility and

performance of downclocked 802.11 communication. In this chapter, we evaluate the

potential energy savings when using downclocking in the context of contemporary

smartphones and popular apps. We start by focusing on SloMo given that SloMo seam-

lessly communicates with existing deployed WiFi networks, and describe our evaluation

methodology first. We then move to understand how downclocking with SloMo reduces

energy consumption, impacts free channel airtime, and compares with alternative WiFi

energy-saving approaches. Finally we extend our evaluation to Enfold, and demon-

strate that Enfold continues to save substantial energy in places where SloMo does not,

extending the applicability of downclocking to an even wider range of smartphone apps.

5.1 Methodology

Since we could not directly measure the power consumption of a downclocked

WiFi chipset in an actual smartphone, we construct a power model based on measurements

of a real device. We also collect media-access-control (MAC) layer packet traces of a

variety of real apps running on two different smartphones. We use these traces to infer

the instantaneous power state of the smartphones’ WiFi chipsets and compute the total

energy cost for each phone based on the power model.

87

88

Table 5.1. WiFi Power Characteristics

Parameter
Full Clock /

Downclocked (1/4)

Beacon Interval (ms) 100 / 100

Beacon Wakup Period (ms) 2.5 / 2.5

Light Sleep Tail time (ms) 500 / 500

Deep Sleep Power (mW) 10 / 10

Light Sleep Power (mW) 120 / 120

Beacon Wakeup Power (mW) 250 / 185*

Idle Power (mW) 400 / 260*

Rx Power (mW) 600 / 360*

Tx Power (mW) 700 / 460*

5.1.1 WiFi Power Model

Similar to Mittal et al. [40], we parameterize our smartphone WiFi power model

on the measurements of a Nexus One reported by Manweiler and Choudhury [38]. When

actively transmitting and receiving frames, a WiFi chipset must be in a high power state.

Once a network transfer completes, the card moves to the idle state. If there is no network

activity for a while, the card transitions to the light sleep mode. The light sleep state

still consumes a significant amount of power in anticipation of efficiently waking up

for incoming traffic. On the Nexus One, the light sleep tail time is roughly 500 ms; if

no further network activity occurs, the card returns to the deep sleep state.1 Table 5.1

summarizes the model parameters we used. Most are reproduced from [38, 40]; the

downclocked values marked with an asterix are estimated as follows.

WiFi power consumption falls into two parts, the analog front-end Pa and the

digital processing logic Pd . In the sleep state, the digital logic part is turned off. Given

the description of the two sleep modes, we infer that the power difference between them

is due to the analog front end remaining functional in light sleep mode but turned off in

1We observe the Nexus One employing a variety of beacon wakeup periods (2.5,5,10 ms) on the power

measurement trace obtained from the authors of [38]; we use 2.5 ms in our model to be conservative.

89

deep sleep mode. Therefore, we use the light sleep state power as an estimate for the

analog power consumption Pa. We then estimate the downclocked power consumption as

proportional to the full digital power consumption Pd/α , where α is the clock scaling

ratio. When downclocking by a factor of 4, for instance, α at best would be 4 as well.

Since it is likely that a practical implementation would experience suboptimal scaling,

we conservatively choose α = 2 to obtain a lower bound estimate.2 Note also that

the analog part Pa for Tx is greater than Rx since transmission includes an additional

power amplifier component. We use the difference between Rx and Tx power (100 mW)

from the measurements in previous work to approximate the power consumption of the

amplifier.

5.1.2 Smartphone App Traces

To comprehensively evaluate the benefits of SloMo, we sampled a wide range

of popular smartphone apps (each has at least five-million downloads). These nine apps

include familiar Internet services like Facebook and Gmail, as well as smartphone-specific

services like Pocket Legends (a real-time massively multiplayer game) and TuneIn Radio

(a streaming audio service). They differ significantly in the way they interact with the

network, spanning interactive real-time traffic to content prefetching to intensive data

rates.

We collect high-fidelity WiFi packet traces [55] by configuring two MacBook

Pro laptops as sniffer nodes in the vicinity of the smartphone and the access point (AP),

respectively, and merge the two traces to minimize frame losses. To eliminate bias due to

starting and closing the app, we only record a trace when an app is in steady state. Each

such capture session lasts for 200 seconds. Finally, to avoid tying our conclusions to a

particular smartphone platform, we conduct our experiments on the Google Samsung

2The maximum possible energy savings in this model is 35%.

90

Nexus S (Nexus) and the Apple iPhone 4S (iPhone). We collected the traces with 4–5

other WiFi devices concurrently using the network, and we emulated a typical SNR

scenario where the AP and the wireless station are in the same building but different

rooms (i.e., no line of sight between the two). Since WiFi devices signal the AP of

their intention to sleep and wake up, we are able to faithfully recreate the power state

transitions of the WiFi cards on the smartphones using the captured network traces.

5.2 SloMo Energy Consumption

Figure 5.1 and 5.2 compare the network energy costs of the apps by power state

when using standard 802.11 PSM and when using downclocked communication with

SloMo on the Google Nexus S and iPhone 4S traces, respectively.3 To emphasize energy

consumption, we assume SloMo operates at 2 Mbps and the data rates for PSM are the

ones reported by the packet capture software. The graphs show results for running the

apps on both the Nexus and iPhone. The trends for both phones are similar, but since the

iPhone has shorter idle tail times (30–90 ms in our traces versus 220 ms for the Nexus)

the benefits of SloMo are smaller for the iPhone than the Nexus. Both figures show that a

wide range of popular apps benefit from SloMo, but they do so for different reasons. To

provide insight into the different app behaviors, Figure 5.3 shows the probability density

functions (PDFs) of the inter-frame times (IFTs) for four distinctive apps.

