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Abstract

Hardware Modeling and E�cient Architectural Exploration for Machine Learning

Accelerators

by

Tianqi Tang

The innovation in computer architecture and the development of simulation tools are

influencing each other mutually. The booming of machine learning (ML) invokes new

modeling tools for novel architectures and emerging applications. Meanwhile, the con-

tinuous evolution of ML models drives the need to know how well the domain-specific

accelerators can be adapted to a broad spectrum of ML workloads with satisfying per-

formance and high utilization at the early design stage.

To address those challenges, this thesis focuses on hardware modeling and e�cient

architectural exploration of ML accelerators. The hardware modeling is conducted from

two perspectives. First, this thesis develops NeuroMeter, an integrated power, area,

and timing modeling framework for ML accelerators. It enables the runtime analysis of

system-level performance and e�ciency at the early design stage. Second, this thesis

develops the cost model with an emphasis on the 2.5D integration and chiplet system.

Leveraging the proposed hardware modeling frameworks, this thesis explores the e�cient

architectural design for ML workloads under di↵erent scenarios. Two broad classes of

architectures are explored, i.e., the brawny design, which adopts small numbers of large

cores; and the wimpy design, which adopts large numbers of small cores. This thesis

explores the pros and cons of these two classes of architectures; and proposes a recon-

figurable systolic array-based architecture that has the advantages of both these two

architectures with negligible overheads.

ix



Contents

Curriculum Vitae vi

Abstract ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Future Influence and Impact . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 7
2.1 Analytical Hardware Modeling . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Systolic Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Power, Area, and Timing Modeling for ML Accelerators 12
3.1 Introduction and Contribution Overview . . . . . . . . . . . . . . . . . . 12
3.2 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Modeling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Case Studies on Design Space Exploration for ML Accelerators 28
4.1 Introduction and Contribution Overview . . . . . . . . . . . . . . . . . . 28
4.2 Performance Simulation and Operator Mapping . . . . . . . . . . . . . . 30
4.3 Brawny vs Wimpy Study on Homogeneous Manycore ML Accelerators . 33
4.4 Case Study on Sparsity Implication . . . . . . . . . . . . . . . . . . . . . 46
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 RSA: A Reconfigurable Systolic Array based CNN Accelerator 51
5.1 Introduction and Contribution Overview . . . . . . . . . . . . . . . . . . 51
5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Architectural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Hardware Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



5.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Cost-Aware Exploration for Chiplet-based Architecture 67
6.1 Introduction and Contribution Overview . . . . . . . . . . . . . . . . . . 67
6.2 Analytical Cost Model for Chiplet System . . . . . . . . . . . . . . . . . 71
6.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Summary 86
7.1 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 90

xi



Chapter 1

Introduction

1.1 Motivation

Recently, machine learning (ML) techniques have been widely applied in many ap-

plication domains. For example, the convolutional neural networks (CNNs) [1, 2, 3]

have been used in image processing tasks like classification [4], object detection [5], and

autonomous driving [6]; the attention models or transformers [7, 8] achieve the state-of-

the-art performance on many natural language processing (NLP) tasks; the graph neural

networks (GNN) [9] have been used for distilling knowledge from the unstructured data

and been widely applied in the fields of recommendation system [10], protein structure

prediction [11], and tra�c prediction [12].

To facilitate the powerful ML techniques under di↵erent scenarios, di↵erent application-

specific accelerators are developed because a general-purpose processor usually can-

not meet up all the user requirements. In terms of user scenarios, some accelerators

are specialized for data center, for example, Google’s tensor processing unit (TPU)

[13, 14, 15, 16], Meta’s Zion and Kings Canyon [17, 18], and Alibaba’s Hanguang [19];

others are designed for edge/embedded system, for example, Google’s EdgeTPU [20] and
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Introduction Chapter 1

nVidia’s Jetson-Series [21]. In terms of functionalities, some accelerators are designed for

training [14, 15] while some others are designed for inference [13, 16, 17, 19].

Despite the success of these ML accelerators, the time to design and tape out an ac-

celerator can be much longer than that of the emergence of new ML algorithms/models.

Therefore, an accelerator must be able to accommodate the ever-evolving ML models

with programmability. This drives the need to evaluate how well the domain-specific

accelerators can be adapted to a broad spectrum of ML workloads with satisfying per-

formance and high utilization at the early design stage. Taking CNN as an example,

the operators of depthwise and pointwise convolution have taken a larger and larger

proportion in the emerging CNN models [2, 3]. These emerging operators have di↵er-

ent operational intensities and memory access patterns from the traditional convolution

when running on the array-based or vector-based ML accelerators [16, 22, 23] proposed

previously. New tools, such as analytical hardware modeling tools, are naturally invoked

for the new architectures and applications. These tools are expected to enable fast yet

accurate power, area, and timing modeling for the early-staged design decision.

In addition to the evolution of ML algorithms, more hardware techniques are also

emerging. In particular, the technology of chiplet and package-level heterogeneous inte-

gration [24, 25, 26, 27, 28] has been adopted in recent years with the slowdown of Moore’s

Law. The chiplet-based System-in-Package (SiP) technology enables more design flexi-

bility via various inter-chiplet connections and heterogeneous integrations. However, it

is not known how to convert such flexibility into cost e�ciency, which is critical when

making a design decision. An analytical cost model is in need to help the designer select

the interposer, figure out the design partition granularity, and determine the technology

node for cost-e�cient chiplet-based SiP design. The cost model could be a good sup-

plement beyond the analytical hardware model of power, area, and timing. It helps the

user to evaluate whether the design flexibility of the chiplet-based SiP technology can be

2
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converted into cost e�ciency or cost feasibility at the early design stage.

1.2 Contribution

The primary goal of this thesis research is to advance the ML accelerator design

methodology with collaborative contributions on hardware modeling and cost analysis.

Leveraging the tools developed in this thesis research, architectural innovations are pro-

posed to accommodate a broad spectrum of emerging ML models.

1. Analytical Hardware Modeling This thesis develops NeuroMeter [29], an in-

tegrated power, area, and timing modeling framework for ML accelerators. With the

integrated electrical characteristics models (e.g., resistance-capacitance path model and

Elmore delay model [30]) of typical circuit structures in it, NeuroMeter, the proposed

modeling tool, allows the user to input the high-level architectural specifications and tech-

nology enablers alone. NeuroMeter can formulate the possible circuit representations of

ML accelerators, explore the design space internally and transparently, and finally gen-

erate a fast and accurate estimation on power, area, and chip timing. It enables the

runtime analysis of system-level performance and e�ciency when the runtime activity

factors are provided at the pre-register-transfer-level (pre-RTL) design stage.

2. Cost-Aware Analysis on Chiplet and Heterogeneous Integration This the-

sis develops an analytical cost model [31] that can estimate the cost of the 2.5D chiplet-

based SiP systems under various interconnection options and technology nodes. The cost

modeling is used as a critical supplement beyond the analytical modeling of power, area,

and chip timing. It helps the user evaluate whether the design flexibility enabled by

various inter-chiplet connections and heterogeneous integrations can be converted into

cost e�ciency at the early design stage. Leveraging the proposed analytical cost model,

a series of case studies are conducted to explore the cost characteristics of the 2.5D

3
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chiplet-based SiP systems in di↵erent scenarios. By analysing the case study results,

several observations are made on the interposer selection, design partition granularity,

and technology node adoption for cost-e�cient chiplet-based SiP design.

3. E�cient Architecture Exploration By combining the power, area, and timing

results of NeuroMeter with performance simulation, this thesis explores the manycore ML

accelerator design in di↵erent scenarios; and proposes new architectures which are listed

as follows:

First, the brawny vs wimpy study shows that brawny designs with 64x64 systolic

arrays are the most performant and e�cient for inference tasks in the 28nm datacenter

architectural space with a 500mm2 die area budget. The exploration also reveals impor-

tant tradeo↵s between performance and e�ciency. For datacenter accelerators with small

batch-sized inference, a tiny (⇠16%) sacrifice of performance can lead to more than a 2x

e�ciency1 improvement.