Energy consumption in the first group of apps (Skype Voice, Pocket Legends,

TuneIn Radio) is dominated by time spent in the idle listening state. Since WiFi cards still

consume substantial energy while idle (Table 5.1), downclocking significantly reduces

idle state energy consumption [70]. And since these apps have low data rates, the energy

saved during idle listening far exceeds the additional energy consumed for slower data

3The number at the end of the bar group shows the relative energy saving of SloMo over PSM, the

higher the better. We also report the bi-directional MAC layer data rate.

91

Skype (video)

Pandora

Angry Birds

Instagram

Gmail

Facebook

TuneIn Radio

Pocket Legends

Skype (voice)

Energy Consumption (J)

0 20 40 60 80 100

Tx Rx Idle L Sleep D Sleep

3.22%

6.61%

25 %

22.7%

18.7%

26.1%

33.6%

33.8%

30.5%

1825 kbps

187 kbps

26 kbps

191 kbps

13 kbps

107 kbps

103 kbps

35 kbps

228 kbps

Figure 5.1. Energy cost of various apps under 802.11 power save mode (PSM) and

SloMo (Google Nexus S). For each app, the upper bar corresponds to the breakdown of

energy consumption under 802.11 PSM while the lower bar corresponds to SloMo.

92

Skype (video)

Pandora

Angry Birds

Instagram

Gmail

Facebook

TuneIn Radio

Pocket Legends

Skype (voice)

Energy Consumption (J)

0 20 40 60 80 100

Tx Rx Idle L Sleep D Sleep

0.85%

5.43%

17.8%

13.6%

11.8%

10.5%

25.8%

26.3%

29.7%

1905 kbps

215 kbps

14 kbps

265 kbps

13 kbps

114 kbps

136 kbps

45 kbps

244 kbps

Figure 5.2. Energy cost of various apps under 802.11 power save mode (PSM) and

SloMo (iPhone 4S). For each app, the upper bar corresponds to the breakdown of energy

consumption under 802.11 PSM while the lower bar corresponds to SloMo.

93

0
.0

0
0

.1
0

0
.2

0

Inter Frame Space (microseconds)
1 10 100 1000 10000 1e+05 1e+06

Skype (voice)

Pocket Legends

Facebook

Skype (video)

Figure 5.3. PDFs of the IFT for a selected set of apps on Neuxs S. We remove the inter

frame time (SIFS) between DATA and acknowledge (ACK) frame for better presentation.

IFTs larger than a sleep period are also removed.

transmission and reception, resulting in energy savings of 30–34% overall on the Nexus.

Although these apps have low data rates, their network behavior prevents them from

entering sleep mode while idle and makes them relatively power-hungry: As real-time

apps, they send and receive packets at frequencies that keep the WiFi card awake in

constant active mode (CAM). Figure 5.3 shows that Skype Voice exchanges packets

roughly every 10 ms, and that the Pocket Legend client exchanges game updates with

its server as a burst of packets every 100 ms (the peak near 100 µs is the IFT between

packets in a burst). TuneIn Radio similarly keeps the WiFi card awake for frequent

incoming packets (curve not shown for clarity).

The next group of apps (Facebook, Gmail, Instagram) interact with the network

much more intermittently at human time scales. Users navigate through the app and

download bursts of content, with pauses in between (e.g., Instagram had an average

pause time of 1.5 seconds). For such apps, the WiFi card wakes up intermittently when

94

downloading content, and transitions first to idle and then to sleep mode during the longer

pause times. Even so, SloMo can still reduce energy consumption during the idle tail

time after intermittent network activity and, to a minor effect, during the sleep states.

Again, the benefits of downclocking and saving energy during these states outweigh (by

19–26%) the additional energy spent transmitting and receiving at low data rates.

Angry Birds is a good example of many “offline” free apps. Although the game

itself does not require network interaction, the embedded ads in the free version cause

the app to have similar network characteristics as Facebook and Instagram. The app has

intermittent network activity uploading user information and downloading tailored ads,

but after each interaction the WiFi card enters the idle state before transitioning to sleep.

As a result, Angry Birds spends over 95% of its network energy in the idle tail time,

which can account for 65–75% of the entire app energy consumption [45]. (Although

the data rate of Angry Birds is just 14% of Instagram, it consumes comparable network

energy.) Once again downclocking can substantially reduce energy consumption in the

idle state for a 25% savings overall.

Although a music streaming service, Pandora differs from the previous apps

in that it prefetches entire songs at a time. In our trace, it downloads a song in the

first ten seconds and has very little network activity for the next 60 seconds. With this

behavior, Pandora already uses the network efficiently. Although SloMo does reduce

energy consumption by downclocking during the idle and sleep states, it correspondingly

increases it for reception and on balance only marginally improves total consumption.

Finally, Skype Video exhibits a similar trade-off as Pandora. The energy saved by

SloMo in downclocking during idle time is matched by the energy expended in using

the network at low data rates. In terms of network energy, Skype Video is a wash. As

we discuss below, however, SloMo is a poor choice for this kind of app because of the

channel airtime it consumes.

95

Skype (video)

Pandora

Angry Birds

Instagram

Gmail

Facebook

TuneIn Radio

Pocket Legends

Skype (voice)

Time (seconds)

0 50 100 150 200

Tx Rx Idle L Sleep D Sleep

12.3

1.10

1.02

1.11

1.01

1.06

1.06

1.02

1.15

1825 kbps

187 kbps

26 kbps

191 kbps

13 kbps

107 kbps

103 kbps

35 kbps

228 kbps

Figure 5.4. Comparing the timing breakdown for various apps under 802.11 PSM (upper

bar) and SloMo on Google Nexus S (lower bar). The number at the end of the bar group

shows the free channel airtime contraction ratio, the lower the better with 1.0 as the

minimum.

5.3 Network Impact

Given that SloMo trades off data rates for energy consumption, it is also important

to consider the overall network impact due to the use of slower data rates by SloMo in

terms of channel airtime. Since our design explicitly trades throughput for energy savings,

an app might save itself energy by downclocking but unduly impact other devices on the

network by consuming more channel airtime using lower data rates, thus increasing the

overall network contention level.

96

Figure 5.4 shows the channel airtime breakdown of the apps on the Nexus S.

It compares the time spent in the states when the apps use standard 802.11 PSM (top

bar) and SloMo (bottom bar). The number to the right of each paired bar denotes the

contraction in free channel airtime for using SloMo with the app. For instance, the free

channel airtime for Skype Voice using PSM divided by the free channel airtime using

SloMo is 1.15. The graph shows that downclocking with SloMo does cause the apps to

spend more time in actively transmitting and/or receiving. For all apps except Skype

Video, the impact on free channel airtime is modest, with contractions ranging between

1.02–1.15. With the much higher data rates of Skype Video, though, using SloMo causes

the app to spend most of its time receiving and transmitting data, greatly reducing the

free channel airtime compared to PSM.

5.4 Alternative Approaches

So far we have compared SloMo with current WiFi implementations using PSM.

As the traces revealed, though, a critical source of network energy consumption is the

tail time of the idle state. Of course, other solutions have been proposed to address

this issue as well. As a final evaluation, we compare SloMo with two other approaches,

U-APSD [7] and E-MiLi [70], from industry standards and the research community,

respectively.

U-APSD. When traffic patterns are periodic, predictable, and symmetric, such

as real-time VoIP traffic, the Unscheduled Automatic Power Save Delivery (U-APSD)

optimization (defined by the 802.11e standard [7]) could allow devices to enter the sleep

state immediately after network activity and avoid the standard tail time in the idle state.

Based upon the U-APSD specification, we emulated its use4 for the Skype Voice and

4We attempted to purchase U-APSD compliant APs and WiFi cards to experiment with a real imple-

mentation, but could not find a hardware, operating system (OS), and driver combination that enabled its

use in practice.

97

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

0

50

100

150

200

250

300

WiFi

E−Mili

SloMo

Sky
pe

 (v
oi
ce

)

Poc
ke

t L
eg

en
ds

Tu
ne

In
 R

ad
io

Fa
ce

bo
ok

G
m

ai
l

In
st
ag

ra
m

Ang
ry

 B
ird

s

Pan
do

ra

Sky
pe

 (v
id
eo

)

Figure 5.5. Comparing energy consumption among PSM, E-MiLi and SloMo on the

Nexus trace set.

Video apps using the Nexus traces and estimate impressive energy savings of 56% and

44%, respectively, compared with savings of 30.5% and 3.2% using SloMo. Although

clearly better in the ideal case of Skype, as noted by others [51] U-APSD is not a general

optimization because its effectiveness depends greatly on the degree of symmetry in the

traffic. For real-time apps where the traffic pattern is asymmetric, such as Pocket Legends

and TuneIn Radio in our examples, U-APSD would not apply. Further, U-APSD is not

suitable for intermittent traffic, such as with the Facebook and Gmail apps, which could

lead to unnecessary energy waste due to frequent polling of the AP [54].

E-MiLi. E-MiLi re-designs the addressing mechanism of WiFi devices, enabling

receivers to determine whether traffic is addressed to them without leaving a low-power

listening state [70]. We emulate the use of E-MiLi on our Nexus app traces based upon

the WiFi power model and measurements reported by the E-MiLi authors.5 To facilitate

the comparison, we apply the E-MiLi power model to SloMo in contrast to our previous

5We measure a WiFi card (Atheros AR9380) from the same manufacturer as the published E-MiLi

results to obtain details regarding the power consumption of the sleep state not reported in the E-MiLi

paper. The card wakes up at every beacon interval and stays awake for 20 ms before going back to sleep.

98

experiments.6 Figure 5.5 compares the network energy consumption of PSM, SloMo and

E-MiLi on the Nexus apps traces (results were similar for the iPhone traces). Across all

apps, downclocking with SloMo saves on average 37.5% energy relative to the default

PSM, about 10% more than the 27.7% savings achieved with E-MiLi. For the initial

three real-time apps, both SloMo and E-Mili obtain comparable savings. For the others,

SloMo performs significantly better than E-Mili, while E-MiLi performs significantly

better on Skype Video.7

5.5 Extending Energy Saving with Enfold

As shown in Section 5.2, SloMo could reduce energy consumption by up to 34%

for many popular smartphone apps. However, for bandwidth hungry apps such as Skype

Video, it fails to deliver similar energy savings under downclocking due to its limited

1/2-Mbps direct sequence spread spectrum (DSSS) data rates. By exploiting the aliasing

effect, we introduced Enfold in Chapter 4, which extends downclocking to orthogonal

frequency-division multiplexing (OFDM) signals and demonstrates that the supported

data rate could be much higher (6 Mbps in our current prototype and potentially even

higher in future). Therefore, to evaluate the energy benefits of Enfold, in addition to the

nine apps studied in Section 5.2, we add three traces of higher bandwidth apps: Wyslink

(live TV streaming at 479 kbps on average), FaceTime (1499 kbps), and YouTube (588

kbps).