Second, this thesis also conducts a case study on energy e�ciency (TOPS/Watt)

implications of sparsity on di↵erent ML accelerators to showcase NeuroMeter’s capability

to model a wide range of accelerator architectures. The results show that despite its

relatively low energy e�ciency, it is easier for wimpier accelerator architectures to benefit

from sparsity processing.

Third, this thesis proposes a reconfigurable systolic array (RSA) based CNN acceler-

ator, which introduces quite a small area and power overhead as well as minor changes in

control logics. The internal reconfigurability of the proposed RSA enables both the high

performance of small numbers of brawny systolic arrays and the high utilization of large

numbers of wimpy systolic arrays. Especially, it increases the array utilization largely for

the operators of depthwise convolution with low operational intensity. The results show

1E�ciency is measured by the proxy metric of TOPS/TCO, where TOPS is the tera-operations per
second and TCO is the total cost of ownership.

4



Introduction Chapter 1

that the performance of ResNet [1] and E�cientNet [3] achieves 1.25x-2.68x gain on the

proposed RSA-based accelerator compared with the TPU-v2-styled baseline [14].

1.3 Future Influence and Impact

The experiences from this thesis research naturally lead to a wide range of future direc-

tions. Looking forward, the borderline between software optimization and architecture-

level design is blurring. There is a large space to explore for hardware-software-algorithm

co-optimization. This thesis research addresses the urge for the early-staged hardware

modeling for domain-specific accelerator design; and showcases examples of hardware-

and-software co-design space for ML accelerators to address a broad spectrum of workload

characteristics. The thesis research will foster the exploration on the co-design workflow

and the automation toolset to increase the productivity on domain-specific accelerator

design for future work.

The hardware analytical modeling tool proposed in this thesis can be further devel-

oped to support more advanced technology nodes and more complex 2.5D/3D integrated

systems. As the technology node scaling down, the circuit-level electrical characteristics

models (e.g., resistance-capacitance path model and Elmore’s model [30]) for FinFET

[32] and gate-all-around (GAA) nanosheet [33] are required if the advanced technology

nodes (7nm) are planned to support in the future hardware modeling tools. In addition

to the single-chip level power, area, and timing (PAT) modeling tool proposed in this

thesis, future work may extend it to a chiplet system level PAT modeling framework

which supports 2.5D (or 3D) integration with the inter-chiplet (or inter-tier) connections

with resistance-inductance-capacitance (RLC) path modeling as well as the interposers

and the substrates.

On top of PAT analysis, future work will explore the integration cost as well to see

5
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whether the advantages of new technologies like emerging devices, 2.5D or 3D integration,

can ultimately be translated into cost feasibility at the early design stage. Besides the

manufacturing cost and the package cost discussed in the analytical cost model in this

thesis, the testing cost and the cooling cost also play an important role in making the

early-stage design decision. With the consideration of the 2.5D chiplet system or 3D

integration, the thermal issue may become critical compared with the 2D monolithic

system. Besides power, area, timing, and cost, future work may consider the thermal

issue collaboratively at the early design stage.

6



Chapter 2

Background and Related Work

In this chapter, Sec. 2.1 first discusses the fundamental methodologies of analytical

hardware modeling on power, area, timing, and cost. Sec. 2.2 then conducts the literature

review for the architectural level innovations on the systolic array related computing

components for machine learning (ML) accelerators to highlight the uniqueness of the

reconfigurable architecture proposed in this thesis.

2.1 Analytical Hardware Modeling

Due to the high cost of prototyping, simulation plays an important role in the ad-

vanced computer architecture research. The urge of simulation tools has stimulated the

research and development in hardware modeling in the last few decades. According to the

functionality, the methodology of hardware modeling and the corresponding simulation

tools can be divided into two major classes, including:

The first class is the cycle-accurate, or event-accurate modeling, including Sim-

pleScalar [34], Gem5 [35], GPGPU-Sim [36, 37], MGPUSim [38]. These tools can collect

the performance counters or activity factors of di↵erent hardware components. The sec-

7



Background and Related Work Chapter 2

ond class is the analytical modeling, including CACTI [39], McPAT [40], and NVSim

[41]. These tools consider more from a hardware perspective and conduct the circuit-

level modeling for the estimation on power, silicon area, chip timing, and cost. These

tools also provide the component-level power and timing, which can be used collectively

with the performance counters or activity factors from the former cycle/event-accurate

modeling tools to analyze the runtime performance and e�ciency.

This thesis mostly focuses on the second class, i.e., analytical hardware modeling.

We aim to build the hardware analytical tool from the perspective of (1) power, area,

and timing; and (2) cost. Leveraging the built-up analytical hardware modeling tools,

researchers are able to seek for the architectural innovations which enable high perfor-

mance and e�ciency of the emerging ML workloads. The rest of this section introduces

the related work of the modeling of power, area, and time as well as cost respectively.

2.1.1 Power, Area, and Timing Modeling

CACTI [39] is the first analytical modeling framework for cache and memory arrays.

McPAT [40] and NVSim [41] use the same analytical modeling methodology as CACTI.

They build up the modeling framework for manycore general-purpose processors and the

non-volatile memory arrays respectively.

Eyeriss [42], Eyeriss-v2 [43], and MAESTRO [44] provide dataflow analysis and mod-

eling framework for ML accelerators. NNest [45] provides a generalized spatial architec-

ture framework for exploring the design space of ASIC-based ML inference accelerators.

Scale-Sim [46] provides a cycle-accurate performance simulator for systolic CNN acceler-

ators through on-chip and o↵-chip memory access traces. Interstellar [47] uses Halide’s

algorithm and scheduling primitives [48] to express di↵erent ML accelerator architectures.

Aladdin [49], Minerva [50], PolySA [51] and other work [52] provide di↵erent frameworks

8
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with (semi) HLS-level capabilities. Accelergy [53] and Timeloop [54] together provide an

ecosystem to model ML accelerators. Besides providing modeling tools, previous work

like NVDLA [55] open source the RTL codes of typical ML accelerator designs; and this

kind of work boosts the modeling ecosystem from another perspective. With the simul-

taneous and analytical modeling of the power, area, and timing of the widely-adopted

ML accelerator micro-architectures, the proposed NeuroMeter in this thesis advances the

state-of-the-art and provides foundational support for the hardware modeling ecosystem.

2.1.2 Cost Modeling

Besides the analytical model of power, area, and timing, which estimates the per-

formance and e�ciency, the analytical model of cost is another significant tool to make

reasonable design choices at the early design stage. This is because all the potential ad-

vantages of the proposed architectural innovations and the introduction of the advanced

technologies ultimately have to be translated into either cost savings or cost feasibility

when evaluating a design strategy. In this thesis, the cost model is mainly built for

exploring the chiplet-based SiP.

Previously, cost model has been used in evaluating the TSV-based 3D architecture [56]

or the silicon interposer based 2.5D integrated system [57, 58]. These works cannot be

adopted in the chiplet-based SiP design because the heterogeneity, which is the key to

the advantage of the chiplet-based SiP, never appears in previous technologies that only

support homogeneous integration. To our best, this thesis makes the first attempt to

build a cost model for chiplet-based SiP design space exploration.
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2.2 Systolic Array

Systolic array [59, 60] was originally proposed as an architectural concept of a high-

performance, special-purpose very-large-scale integration (VLSI) compute system for ma-

trix operations by H.T.Kung in 1978. A systolic array is made up of a set of systolic cells,

which are interconnected with each other according to the predefined topology, and each

of which is capable of performing some simple operation. The architecture of systolic

array has the potential to achieve high performance on matrix operations due to the

regular communication pattern and simple control structure in the systolic array itself.

In the recent years of “Cambrian exploration” [61] of ML accelerators, systolic array has

regained a lot of attentions from both academia and industry since Google introduced

the systolic array in its first generation of Tensor Processing Unit (TPU) [13]. Several

questions have been raised when adapting the systolic array into the ML accelerators;

and motivated a lot of architectural explorations on the systolic array based accelerators

from the perspective of hardware-and-software co-design. Among all these questions, two

specific questions are addressed in this thesis.

• What is the proper shape of systolic array?

• How to keep the performance and e�ciency of the systolic array when the ML

models continue to evolve?

The first question is summarized as a “brawny vs wimpy” question in this thesis. Sec.

2.2.1 conducts the literature review on the related “brawny vs wimpy” studies. The

second question is addressed with the proposal of the systolic array with reconfigurable

interconnections (RSA) in this thesis. Sec. 2.2.2 surveys the related work on the archi-

tectural innovations of ML accelerators with the emphasis on reconfigurable structures

or components.
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2.2.1 Brawny vs Wimpy Study

The brawny vs wimpy study [62] has been conducted extensively, with aspects includ-

ing latency [63], throughput [64], energy e�ciency [65], interconnect [66], heterogeneity

[67, 68], and workload characteristics [69] in the CPU design space. With the growing

ML workloads and the increasing deployments of ML accelerators in the datacenter, a

similar “brawny vs wimpy” question has been raised in domain specific hardware. Kung

et. al. [70] have studied the latency of accelerators with di↵erent systolic array sizes.

2.2.2 Reconfigurable Architecture for ML Accelerators

Several works introduce the reconfigurability into their architectural design. Planaria

[71] proposes a fissionable architecture. Scale-out Systolic Array [72] proposes a recon-

figurable systolic array with butterfly-based interconnections. The reconfigurability does

not only enable the satisfying performance on various workloads, but also enhances the

flexibility of the resource assignment in the multi-tenant scenarios.

11



Chapter 3

Power, Area, and Timing Modeling

for ML Accelerators

3.1 Introduction and Contribution Overview

This chapter aims to establish NeuroMeter, an integrated power, area, and timing

modeling framework for ML accelerators. NeuroMeter models the detailed architecture

of ML accelerators and generates a fast and accurate estimation on power, area, and chip

timing. Meanwhile, it also enables the runtime analysis of system-level performance and

e�ciency when the runtime activity factors are provided. Especially, when combined

with an external performance simulator via its flexible and extensible interface, NeuroM-

eter enables a comprehensive study of architecture, system performance (TOPS), power

e�ciency (TOPS/Watt), and cost e�ciency (TOPS/TCO1). With its new capabilities,

NeuroMeter empowers the architects with a fast yet accurate modeling framework for

exploring emerging manycore ML accelerators in a large architectural design space. Neu-

1TCO is the abbreviation for “Total Cost of Ownership”. The experiment in the latter of this thesis
uses TOPS/mm4/Watt as a proxy metric for TOPS/TCO.
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roMeter’s micro-architecture model includes fundamental components of ML accelerators,

including systolic array based tensor units (TU), reduction trees (RT), and 1D vector

units (VU). To ensure accuracy, a rigorous validation on NeuroMeter results is conducted

on both the component level and the whole-chip level. Our validation shows that Neu-

roMeter achieves high modeling accuracy, with overall power and area estimation errors

below 10% and 17% respectively when validated against TPU-v1 [13], TPU-v2 [14, 15],

and Eyeriss [42].

The main contributions of NeuroMeter include:

• Firstly, unlike prior ML accelerator modeling frameworks, which either model the

power, area, or timing in isolation, or require other electronic design automation

(EDA) tools to work collaboratively, NeuroMeter is the first framework to simul-

taneously model the power, area, and timing analytically at the architecture level.

• Secondly, NeuroMeter supports detailed modeling of critical architectural compo-

nents of ML accelerators, including 2D systolic array based tensor units, reduction

trees, 1D vector units, vector register files, and beyond.

• Thirdly, compared to previous modeling frameworks such as McPAT [40], NeuroM-

eter increases the architectural abstraction level. For example, it only requires users

to configure high level architecture; meanwhile, it automatically scales and config-

ures dependent hardware resources. As another example, it only requires users

to configure high-level design targets, such as TOPS; meanwhile, it automatically

searches for the optimal clock rate.

• Fourthly, NeuroMeter significantly advances the state-of-the-art, enhancing the ar-

chitectural modeling ecosystem of ML accelerators for the community. Recent work

such as Accelergy [53] and Timeloop [54] provide an ecosystem for architecture level
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ML accelerator modeling. Timeloop [54] is an automatic design exploration tool,

requiring fast energy consumption evaluations. Such fast energy consumption eval-

uations are supported by a high-level modeling tool, Accelergy [53], which relies

on CACTI and lookup-table based energy models. However, the community still

lacks an accurate analytical architecture modeling for the whole accelerator archi-

tecture to analytically model all accelerator components in the way CACTI does for

memory arrays. NeuroMeter bridges this gap by providing a consistent analytical

modeling methodology for the entire accelerator chip, building a strong foundation

for Accelergy, Timeloop, among others [45, 46, 73], to form a robust and coherent

ecosystem. Meanwhile, with its modular structure, NeuroMeter can also be used

as a standalone framework, if the users choose to.

The rest of this chapter is organized as follows: Sec. 3.2 gives an overview of Neu-

roMeter; Sec. 3.3 describes the modeling methodology; Sec. 3.4 validates NeuroMeter

against three ML accelerators, including TPU-v1 [13], TPU-v2 [14, 15], and Eyeriss [42].;

Sec. 3.5 summarizes this chapter.

3.2 Framework Overview

NeuroMeter is an integrated power, area, and timing modeling framework for ML

accelerators. Fig. 3.1 gives an overview of NeuroMeter and highlights its input/output

interface. There are two types of inputs to NeuroMeter:

• Mandatory Input: the accelerator hardware configuration, which NeuroMeter uses

to construct and optimize the target accelerator.

• Optional Input: the runtime statistics, which NeuroMeter uses to conduct runtime

analysis. Usually, this type of input comes from an external application-level per-
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User Inputs
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  // INT8, FP16, BF16, FP32, ...
  enum DataType data_type;
  // UniCast, XYBus, HTree, ...
  enum CastType cast_type;
  MemParam local_mem;
  MemParam input_fifo;
}

class MemParam {
  // DFlipFlop, SRAM, eDRAM
  Enum MemType mem_type;
  int capacity;
  int block_size;
  Int latency_wrt_cycle;
  int throughput_wrt_cycle;
}

optional

Figure 3.1: Overview of NeuroMeter Framework (© 2021 IEEE)

formance simulator, for example TF-Sim [74]. Leveraging these two types of inputs

collaboratively, NeuroMeter enables system performance and e�ciency analysis.

NeuroMeter by default outputs the power, area, and timing of target ML accelerators

based on their specified hardware configuration.

NeuroMeter allows users to specify the parameters at the architecture, circuit, and

technology level, as well as the optimization targets and constraints, as shown in Fig. 3.1.

Besides the essential parameters, such as the core count, clock rate, power supply voltage,

and technology node, it only requires the user to provide the high-level configurations of

critical hardware components without worrying about the low-level configurations. For

example, when the user configures the computing components of the accelerator, they

only need to configure critical parameters, such as the tensor unit’s array height/width,

the data type of the multiplication-accumulation unit, and the type of inner array in-

terconnection, the tool itself will automatically help the user figure out the dependent

hardware components, including the vector register file, the scalar unit, and the intercon-

nection overheads between di↵erent components. When the user configures the on-chip
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memory, they only need to configure the parameters of capacity, block size, target latency,

and the target throughput. The tool will automatically set the low-level parameters (such

as the number of banks, the number of the read/write ports) via its internal optimizer.

By default, NeuroMeter requires the input of system-level performance (i.e., peak

TOPS) as the optimization target (or a minimal value of it as a design constraint).