We compare energy consumption among OFDM downclocking with Enfold,

DSSS downclocking with SloMo, and the default power save mode (PSM) in 802.11g

as a baseline. While our Enfold prototype employs a 6-Mbps rate, we also introduce

a hypothetical case where the downclocked reception data rate is set to 54 Mbps (the

6As a result, the SloMo energy savings are 10–20% larger relative to PSM compared to the results

presented in Figure 5.1.
7The energy savings under Enfold (169 J) slightly outperforms E-MiLi (172 J) for Skype Video.

99

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PSM SloMo Enfold

+
+

+
+

+
+

+ 54 Mbps

Skype (voice)

FaceTime

Pandora

Skype (video)

Wyslink (C
hrome)

YouTube

Figure 5.6. Energy comparison among PSM, SloMo, and Enfold. We also include a

hypothetical case where the downclocked reception data rate is 54 Mbps and PRR is

100%. Results are normalized with respect to PSM.

highest rate in 11g) with 100% packet reception rate (PRR) to estimate how much

potential energy savings remain unrealized because Enfold does not operate at higher

rates. We also conservatively assume the chipset does not have a fast-switching clock.

Therefore, although an Enfold node can receive at a 6 Mbps OFDM data rate, it would

have to transition to a 2-Mbps DSSS data rate for transmission (including ACKs). On

the other hand, the data rates used for PSM are the actual ones reported by the packet

capture software in the trace.

Enfold consistently outperforms PSM for all the app traces, and matches or

exceeds SloMo depending on the app workload. Figure 5.6 compares the normalized

energy consumption of PSM, SloMo (2-Mbps DSSS rate with 100% PRR) and Enfold

(4.75 Mbps with 63% PRR in Chapter 4). We focus on six representative apps out of the

twelve; the remaining apps have low data rates with performance similar to Skype voice

(i.e., both SloMo and Enfold improve upon PSM, but behave similarly to each other).

100

As described in Section 5.2, apps like Skype voice frequently require network

access but the amount of data transferred is low (data rates range from 10s to 100s of

kbps). As a consequence, the WiFi card either stays in constant awake mode (CAM)

or is woken up intermittently every few seconds, and therefore the network energy

consumption is largely dominated by idle listening in the network tail time. Given their

small app data rates, the extra energy spent on transmission and reception due to slower

data rate or retransmissions is more than compensated for by the energy saved during the

idle state, and to a certain extent, sleep state. Even the 2-Mbps DSSS rate in SloMo is

sufficient for these apps. As a result, both SloMo and Enfold save significant energy (up

to 34%) for these apps compared to PSM.

However, as the app data rate increases (e.g., Skype Video, Wyslink) or interac-

tivity reduces (e.g., Pandora, which prefetches the entire song before playing out) or both

(YouTube, which downloads chunks of data every 10–20 seconds), SloMo has small or

negative benefits. The energy saved in the idle listening and sleep states is matched or

exceeded by the energy expended for transmission and reception at the slower data rate;

for some apps, SloMo consumes over 20% more energy than PSM. In contrast, given the

increased data rates supported (2.4× SloMo rate for the current implementation), Enfold

is able to save appreciable energy for these apps: from 9% for Skype Video to 19% for

Pandora. YouTube sees little benefit (3%) because it already uses the network efficiently,

particularly in the face of retransmissions with Enfold’s 63% PRR.

In the best case of a network with good SNR conditions where the PRR is 100%,

energy savings are correspondingly better: from 10% for Skype Video to 20% for Pandora

(with YouTube at 8%, showing the effects of PRR). In sum, Enfold significantly extends

the range of apps that benefit from downclocking. Compared to the hypothetical 54-Mbps

case at 100% PRR, the additional energy gain over 6 Mbps in Enfold is small compared

to the substantial difference in data rate: Pandora (4.5%), FaceTime (3.6%), Skype Video

101

(3.9%), Wyslink (8.4%) and YouTube (12%). As a result, for these popular apps Enfold

at 6 Mbps already captures much of the energy savings.

As a final note, we also evaluate energy consumption with Enfold for other data

rates and PRRs (the throughput-PRR trade-off enabled in Section 4.5.2). The results

among these Enfold variants are roughly the same with a 2–3% variation. Although the

difference in energy consumption is small, higher PRR leads to fewer retransmissions

and reduced network contention.

5.6 Summary

As smartphones become ever more pervasive, energy consumption is deemed

to be one of the biggest challenges for wireless and mobile computing. Both SloMo

and Enfold trade throughput (SNR) for energy savings by moving to downclocked

states with potentially reduced data rates in proportion to downclocking ratio. Based

on network traces from popular smpartphone applications, we show such a trade-off is

worthwhile; SloMo reduces WiFi power consumption on contemporary smartphones by

over 30% for a wide range of applications. Realizing the rate limitation of SloMo, Enfold

further extends the energy saving benefits to bandwidth hungry apps, with substantial

benefits ranging from 10% to 20%. Since our approaches reduce energy consumption

by fundamentally re-designing the WiFi transceiver, there is zero modification required

at the MAC, transportation and application layers, which makes our solutions easily

deployable and widely applicable.

Chapter 5, in part, is a reprint of the material as it appears in Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation 2013. Lu,

Feng; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was the primary

investigator and author of this paper.

102

Chapter 5, in part, is a reprint of the material as it appears in Proceedings of the

ACM Annual International Conference on Mobile Computing and Networking 2014. Lu,

Feng; Ling, Patrick; Voelker, Geoffrey M.; Snoeren, Alex C. The dissertation author was

the primary investigator and author of this paper.