TOPS/Watt and TOPS/TCO are also allowed to feed in as alternative optimization tar-

gets or design constraints. Given the system-level performance constraints, NeuroMeter

conducts the component-level timing analysis using an Elmore delay model [30]. Once a

design is found to meet the optimization targets and design constraints, NeuroMeter fi-

nalizes an internal chip representation to get the chip-level thermal design power (TDP),

silicon area, and their component-level breakdowns. NeuroMeter also outputs the timing

information of the electrical signal propagation delay (e.g., Elmore Delay) and the cycle

time per component to help the user find out the hardware critical path.

When given the runtime statistics of the target ML model running on the accelerator,

NeuroMeter also combines the inputs of runtime statistics on hardware utilization and

activity factors for micro-architecture components with the chip-level TDP and silicon

area to generate the end-to-end runtime estimation of performance2, power, and e�ciency

of the target accelerators running specified ML models. NeuroMeter decouples the per-

formance simulation from the architecture modeling, so that it can be flexibly paired

with any external performance simulation framework for comprehensive ML accelerator

research.
2The word “Performance” here represents the program execution time (i.e., end-to-end latency)

and/or throughput.
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Figure 3.2: NeuroMeter’s Top-Down Modeling Methodology (© 2021 IEEE)
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3.3 Modeling Methodology

NeuroMeter follows a top-down modeling methodology. As shown in Fig. 3.2(a), high-

level blocks are divided into lower-level sub-blocks and finally mapped onto the circuit-

level models of compute logic units, memory arrays, and hierarchical wires, with the

backend technology devices and wiring parameters. This section introduces the modeling

methodology of NeuroMeter at the architecture level (Sec. 3.3.1) as well as the circuit

and technology level (Sec. 3.3.2).

3.3.1 Architecture-Level Modeling

At the chip architecture level, NeuroMeter models a multi-core ML accelerator. Fig.

3.2(b) gives an example of a multi-core accelerator with a 2D-mesh Network-on-Chip

(NoC), while other types of NoCs are also supported, including bus, ring, and H-tree.

Other peripheral blocks, including Memory Controllers (MCs) and DMA controllers, are

also modeled.

At the core architectural level, NeuroMeter breaks down a single core into an In-

struction Fetch Unit (IFU), a Load-and-Store Unit (LSU), an EXecution Unit (EXU),

and a Scalar Unit (SU) for control. An IFU in ML accelerators is usually lightweight,

unlike the complicated front-end circuit in high performance general-purpose processors.

An LSU in ML accelerator includes on-chip memory (Mem) and data/control paths to

o↵-chip memory. The most critical component is EXU, which is further broken down

into multiple functional units, i.e., 2D systolic array based Tensor Unit (TU), Reduction

Tree (RT), 1D Vector Unit (VU), Vector Register file (VReg), and Central Data Bus

(CDB). Each unit is discussed below.

Tensor Unit (TU) is a generic 2D systolic array made up of three parts, (1) an array

of systolic cells (SCs), each one of which consists of a multiplication-accumulation (MAC)
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unit or a fused multiply-add (FMA) unit as well as a D-Flip-Flop (DFF) or SRAM based

local bu↵er; (2) wires connecting nearby systolic cells; (3) DFF/SRAM based I/O FIFOs.

Our tool supports TUs with various types of interconnections between systolic cells and

I/O FIFOs. Fig. 3.2(c) exemplifies two types of inner-TU interconnections, including uni-

cast as in Google’s TPU-v1, and multicast (or X/Y bus) as in Eyeriss. For systolic arrays

(or unicast TUs) we support modeling of both weight-stationary and output-stationary

dataflow with a flexible systolic cell configuration. At the circuit level, MAC units in-

side the systolic cells are pre-simulated through EDA tools, while the DFF/SRAM based

local bu↵ers, I/O FIFO, and the cell-to-cell interconnections are modeled analytically.

Fig. 3.2(d) illustrates the multicast inner-TU interconnection as an example, i.e., the

interconnection is decomposed into several segments of wires that are abstracted into

the ⇡-RC model; the output resistance of the I/O FIFO and the input resistance of the

systolic cells are extracted as the drive and the load of the RC path respectively.

Reduction Tree (RT) is made up of three parts, (1) a N-input 1D MAC array

(Which is similar as in VU); cascaded by (2) a log(N)-layered adder tree; (3) the (op-

tional) DFFs between the two nearby layers to satisfy the timing constraints if needed.

In the default configuration, we assume that each layer uses an array of 2-by-1 adders in

the adder tree. The users can customize the type of the adder and the level of the adder

tree according to their design requirements. The RT is broadly used in sparsity-aware

accelerator designs [73, 75, 76] since it has more flexible workload mapping compared

with the 2D array based TU.

Vector Unit (VU) processes 1D vector operations, such as pooling, activation, and

di↵erent variants of normalization. It also merges the partial sums when one TU is not

large enough to hold the whole Conv2D or MatMul operator without tiling. Moreover,

in some ML accelerators [77] without 2D TUs, VUs are the main processing elements.

Such accelerators can be well supported by NeuroMeter. The vector register file (VReg)
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is the center for data exchange inside VU as well as between VU and TU. In the default

architectural configuration, the number of the VU lanes and the vector width of VReg

match the TU array length; and each TU/VU has private read/write VReg ports. For

the core with single VU and single TU, VReg is configured as 4 read ports and 2 write

ports to support dual issue width. Meanwhile, multiple TUs can be configured to share

one group of read/write VReg ports. In that case, the external performance tool has to

exclude the mapping based on independent data to di↵erent TUs, or include the extra

cost when data broadcast is not applicable.

Scalar Unit (SU) is mainly used for auxiliary operations in the control flow, e.g.,

address calculation. Leveraging McPAT’s configuration, SU is by default configured as a

simplified “ARM Cortex-A9 core” which only has the instruction fetch unit (w/o branch

prediction logic), integer register file, ALU, and LSU, with the rest of the core removed.

It can also be easily reconfigured to other architectures.

On-chip Memory (Mem) models the storage units, which hold the weights and

feature maps on the chip. It can be configured as a software-managed scratchpad memory,

which is commonly used in many ML ASICs, or a cache hierarchy. The cell type of

Mem can be selected from DFF, SRAM, and eDRAM. According to the throughput

requirements, Mem is always configured as multi-banked. Based on the architectural

configurations, Mem can be modeled as a unified structure where weights and activations

are stored together as in TPU-v1, or as a dedicated structure where each bank has its

own functionality as in Eyeriss.

Central Data Bus (CDB) models the interconnection between di↵erent compo-

nents within the core, especially the wires connecting VReg and other functional compo-

nents, including TU, VU, and Mem. Wires are assumed to route around the functional

components, and their length is estimated by the square root of the functional component

area. When the length is large, wires are pipelined to meet the throughput requirement.
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3.3.2 Circuit and Technology-Level Modeling

NeuroMeter models the power, area, and timing of the hardware components analyt-

ically and simultaneously. Similar to McPAT [40], NeuroMeter maps the architectural

components to basic logic gates and regular circuit blocks, including computing arrays

(e.g., TU, VU), memory arrays (e.g., DFF, SRAM, and eDRAM), interconnects (e.g.,

router, link, and bus), and regular logic (e.g., decoder and dependency-checking unit).

These circuit blocks are then mapped to fundamental analytical resistance-capacitance

(RC) ladder/trees and layout models to compute timing, area, and energy at di↵erent

technology nodes.

However, an analytical approach does not work well for complex structures that have

custom layouts, such as the MAC logic in the TU, VU, and SU. For these components,

NeuroMeter currently takes an empirical modeling approach, which utilizes curve fitting

to build a parameterizable numerical model for the area and power of complex com-

ponents. The empirical model is based on the synthesis results from Design Compiler

using the RTL models from Berkeley Hardware Floating Point Unit Library [78] with the

technology backend of FreePDK [79, 80] libraries.

3.4 Validation

The primary focus of NeuroMeter is fast yet accurate power and area modeling at

the architectural level when given the target system performance (i.e., peak TOPS).

To ensure the accuracy of NeuroMeter, rigorous validations are conducted at both the

component level and the whole chip level. At the component level, NeuroMeter’s power,

area, and timing results are validated against the synthesis results from Chisel [81] with

the FreePDK45 library [80]. The validation against EDA tools shows that NeuroMeter’s

prediction is within a 15% area error margin, which provides strong confidence for the
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component level modeling accuracy. Considering that power depends highly on the block

activity factors, it is rigorously validated at the chip level under the assumption of average

power traces. At the chip level, the validation is conducted against TPU-v1 [13], TPU-v2

[14, 15], and Eyeriss [42]. NeuroMeter demonstrates satisfying modeling accuracy, with

about 10% and 17% error margins on overall power and area respectively against the

three real ML accelerators. It is important to note that chip-to-chip power variation

in modern microprocessors [82] is comparable to the magnitude of the power validation

errors of NeuroMeter.

Fig. 3.3 shows TPU-v1’s validation results of power and area, at a 28nm technol-

ogy node with a 700MHz target clock rate. At the chip level, the modeling results of

overall power (i.e., TDP) and area have <5% and <10% error respectively, compared

with the published TDP (75W) and area (<331mm2). At the component level, TPU-v1

contains four major parts: (1) a MAC-based Systolic Array for matrix multiplication;

(2) a Unified Bu↵er & Weight FIFO for activation and weights; (3) an Accumulator

Bu↵er for partial sums; and (4) an Activation Pipeline for other operations. NeuroMeter

models the systolic array by the TU with a unicast interconnection; models the unified

bu↵er, accumulator bu↵er, and the weight FIFO by the Mem; and models the activa-

tion pipeline with the VU. As shown in Fig. 3.3(a), NeuroMeter produces accurate area

modeling results (within 2% relative error) for the systolic array and the accumulator

bu↵er; but over-estimates the relative area of the unified bu↵er3 by ⇠10%, and the error

ratio will enlarge to about 30% if considering the unified bu↵er alone. This even larger

error rate may be due to the lack of knowledge of optimized placement-and-routing for

3Relative area is used in the validation. It is di�cult to make an apple-to-apple comparison on the
absolute area because the published overall area of TPU-v1 only gives an upper bound of 331mm2.
Taking the ground truth of the overall chip area as 331mm2, NeuroMeter has at most 20% absolute
estimation error on the unified bu↵er (NeuroMeter: 108mm2 vs Ground truth: 87mm2. The ground
truth of unified bu↵er is calculated by the published overall area with its manually measured proportion
based on TPU-v1’s published block diagram.)
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the interconnect between systolic array and unified bu↵er in TPU-v1. We also model

the peripheral interfaces including DRAM port (6.0% vs 2.8%) and PCIe interface (3.0%

vs 1.8%). We currently do not model host interface, controller, and misc I/O, with 5%

in total. The unknown components in TPU-v1 occupy ⇠21% of the chip area, and we

use the same percentage as white space in our area overall estimation. Although no

published data exists to compare against, the NeuroMeter power breakdown is shown in

Fig. 3.3(b), where the systolic array is the biggest power consumer with 56% of the total

chip power.

Fig. 3.4 shows the area validation of TPU-v2 at an assumed 16nm technology node4

with a 700MHz target clock. At the chip level, the modeling results of area (513mm2)

have at most 17% error compared with the published area (< 611mm2); and the modeling

results of TDP (255W) have ⇠9.1% error compared with the published TDP (280W).

Similar to TPU-v1, NeuroMeter models the MXU, Vector Unit, and Vmem by systolic

array based TU, VU, and Mem respectively. We would like to highlight that our simula-

tion results show that TPU-v2 requires two read ports and one write ports per bank, and

this is automatically searched by NeuroMeter with the given throughput requirement.

Furthermore, we also modeled the Inter-Chip Interconnection (ICI) link and switch (12%

vs 5%) by the components of Network Interface Unit (NIU) and NoC given the bisec-

tional bandwidth at 496Gb/s per direction. Other peripheral components, including

HBM ports (9% vs 5%) and PCIe Controllers (2% vs 2%) are also modeled. We cur-

rently do not model transpose unit, RPU, and misc datapath, with 11% in total. The

unknown components (which probably includes the inter-component interconnection) in

TPU-v2 occupy ⇠21% of the chip area, and we use the same percentage as white space

in our overall area estimation.

Fig. 3.5 shows Eyeriss’s validation results of power and area, at a 65nm technology

4According to the published information [14], TPU-v2’s technology node is greater than 12nm.
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28nm. Architecture parameters used in the model are: Systolic Array Size: 256x256;
Accumulator: 256 int32 adders; Unified Bu↵er: 24MB, dual banks, one read port
and one write port; Accumulator Bu↵er: 4MB, 4k blocks per bank, dual ports; PCIe
Gen3x16: 14GB/s. Notice: The ring only shows the relative percentage of di↵erent
hardware components; the ring diameter has nothing to do with the absolute pow-
er/area.(© 2021 IEEE)
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Figure 3.4: Area Break Down of TPU-v2 Published Data [14] vs NeuroMeter Simula-
tion Results. TPU-v2 @ 700MHz with 0.75V power supply assumes to be fabricated
at 16nm. Architecture parameters used in the model are: MXU: two 128x128 systolic
arrays with BF16 multiplier and FP32 adder; VMem: 8MB, quad-banks, with two
read ports and one write port. Notice: The ring only shows the relative percentage of
di↵erent hardware components; the ring diameter has nothing to do with the absolute
power/area. (© 2021 IEEE)
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Figure 3.5: Area and Power Break Down of Eyeriss-v1 Published Data [42] vs Neu-
roMeter Simulation Results.Eyeriss @ 200MHz with 1.0V power supply is fabricated
at 65nm. Architecture parameters used in the model are – PE Array Size: 14x12;
Local Bu↵er per PE: 448byte SRAM, 72byte registers, PE I/O FIFO transferring be-
tween 32bit to 8bit; Global Bu↵er: 108kB, 27 banks in total, dual ports. Notice: The
ring only shows the relative percentage of di↵erent hardware components; the ring
diameter has nothing to do with the absolute power/area. (© 2021 IEEE)

node with a 200MHz target clock rate. As shown in Fig. 3.5(a) and (b), the area

modeling of the single PE and the overall results have <5% and <15% error respectively.

At the single PE level, Eyeriss’s PE is modeled by NeuroMeter’s systolic cells in the TU.

At the chip level, Eyeriss’s three major components, i.e., PE Array, Global Bu↵er, and

MultiCast NoC, are modeled by the TU, Mem, and inner-TU connection respectively

as introduced in Sec. 3.3.1. Other chip-level components, including Run-Length Code

& ReLU, Config Scan Chain, and Top-Level Ctrl, are also modeled. As shown in Fig.

3.5(b), the relative area breakdown of PE array is overestimated by ⇠7%, which may
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result from the limited knowledge of the exact MAC logic model in use. The relative

area breakdown of the global bu↵er is under-estimated by ⇠7%, which may be due to

the insu�cient knowledge of the outside-bank overhead. Compared with TPU-v1, the

area breakdown of the PE array in Eyeriss is much larger than that of the systolic array

in TPU-v1. Both of them are modeled by the TU in NeuroMeter, but Eyeriss introduces

a heavier local bu↵er design, i.e., every PE has the local scratchpad memory and register

files to support the row-stationary dataflow.