Chapter 6

Conclusion and Future Work

The link rate of popular wireless technologies, such as 802.11, has increased

markedly over the past two decades: 802.11ac promises gigabit speeds in handset form

factors. Yet only a small fraction of the devices outfitted with such radios actually

make use of the full channel capacity, and, even if they do, only do so sporadically.

Hence many existing wireless devices frequently under-utilize the channel, yet reap

no particular benefits for doing so. In particular, neither transmission nor reception

is power proportional in typical devices, even when the channel quality is sufficiently

high to support far more energy-efficient modulations and encodings. While devices

aggressively try to move their radios into low-power states whenever possible, studies

show [45, 68, 70] that many common applications for both smartphones and laptops keep

radios in full-power mode a large fraction of the time. For example, an email application

could constitute a significant source of energy consumption for syncing with mail server

in stand-by mode [68].

Unlike previous studies [22, 38, 54], where the efforts primarily focus on traffic

scheduling at the access point (AP) or nodes for reduced energy consumption, we

take a dramatically different approach in this dissertation by bringing in a widely used

power saving technique from other domains to WiFi radios. Based on our unique

observations on the structure of WiFi signals, we manage to bypass the clock-rate

103

104

constraint imposed by Nyquist sampling theory. More specifically, we design and

implement a compressive sensing based WiFi 802.11b transceiver, SloMo, that is able to

successfully communicate with existing WiFi networks while reducing the clock rate by

a factor of five. Furthermore, our SloMo system is entirely backwards compatible and

requires zero modification from existing WiFi infrastructure to be deployed. Realizing

the rate limitation of SloMo, we further extend the benefit of downclocking to orthogonal

frequency division multiplexing (OFDM) systems (e.g., 802.11a/g/n/ac) and explore

the aliasing effect resulting from undersampling. We observe that aliasing effectively

transforms the original quadrature amplitude modulation (QAM) into a denser but still

decodable QAM scheme. Leveraging this observation, our Enfold design significantly

advances the state of the art by demonstrating how to decode non-sparse signals below

the Nyquist rate.

We implement both SloMo and Enfold in a software-defined radio and show

that SloMo can seamlessly communicate with commercial WiFi chipsets. In addition,

we verify that the design of Enfold is completely standards-compliant. To make our

approaches readily deployable, we spend substantial effort addressing the intricacies of

practical communication system design, such as timing synchronization, frequency and

phase compensation, channel estimation, etc. Given that our approaches explicitly trade

signal-to-noise ratio (SNR) for energy savings, we thoroughly evaluate the impact on

communication performance due to downclocking. We empirically show that the packet

reception rate (PRR) performance of SloMo and Enfold are nearly identical to their 100%

clock rate counterparts for typical SNR conditions in operational WiFi networks. Finally,

to understand the energy saving benefits enabled by downclocking, we capture WiFi

network traces for a wide range of popular smartphone apps (each has more than five

million downloads), ranging from low data rate app, like email to bandwidth hungry

apps such as FaceTime and Skype video. When evaluated over the captured traces, our

105

proposed design reduces energy consumption substantially by up to 34% even under a

deliberately conservative power model.

In conclusion, this dissertation demonstrates that a downclocked WiFi radio

is both practical and beneficial. In his forty data communication research questions,

Partridge [44] listed designing wireless radios with multiple power levels as one of the

fundamental challenges. Our downclocking techniques are a first step towards realizing

this vision.

6.1 Future Directions

There are multiple directions how this dissertation could be extended. First, our

approaches introduce a new state (reduced power consumption with potentially limited

data rates) into the existing WiFi power management framework. It is up to the system de-

signers how this new downclocked state can be best utilized to reduce energy consumption.

Second, it is interesting to study the potential communication-performance improvements

of Enfold by combining multiple-input-multiple-output (MIMO) techniques. Finally,

we are excited to see how our approaches can be applied in other battery-constrained

communication systems as the techniques developed in this dissertation are not tied to

WiFi specifics.

Power Management. Essentially, both SloMo and Enfold introduce a new state

into the existing WiFi power model: reduced power consumption with potentially limited

data rate. The multiple downclocking rates provide system designers with a new knob

where they can adjust the power consumption and network throughput at a fine granularity,

as opposed to the current all-or-nothing power model in WiFi. We foresee a number of

possible ways in how the existing power management policy could be re-designed. For

example, downclocked state could be treated as a “doorbell” mode where the AP can

send a special packet to wake the WiFi radio up to the full-rate state. More specifically, a

106

node stays in “doorbell” mode for beacon listening, AP scanning, (re)association, etc.

Alternatively, we could consider the downclocked state as an integral part of both power

management and rate selection. Based on our energy study, downclocking is more power

efficient when the app data rate is only a fraction of the current physical layer capacity.

Therefore, we envision a power management policy that would dynamically migrate

WiFi power state based on the current network demand by moving to higher clock rate as

demand increases.

Combination with MIMO. MIMO is the primary physical layer advancement in

the newer WiFi generations, i.e., 802.11n/ac. Enfold could leverage the channel sounding

process, which is part of the standard MIMO operations, to improve its PRR performance.

As discussed in this dissertation, the communication performance of Enfold largely

depends on the per-subcarrier channel response. With channel sounding and precoding,

the AP could purposely code each subcarrier with different power and constellation points

such that the resulting QAM diagram under aliasing is maximally separated. Given that

the AP is not power-constrained in general, it could make use of multiple antenna beams

to further enhance the PRR performance.