We also validate the runtime power5 against the report from Eyeriss when running

publicly available ML models. As shown in Fig. 3.5(c) and (d), the overall power

has 11% over-estimation and 13% under-estimation respectively when running AlexNet-

Conv1 and AlexNet-Conv5 layers. The di↵erences of the runtime power in these two

layers may result from the insu�cient knowledge of the zero-skipping and clock-gating

operation in Eyeriss. To be consistent with the published data, the power consumption

breaks down into the following six components, including (1) MAC logic, (2) local bu↵er

(Spad Mem), (3) PE I/O FIFO, (4) PE controller, (5) multicast NoC, and (6) global

bu↵er; and the first five components are the internal structures of the PE array. The

unmodeled components include chip I/O pads and top-level control and are not shown in

Fig. 3.5. Since NeuroMeter does not model the clock network as a separate component,

we amortize the power breakdown of the clock network into other components. Similar to

the TDP in TPU-v1, the PE array in Eyeriss takes the major proportion of the runtime

power consumption. Unlike TPU-v1’s TDP, the global bu↵er in Eyeriss takes a much

smaller proportion. This shows the di↵erence between TDP and the runtime power

consumption.

5In order to decouple the error of hardware modeling from the error of performance analysis, we
calculate the activity factor based on the published data of the processing time, the number of active
PEs, the percentage of zero input feature maps, and the number of global bu↵er accesses.
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3.5 Summary

NeuroMeter is an architectural analytical framework for simultaneously modeling

power, area, and chip timing for emerging ML accelerators. It models all major architec-

tural components of emerging ML accelerators, including TU, VU, on-chip Mem, NoC,

MemCtrl, host interface, and beyond. Moreover, its analytical model of TU and VU cap-

tures the key di↵erence between emerging ML accelerators and the mainstream CPUs.

Its analytical modeling methodology generates fast and accurate modeling results with-

out relying on EDA tools. Validations show a reasonable agreement between NeuroMeter

and published data for both datacenter-oriented (TPU-v1/v2) and mobile/edge-oriented

(Eyeriss) state-of-the-art ML accelerators. NeuroMeter empowers architects with a fast

yet accurate exploration of the large and diverse design space of modern manycore ML

accelerators. When combined with performance simulations via its flexible and extensi-

ble interface, NeuroMeter enables broader architecture study with comprehensive metrics

such as TOPS/Watt, TOPS/TCO.
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Chapter 4

Case Studies on Design Space

Exploration for ML Accelerators

4.1 Introduction and Contribution Overview

This chapter is dedicated to use two case studies to showcase the capacity of NeuroM-

eter, which is established in Chp. 3, in modeling a wide range of diverse ML accelerator

architectures; how NeuroMeter would be involved in the design space exploration of ML

accelerators; and how NeuroMeter would further inspire the architectural innovation,

especially in the software-and-hardware co-design for emerging ML workloads.

With the recent “Cambrian explosion” [61] of ML accelerators, two clear design paths

have emerged. One path is a “Brawny” design that uses a few large cores such as Google’s

TPU (single core with a 256x256 systolic array in TPU-v1 [13]; dual cores, each with

one or multiple 128x128 systolic arrays in TPU-v2,v3,v4i [14, 15, 16]), while the other

path is a “Wimpy” design that uses a sea of small cores such as nVidia’s Volta (640 Ten-

sorCores with 64 FMAs per clock per TensorCore [22]) and Ampere (512 TensorCores

with 1024 FMAs per clock per TensorCore and hardware supports for structural sparsity
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[23]). While both design paths have proven to be successful and inspired many subse-

quent designs, there is no in-depth quantitative understanding about the essence and

rationale of either design path. To bridge this gap, this chapter conducts a comprehen-

sive and consistent study on the design space and tradeo↵s of “Brawny and Wimpy” for

the datacenter inference accelerators. The study reveals that for datacenter chips with

a 500mm2 silicon area budget, a dual-core accelerator with four 64x64 systolic arrays

per core has superior e�ciency and performance on inference tasks among 28nm design

points, despite relatively lower utilization. Moreover, the study also reveals important

tradeo↵s among di↵erent design targets. For example, for datacenter accelerators with

low batch inference, a small (⇠ 16%) sacrifice of performance (achieved TOPS) can lead

to more than 2x improvement of e�ciency (achieved TOPS/TCO).

Based on these choices of accelerator architectures, another case study is conducted

on energy e�ciency (TOPS/Watt) implications of sparsity on both systolic-array and

reduction-tree based ML accelerators to showcase NeuroMeter’s capability to model di-

verse ML accelerator architectures. The results show that despite their relatively lower

energy e�ciency, it is easier for wimpier accelerator architectures to benefit from sparsity

processing.

In the rest of this chapter, Sec. 4.2 introduces how the operator-level mapping is

conducted by the performance simulator; Sec. 4.3 conducts a case study on brawny and

wimpy manycore ML accelerators to showcase NeuroMeter’s functionality to model the

datacenter inference scenarios; Sec. 4.4 conducts a sparse-oriented case study to showcase

NeuroMeter’s functionality to model diverse architectures and support various workloads;

and Sec. 4.5 summarizes the insights discovered from the two case studies.
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4.2 Performance Simulation and Operator Mapping

As explained in Chp. 3, besides the hardware modeling tool alone, an external per-

formance simulator is required when the user evaluates the workload-aware runtime per-

formance and e�ciency. The quality of application-level performance simulation and

operator mapping will a↵ect the final results of runtime performance and e�ciency. The

purpose of this section is NOT to propose an optimal operator mapping methodology

that fulfills all the architectures. Instead, this section aims to clarify a reasonable map-

ping methodology (yet probably a non-optimal one) and apply it to all the architectures

in the proposed design space. We try our best to make a fair evaluation of the dif-

ferent architectures by decoupling the impact on performance when di↵erent mapping

methodologies are applied on di↵erent architectures.

The case studies in this chapter leverage TF-Sim [74] to simulate the application-level

performance. TF-Sim [74] intakes both the compute graph of the given workload and the

architectural parameters of the given accelerator. It first partitions the whole compute

graph into multiple operators according to the internal integrated or user-customized

operator partition/fusion rules; then calculates the operator-wise runtime statistics (e.g.,

the compute cycle, utilization, the number of memory access of each involved hardware

components) according to the internal integrated or user-customized methodologies of

operator mapping. The achieved runtime statistics would be further fed into NeuroMeter

to evaluate the runtime performance and e�ciency.

Batched matrix-matrix multiplication (Batched MatMul) is an important basic op-

erator for ML workloads. In the rest of this section, Sec. 4.2.1 will first analyse how

to map the batched MatMul onto the Tensor Units which are made up with homoge-

neous systolic arrays (HSAs); Sec. 4.2.2 will further discuss how other operators, includ-

ing batched matrix-vector multiplication (Batched MatVec), traditional 2D convolution
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(Conv2d), and depthwise convolution (DConv2d), are first tiled into batched MatMul

and then mapped onto HSAs. The operator mapping described in this section will give

the reader a better understanding on how performance simulation works collaboratively

with the proposed hardware modeling tool, NeuroMeter; and how the case studies are

conducted in the later of this chapter.

4.2.1 The Mapping of Batched MatMul

When mapping the workload of batched MatMul(M, N, K), i.e. CM⇥N = AM⇥K ·

BK⇥N , with batch size b onto the X-by-X-sized single HSA based Tensor Unit, the tiling

length Xt needs to be determined such that the original batched MatMul is tiled into

b · dM

Xt
e · d N

Xt
e · d K

Xt
e blocks of unit operators MatMul(X

t
, X

t
, X

t
). Comparing HSA’s

array length X and the tiling length Xt, there are three cases:

(1) When Xt == X, the unit operator MatMul(X
t
, X

t
, X

t
) can be directly map

onto the HSA and it takes X cycles to process one unit operator.

(2) When Xt > X, the X-by-X HSA is still unable to hold it. In this case, the value

of Xt need to be further tiled to make the unit operator able to be held up by the HSA

with the given size.

(3) When Xt < X, besides the input matrix of the unit operator, the input bu↵er

of the X-by-X-sized HSA has to be filled up with padding zeros. This leads to extra

ine↵ective FMA operations with at least one of the input operators as zero. In this

circumstance, although HSA processesMatMul(X,X,X) by 2X3 operations inX cycles,

only the 2X3
t
operations from MatMul(X

t
, X

t
, X

t
) conduct the e↵ective calculations.

To reduce the ine↵ective operations which have zero-valued input operators, we can

compose multiple MatMul(X
t
, X

t
, X

t
) into one MatMul(X,X,X). When an integer

nt = d X

Xt
e, we will fill the input matrices of the nt operators of MatMul(X

t
, X

t
, X

t
)

31



Case Studies on Design Space Exploration for ML Accelerators Chapter 4

into the nt Xt-by-Xt submatrices of MatMul(X,X,X) on the diagonal of its input

matrix. Then it takes X cycles to process nt unit operations MatMul(X
t
, X

t
, X

t
)

into one MatMul(X,X,X) in parallel. The output of these nt MatMul(X
t
, X

t
, X

t
)

unit operators are exactly lined up on the diagonal submatrices of the output matrix

MatMul(X,X,X). In this way, nt unit operators are processed independently and

parallelly.

To sum up, Eq. 4.1 shows TMatMul, the time consumption when the operator of

batched MatMul with the tiling length Xt is computed by the X-by-X-sized HSA-based

Tensor Unit, i.e.,

TMatMul(Xt) = (d
b · dM

Xt
e · d N

Xt
e · d K

Xt
e

nt

e+ 2) ·X · THSA (4.1)

where THSA is the cycle time of the HSA; and the symbol d·e is the integer roundup. The

term 2 ·X ·THSA is the time overhead when streaming in the first block of input data and

streaming out the last block of output data. For simplification, we assume both X and

Xt are power-of-two numbers. In this way, we will sweep all the power-of-two numbers

from 2 to X to find the optimal value of Xt to minimize TMatMul.

4.2.2 The Mapping of Other Tensor Operators

The operator of batched matrix-vector multiplication (Batched MatVec) can be re-

garded as a special case of batched MatMul(M, N, K) where N = 1. We can search

the optimal tiling length in the same way as that of batched MatVec.

The operator of traditional 2D convolution (Conv2d) has the input tensors of batch

size B, each with the shape of (Ix, Iy, Iz); the output tensors of batch size B, each with the

shape of (Ox, Oy, Oz); and Oz kernel tensors, each with the 3D shape of (Kx, Ky, Kz).

It can be regarded as the batched MatMul(B, O
z
, I

z
) with the new batch size of
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Kx ·Ky · Ix · Iy.

The operator of depthwise convolution (DConv2d) has the input tensors of batch

size B, each with the shape of (Ix, Iy, Iz); the output tensors of batch size B, each with

the shape of (Ox, Oy, Oz); and Oz kernel tensors, each with the 2D shape of (Kx, Ky).

Di↵erent from Conv2d, DConv2d has Kz = 1. If we would like to map DConv2d similarly

like traditional Conv2d, we will zero pad the 2D convolution kernel into a 3D counterpart

by setting Kz = Iz. After zero padding, DConv2d can be mapped in a similar way

like that of Conv2d, i.e., the batched MatMul(B, O
z
, I

z
) with the new batch size of

Kx·Ky ·Ix·Iy. However, in this case, only the elements on the diagonal of the kernel matrix

are non-zero while all the other elements are zero. When DConv2d is further mapped

onto the systolic array, only the systolic cells on the diagonal are conducting the e↵ective

calculations, while the other systolic cells can be clock-gated or configured into the idle

mode because at least one of the multiplicands is zero. Assuming the systolic array is

sized of X-by-X, then only X systolic cells are active, which makes the systolic array in

low utilization. The larger size of the systolic array, the lower the array utilization.

4.3 Brawny vs Wimpy Study on Homogeneous Many-

core ML Accelerators

Of the many types of ML accelerators that have emerged, one type can be classified

as having relatively “Brawny” core designs that use a few large systolic arrays such as

Google’s TPU (a single core with a 256x256 systolic array [13] in TPU-v1 or one/dual

cores, each with one or multiple 128x128 systolic arrays in TPU-v2,v3,v4i [14, 15, 16]).

Another class are designs based on relative “Wimpy” cores that use a sea of small comput-

ing arrays or vector processing units such as nVidia’s Volta architecture (640 TensorCores
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with 64 FMAs per clock per TensorCore [22]) and Ampere architecture (512 TensorCores

with 1024 FMAs per clock per TensorCore and hardware supports for structural sparsity

[23]). Intuitively, the brawny design is believed to have an advantage of high performance,

especially when the tensor size is large enough; while the wimpy design is believed to have

an advantage of high utilization without sacrificing performance by using sophisticated

compiler and runtime software. However, there is no in-depth and comprehensive study

to quantify these hypotheses, partly because of the lack of tools.

To bridge this gap and to showcase the capability of NeuroMeter, detailed analyses

are conducted to compare brawny and wimpy manycore ML accelerator designs. Inter-

estingly, the brawny vs wimpy design tradeo↵s have been a critical topic in CPU design

and date back to decades ago as summarized in previous work [62]. This section aims to

foster a comprehensive and systematic study of brawny and wimpy design tradeo↵s on

the ML accelerator frontier.

In the study described in this section, the brawny accelerator architecture uses fewer

cores with large systolic array based TU(s) per core, while the wimpy accelerator ar-

chitecture uses more cores with small systolic array based TU(s) per core. The rest of

the on-chip resources are scaled proportionally as the systolic array size changes. While

NeuroMeter models both training and inference accelerators, this case study focuses on

the inference accelerators in the data center scenarios.

4.3.1 Experiment Methodology and Setup

The study focuses on the general architecture of manycore ML accelerators shown

in Fig. 4.1. All cores are connected by a 2D mesh NoC. Each core has a systolic array

based tensor unit (TU) for matrix operations; meanwhile, each core also has a vector

unit (VU) for vector operations. Each core may also have a scalar unit (SU) for control
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Figure 4.1: Single Core Architecture of the Datacenter Inference Chips (© 2021 IEEE)

path because of the high throughput of TUs in the core. Each core has a portion of the

distributed on-chip memory (Mem). A vector register file (VReg) is the data exchange

hub among TU, VU, and Mem. The central data bus (CDB) connects VReg and other

components inside the core.

Architecture Design Space and Chip Modeling

Since brawny and wimpy is a continuous spectrum in the design space, we denote

each architectural design point by a four-element tuple (X,N, Tx, Ty), where X is the

TU length that defines how brawny or wimpy the architecture is; N is the number of

TU in each core; Tx and Ty are the 2D mesh NoC topology to connect all the cores.

Given each tuple of such a design point, NeuroMeter automatically scales and sets the

dependent hardware parameters such as the number of VU lanes, the VReg issue width,

and VReg port count accordingly as shown in Fig. 4.1.

To some extent, chip architecting can be considered as an optimization problem, where
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Table 4.1: Architecture Configuration of Datacenter Design Space
Constraint

Tech Node = 28nm, Freq = 700MHz;
Area/Power Budget = 500mm2/300W.

Optimization Target
TOPS Upper Bound = 92TOPS.

Design Space (X,N, Tx, Ty)
TU array length X = {4, 8, 16, 32, 64, 128, 256};
#TU per tile N = {1, 2, 4}; TU data type = Int8.
Mem capacity = 32MB.
NoC bisectional bandwidth = 256GB/s;
Ring when #Tile on chip Tx ⇤ Ty  4, 2D-Mesh when Tx ⇤ Ty � 8;
O↵-chip bandwidth = 700GB/s (HBM).

Table 4.2: Characteristics of ML Workloads Used in Case Study
Workload ResNet Inception NasNet
#MAC Op 7.8G 5.7G 23.8G
#Data 5.72M 2.93M 5.35M
#Param 23.7M 22.0M 84.9M

we try to maximize performance under a given budget on chip area and power. Thus,

we pick reasonable optimization targets and design constraints to make the design space

exploration manageable. Particularly, as shown in Table 4.1, for datacenter inference

accelerators, we constrain the die area to 500mm2 and TDP to 300W based on recent

data center ML accelerators [13, 83]. The memory subsystem is configured with 32MB

of software managed on-chip memory distributed to all cores and 700GB/s o↵-chip HBM

bandwidth, similar to Google’s TPU-v2/v3 [14]. Note that TPU-v2/v3 are designed for

both training and inference [83]. We then use NeuroMeter to sweep the design space

to optimize the TOPS for each design point of (X,N, Tx, Ty) with dependent hardware

parameters automatically scaled proportionally to the design point parameters as shown

in Fig. 4.1 and Table 4.1.