Extension to other domains. Our downclocking approaches work directly with

physical layer signals, and are not tied to WiFi specifics. Both direct sequence spread

spectrum (DSSS) and OFDM are popular modulation techniques used in other domains

as well. For example, smart meters and sensor networks (e.g., ZigBee) are DSSS-

based systems while OFDM is the dominant modulation scheme for cellular and 60-Ghz

communication. Therefore, it remains an interesting open problem to apply downclocking

in these systems since they are also typically battery-constrained.

Bibliography

[1] AT&T Enhanced Push-To-Talk Deployment Guide. http://www.business.att.com/

content/other/wi-fi-for-website.pdf.

[2] Best practice: Planning Your Organization’s Wi-Fi Infrastructure.

http://docs.blackberry.com/en/admin/deliverables/20034/BBMVS BP WiFi

infrastructure 1177026 11.jsp.

[3] Cisco 7920 Wireless IP Phone Design and Deployment Guide. http://www.mwtn.

net/ASSETS/MANUALS/cisco 7920.pdf.

[4] Csipsimple Bug Fix. http://code.google.com/p/csipsimple/source/detail?r=153.

[5] New IEEE 802.11ac Specification Driven By Evolving Market Need for Higher,

Multi-User Throughput In Wireless LANs. http://standards.ieee.org/news/2014/

ieee 802 11ac ballot.html.

[6] Sora SDK Manual. http://research.microsoft.com/apps/pubs/default.aspx?id=

160799.

[7] Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications

amendment 8: Medium Access Control (MAC) Quality of Service Enhancements,

IEEE 802.11e, 2005.

[8] Yuvraj Agarwal, Ranveer Chandra, Alec Wolman, Paramvir Bahl, Kevin Chin, and

Rajesh Gupta. Wireless Wakeups Revisited: Energy Management for VoIP over

Wi-Fi Smartphones. In Proceedings of ACM MobiSys, June 2007.

[9] Manish Anand, Edmund Nightingale, and Jason Flinn. Self-Tuning Wireless

Network Power Management. In Proceedings of ACM MobiCom, September 2003.

[10] Ganesh Ananthanarayanan and Ion Stoica. Blue-Fi: Enhancing Wi-Fi Performance

using Bluetooth Signals. In Proceedings of ACM MobiSys, June 2009.

[11] Android Code Project: Add WIFI-MODE-FULL-HIGH-PERF (or Similar) to

Official SDK. http://code.google.com/p/android/issues/detail?id=15549, March

2011.

107

http://www.business.att.com/content/other/wi-fi-for-website.pdf
http://www.business.att.com/content/other/wi-fi-for-website.pdf
http://docs.blackberry.com/en/admin/deliverables/20034/BBMVS_BP_WiFi_infrastructure_1177026_11.jsp
http://docs.blackberry.com/en/admin/deliverables/20034/BBMVS_BP_WiFi_infrastructure_1177026_11.jsp
http://www.mwtn.net/ASSETS/MANUALS/cisco_7920.pdf
http://www.mwtn.net/ASSETS/MANUALS/cisco_7920.pdf
http://code.google.com/p/csipsimple/source/detail?r=153
http://standards.ieee.org/news/2014/ieee_802_11ac_ballot.html
http://standards.ieee.org/news/2014/ieee_802_11ac_ballot.html
http://research.microsoft.com/apps/pubs/default.aspx?id=160799
http://research.microsoft.com/apps/pubs/default.aspx?id=160799
http://code.google.com/p/android/issues/detail?id=15549

108

[12] Android Developer Reference: WifiManager. http://developer.android.com/

reference/android/net/wifi/WifiManager.html.

[13] Ranveer Chandra, Ratul Mahajan, Thomas Moscibroda, Ramya Raghavendra, and

Paramvir Bahl. A Case for Adapting Channel Width in Wireless Networks. In

Proceedings of ACM SIGCOMM, August 2008.

[14] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span: An

Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc

Wireless Networks. Wireless Networks, 8(5):481–494, September 2002.

[15] Xian Chen, Ruofan Jin, Kyoungwon Suh, Bing Wang, and Wei Wei. Network

Performance of Smart Mobile Handhelds in a University Campus WiFi Network.

In Proceedings of ACM IMC, November 2012.

[16] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer

Chiang, Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker. Automating

Cross-Layer Diagnosis of Enterprise Wireless Networks. In Proceedings of ACM

SIGCOMM, August 2007.

[17] CNET. Raziko for Android: Full Specs. http://download.cnet.com/

Raziko-for-Android/3000-2168 4-12094384.html.

[18] Robert G. Cole and JH Rosenbluth. Voice over IP Performance Monitoring. SIG-

COMM Computer Communications Review, 31(2):9–24, April 2001.

[19] Mark A. Davenport, Petros T. Boufounos, Michael B. Wakin, and Richard G.

Baraniuk. Signal Processing With Compressive Measurements. IEEE Journal of

Selected Topics in Signal Processing, 4(2):445–460, April 2010.

[20] William R. Dieter, Srabosti Datta, and Wong Key Kai. Power Reduction by Varying

Sampling Rate. In Proceedings of IEEE ISLPED, August 2005.

[21] Lijing Ding and Rafik A. Goubran. Speech Quality Prediction in VoIP Using the

Extended E-Model. In Proceedings of IEEE GLOBECOM, December 2003.

[22] Fahad R. Dogar, Peter Steenkiste, and Konstantina Papagiannaki. Catnap: Exploit-

ing High Bandwidth Wireless Interfaces to Save Energy for Mobile Devices. In

Proceedings of ACM MobiSys, June 2010.

[23] Ettus Research LLC. Universal Software Radio Peripheral (USRP). http://www.

ettus.com/.

[24] FitBit Aria: Technical Specs. http://www.fitbit.com/product/aria/specs.

http://developer.android.com/reference/android/net/wifi/WifiManager.html
http://developer.android.com/reference/android/net/wifi/WifiManager.html
http://download.cnet.com/Raziko-for-Android/3000-2168_4-12094384.html
http://download.cnet.com/Raziko-for-Android/3000-2168_4-12094384.html
http://www.ettus.com/
http://www.ettus.com/
http://www.fitbit.com/product/aria/specs

109

[25] GE Healthcare Dash 5000 Patient Monitors. http://www3.gehealthcare.com/en/

Products/Categories/Patient Monitoring/Patient Monitors/Dash 5000, November

2011.

[26] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing Algorithm for

Dynamic Speed-setting of a Low-power CPU. In Proceedings of ACM MobiCom,

November 1995.

[27] Gupta, Arpit and Min, Jeongki and Rhee, Injong. WiFox: Scaling WiFi Performance

for Large Audience Environments. In Proceeding of ACM CoNEXT, December

2012.

[28] Daniel Halperin, Ben Greenstein, Anmol Seth, and David Wetherall. Demystifying

802.11n Power Consumption. In Proceedings of USENIX HotPower, October 2010.

[29] Dongsu Han, Aditiya Agarwala, David G. Andersen, Michael Kaminsky, Kon-

stantina Papagiannaki, and Srinivasan Seshan. Mark-and-Sweep: Getting the

”Inside” Scoop on Neighborhood Networks. In Proceedings of ACM IMC, October

2008.

[30] Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk. Faster GPS via the

Sparse Fourier Transform. In Proceedings of ACM MobiCom, August 2012.

[31] IEEE. IEEE 802.11a-1999: Higher Speed Physical Layer in the 5 GHz Band, 1999.

[32] IEEE. IEEE 802.11b-1999: Higher Speed Physical Layer Extension in the 2.4 GHz

Band, 1999.

[33] IEEE. IEEE 802.11g-2003: Further Higher Data Rate Extension in the 2.4 GHz

Band, 2003.

[34] Ronnie Krashinsky and Hari Balakrishnan. Minimizing Energy for Wireless Web

Access with Bounded Slow Down. In Proceedings of ACM MobiCom, September

2002.

[35] Jungwon Lee, Hui-Ling Lou, Dimitris Toumpakaris, and John M. Cioffi. Effect of

Carrier Frequency Offset on OFDM Systems for Multipath Fading Channels. In

Proceedings of IEEE GLOBECOM, December 2004.

[36] Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and Song Chong. Mobile

Data Offloading: How Much Can WiFi Deliver? In Proceedings of ACM CoNEXT,

December 2010.

[37] Jiayang Liu and Lin Zhong. Micro Power Management of Active 802.11 Interfances.

In Proceedings of ACM MobiSys, June 2008.

http://www3.gehealthcare.com/en/Products/Categories/Patient_Monitoring/Patient_Monitors/Dash_5000
http://www3.gehealthcare.com/en/Products/Categories/Patient_Monitoring/Patient_Monitors/Dash_5000

110

[38] Justin Manweiler and Romit Roy Choudhury. Avoiding the Rush Hours: WiFi

Energy Management via Traffic Isolation. In Proceedings of ACM MobiSys, June

2011.

[39] Jia Meng, Wotao Yin, Yingying Li, N.T. Nguyen, and Zhu Han. Compressive

Sensing Based High-Resolution Channel Estimation for OFDM System. IEEE

Journal of Selected Topics in Signal Processing, 6(1):15–25, February 2012.

[40] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering Developers to

Estimate App Energy Consumption. In Proceedings of ACM MobiCom, August

2012.

[41] Apurva N. Mody and Gordon L. Stuber. Synchronization for MIMO OFDM systems.

In Proceedings of IEEE GLOBECOM, November 2001.

[42] Anthony Nicholson and Brian Noble. Breadcrumbs: Forecasting Mobile Connec-

tivity. In Proceedings of ACM MobiCom, September 2008.

[43] Jeffrey Pang, Ben Greenstein, Michael Kaminsky, Damon McCoy, and Srinivasan

Seshan. Wifi-Reports: Improving Wireless Network Selection with Collaboration.

In Proceedings of ACM MobiSys, June 2009.

[44] Craig Partridge. Forty Data Communications Research Questions. SIGCOMM

Computer Communications Review, 41(5):24–35, September 2011.

[45] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent

inside my app? Fine Grained Energy Accounting on Smartphones with Eprof. In

Proceedings of ACM EuroSys, April 2012.

[46] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff. What is

Keeping My Phone Awake?: Characterizing and Detecting No-sleep Energy Bugs

in Smartphone Apps. In Proceedings of ACM Mobisys, June 2012.

[47] Arogyaswami J. Paulraj, Dhananjay A. Gore, Rohit U. Nabar, and Helmut Bolcskei.

An Overview of MIMO Communications - A Key to Gigabit Wireless. Proceedings

of the IEEE, 92(2):198–218, February 2004.

[48] Francesco Ivan Di Piazza, Stefano Mangione, and Ilenia Tinnirello. On the Effects

of Transmit Power Control on the Energy Consumption of WiFi Network Cards. In

Proceedings of QSHINE, November 2009.

[49] Yvan Lamelas Polo, Ying Wang, Ashish Pandharipande, and Geert Leus. Com-

pressive Wide-Band Spectrum Sensing. In Proceedings of IEEE ICASSP, April

2009.

[50] John G. Proakis and Masoud Salehi. Digital Communications. McGraw-Hill,

November 2007.

111

[51] Andrew J. Pyles, Zhen Ren, Gang Zhou, and Xue Liu. SiFi: Exploiting VoIP Silence

for WiFi Energy Savings in Smart Phones. In Proceedings of ACM UbiComp,

September 2011.

[52] Jan N. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated

Circuits. Prentice Hall, 2nd edition, January 2003.

[53] Ahmad Rahmati and Lin Zhong. Context-for-Wireless: Context-Sensitive Energy-

Efficient Wireless Data Transfer. In Proceedings of ACM MobiSys, June 2007.

[54] Eric Rozner, Vishnu Navda, Ramachandran Ramjee, and Shravan Rayanchu. NAP-

man: Network-Assisted Power Management for WiFi Devices. In Proceedings of

ACM MobiSys, June 2010.

[55] Aaron Schulman, Dave Levin, and Neil Spring. On the Fidelity of 802.11 Packet

Traces. In Proceedings of PAM, April 2008.

[56] Li Shang, Li-Shiuan Peh, and Niraj K. Jha. Dynamic Voltage Scaling with Links for

Power Optimization of Interconnection Networks. In Proceedings of IEEE HPCA,

January 2003.

[57] Claude E. Shannon. A Mathematical Theory of Communication. The Bell System

Technical Journal, 27:379423, July 1948.

[58] Claude E. Shannon. Communication in the Presence of Noise. Proceedings of the

Institute of Radio Engineers, 37(1):10–21, January 1949.

[59] Eugine Shih, Paramvir Bahl, and Michael Sinclair. Wake on Wireless: An Event

Driven Energy Saving Strategy for Battery Operated Devices. In Proceedings of

ACM MobiCom, September 2002.

[60] Kun Tan, Jiansong Zhang, Haitao Wu, Fang Ji, He Liu, Yusheng Ye, Shen Wang,

Yongguang Zhang, Wei Wang, and Geoffrey M. Voelker. Sora: High Performance

Software Radio Using General Purpose Multi-core Processors. In Proceedings of

USENIX NSDI, April 2009.

[61] Georg Taubock and Franz Hlawatsch. A Compressed Sensing Technique for OFDM

Channel Estimation in Mobile Environments: Exploiting Channel Sparsity for

Reducing Pilots. In Proceedings of IEEE ICASSP, April 2008.

[62] Joel A. Tropp, Jason N. Laska, Marco F. Duarte, Justin K. Romberg, and Richard G.

Baraniuk. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals.

IEEE Transactions on Information Theory, 56(1):520–544, January 2010.

[63] Patrick Verkaik, Yuvraj Agarwal, Rajesh Gupta, and Alex C. Snoeren. Softspeak:

Making VoIP Play Well in Existing 802.11 Deployments. In Proceedings of USENIX

NSDI, April 2009.

112

[64] Google Play Store: VirtualRadio — What’s New. http://bit.ly/SVgzMG.

[65] Viterbi, Andrew J. Error Bounds for Convolutional Codes and an Asymptoti-

cally Optimum Decoding Algorithm. IEEE Transactions on Information Theory,

13(2):260–269, April 1967.

[66] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for

Reduced CPU Energy. In Proceedings of OSDI, November 1994.

[67] Wi-Fi HVAC Monitor. http://bit.ly/V6JNpn.

[68] Fengyuan Xu, Yunxin Liu, Thomas Moscibroda, Ranveer Chandra, Long Jin, Yong-

guang Zhang, and Qun Li. Optimizing Background Email Sync on Smartphones.

In Proceeding of ACM MobiSys, June 2013.

[69] Kun-Wah Yip, Yik-Chung Wu, and Tung-Sang Ng. Timing-Synchronization Anal-

ysis for IEEE 802.11a Wireless LANs in Frequency-Nonselective Rician Fading

Environments. IEEE Transactions on Wireless Communications, 3(2):387–394,

March 2004.

[70] Xinyu Zhang and Kang G. Shin. E-MiLi: Energy-Minimizing Idle Listening in

Wireless Networks. In Proceedings of ACM MobiCom, September 2011.

http://bit.ly/SVgzMG
http://bit.ly/V6JNpn

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Downclocking
	Contribution
	Organization

	Background and Motivation
	A Communication System Primer
	WiFi Overview
	Physical Layer
	Rate Selection
	Media Access Control

	The Potential of Downclocking
	Downclocked Transmission
	Related Work
	Efficient Power Save Modes
	Device Duty Cycling
	Transmission Power Control
	Downclocking

	Summary

	Downclocking 802.11b
	Reception
	DSSS Modulation
	Compressive Sensing

	Transmission
	Practical Design Considerations
	Fixed-Length Integrate-and-Dump
	Synchronization

	Interacting with Existing Networks
	Rate Selection
	Protocol Interactions

	Network Impacts
	Prototype
	Implementation
	Phase Tracking & Automatic Gain Control
	Experimental Evaluation

	Summary

	Downclocking 802.11a/g
	Harnessing Aliasing
	Downclocked OFDM Modulation
	Decoding Aliasing Induced Modulation

	WiFi Reception
	Frame Structure
	Reception Pipeline

	Downclocking WiFi
	Timing Synchronization
	Frequency Compensation
	Channel Estimation
	Phase Compensation
	Data Precoding
	Additional Considerations

	Implementation
	Sender
	Receiver
	Network interactions

	Evaluation
	Microbenchmark Results
	Prototype System Evaluation

	Summary

	Energy Consumption Evaluation
	Methodology
	WiFi Power Model
	Smartphone App Traces

	SloMo Energy Consumption
	Network Impact
	Alternative Approaches
	Extending Energy Saving with Enfold
	Summary

	Conclusion and Future Work
	Future Directions

	Bibliography