Before setting the ranges of the implicit hardware parameters in Fig. 4.1, we explore

a larger design space of systolic array centric architectures, including a larger number of
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TUs per core, multiple TUs sharing VReg read/write ports, and other types of inner-

TU interconnection. We prune the design points that exceed the area/power budgets

or have extremely low performance. We only take the design points that meet the per-

f/power/area requirements into the second round for further workload-aware analysis.

To make the design space manageable, we finally set the range of TU length (X) from

4 to 256. NeuroMeter automatically sets one VU per core with its lane number the

same as the TU array length. NeuroMeter reserves two read ports and one write port

in the VReg for each functional unit. The number of TUs in each core (N) determines

how many total ports are required for each VReg, where a large N leads to an overhead

explosion of VReg. For example, with eight 4x4 TUs per core, the VReg area and power

overhead is 12.7% and 24.9% of the core. To avoid such an overhead explosion of VReg,

N is capped at 4. The distributed on-chip memory is automatically multi-banked by

NeuroMeter to satisfy the timing constraints determined by the target TOPS and clock

frequency. The total core count (the product of Tx and Ty) is maximized to achieve the

peak TOPS target while under the area and power constraint. For the convenience of

evenly partitioning the neural network model, we assume Tx and Ty to be the power-of-2

numbers. To make the overall layout close to square, we assume that Tx is equal to or

half of Ty.

Machine Learning Models

The datacenter case study uses three widely adopted CNN models, including ResNet-

50 (abbrev. ResNet) [84], Inception-v3 (abbrev. Inception) [85], and NasNet-A-Large

(abbrev. NasNet) [86]. Table 4.2 summarizes the characteristics of these ML models,

including the compute (#MAC Op/frame), the peak transient memory footprint per

frame (#Data), and the model size (#Param, quantized into Integer8).
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Performance Simulation and E�ciency Modeling

TF-Sim [74] is used to simulate the performance of the ML models running on the

target accelerators. TF-Sim first takes the computational graph (e.g., tfGraph [87]) of

a given ML model and the same architecture configurations previously used as the in-

puts to NeuroMeter. Then, the simulator generates the performance of the ML model

running on the target accelerators and the statistics for architecture components. The

component level statistics are fed to NeuroMeter for computing runtime power and en-

ergy. The end-to-end performance (e.g., throughput and latency of inference) is used

together with NeuroMeter’s output on chip area and (runtime) power to compute energy

e�ciency and cost e�ciency. The cost e�ciency (i.e., TOPS/TCO) is approximated as

TOPS/mm4/Watt, where power (Watt) is an approximation of operational expenditures

(OpEx) and area squared (mm4) is an approximation of capital expenditures (CapEx)

because silicon die cost grows roughly as the square of the die area [88].

TF-Sim supports advanced runtime graph scheduling and optimization, following the

best practices in modern ML compiler/runtime such as XLA [89]. Especially for wimpy

architectures, TF-Sim considers how to reduce the extra overhead of partial sum merging

and weight/activation broadcast when a single TU is not large enough to map the whole

operation without tiling. Moreover, TF-Sim also supports optimizations to improve par-

allelism, such as Space-to-Batch [90], Space-to-Depth [91], and double memory bu↵ering.

Fig. 4.2 shows the significant improvement of the simulated performance with the sup-

ported software optimizations, especially on small batch sizes. For wimpy designs, the

operation is always too large to map on single TU without tiling. The mapping strategy

considers how to reduce the extra overhead of partial sum merging and weight/activation

broadcast.
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Figure 4.2: Throughput Before and After Software Optimization (© 2021 IEEE)

4.3.2 Results: Datacenter Inference Accelerator

This subsection first explores the design space using the chip area and TDP, then

analyzes the runtime performance and e�ciency by using NeuroMeter in conjunction

with TF-Sim [74], a performance simulator. The study reveals important insights for ML

inference accelerator designs, which otherwise cannot be discovered in a fast-yet-accurate

way without NeuroMeter.

Chip Thermal Design Power and Area

Fig. 4.3 shows the die area and chip thermal design power (TDP) for the representa-

tive design points in the design space as defined in Table 4.1. As shown in Fig. 4.3(a),

the on-chip memory consumes the largest portion of the die area among all architec-

ture components. While die areas of all the design points are within the area budget

of 500mm2, the wimpier the accelerator is, the larger die area it needs to optimize for

the target peak performance of 92TOPS. This is because wimpy designs need more cores

as each core having smaller TUs, which in turn needs more interconnect such as NoC

and CDB and more control logic such as scalar cores. However, even with an extra area
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Figure 4.3: Area, TDP Breakdown, Peak TOPS, and Relative Power, Cost E�ciency
in DataCenter Inference Chips. Figure (a) and (b) share the same x-axis that indicates
the design point defined in Table 4.1. The subclusters are bins of peak TOPS. (©
2021 IEEE)
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Real Time

Tput Saturation

Figure 4.4: Performance on Di↵erent Batch Size. Throughput is measured as frame
per sec (fps) that essentially is TOPS as operation per frame is constant. (© 2021
IEEE)
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budget, the wimpy design still cannot achieve the same peak performance as the brawny

cores. For example, the wimpy accelerators with 4x4 TUs have comparable or larger die

areas than brawny designs with TUs sized of 64x64 to 256x256, but only less than 1/12

of peak TOPS of that of the brawny accelerators.

TDP analysis shown in Fig. 4.3(b) demonstrates a similar trend, where on-chip

memory burns a big portion of the total power. Wimpy designs consume more power

on interconnects and control flow logic than brawny designs. Fig. 4.3(b) also shows

that the design point of (128, 4, 1, 1), i.e., the single-core accelerator with four 128x128

TUs in the core has the best peak TOPS/Watt and TOPS/TCO. In summary, brawny

datacenter accelerator designs have the better area, TDP, and e�ciency w.r.t. peak per-

formance. Next, we will discuss more insights on the sweet spots of inference accelerator

architectures w.r.t. runtime performance and e�ciency.

Runtime Performance, E�ciency, and Trade-O↵s

Datacenter inference accelerators are designed to maximize throughput, i.e., frames

per second (fps) that essentially is TOPS as operation per frame is constant, when satis-

fying the latency requirements. Batch size is an important factor for runtime throughput

and latency. For example, Fig. 4.4 shows the relationship between performance, includ-

ing both throughput and latency, and batch size for the design point of (64, 2, 2, 4),

i.e., an inference accelerator with 2x4 cores with each core having two 64x64 TUs. For

all ML models, we can observe significant throughput improvements when the batch size

switches from 1 to 64. This is because even with advanced graph optimizations, the

accelerator still su↵ers from low utilization at a small batch size.

Fig. 4.4 also shows the boundary on batch size for real-time tasks. Concretely, real-

time online inference is assumed to have a latency constraint of 10ms based on production

requirements from Google [13] and Facebook [92]. Therefore, the upper-bound batch sizes
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to meet the 10ms latency requirement are 16, 4, 32 respectively for ResNet, NasNet, and

Inception with the given design point. Thus, in the subsequent study, the same approach

is used to determine the maximum batch sizes that maximize the throughput while

meeting the latency requirements. Such batch size is called as “latency limited batch

size” (aka medium batch size). The study also includes “batch size of 1” (aka small

batch size) for the optimal latency but low throughput scenarios (e.g., extremely low

latency service) and “batch size of 256” (aka large batch size) with very high throughput

but also high latency for o✏ine inference service that does not impose latency Service

Level Objectives (SLOs).

Fig. 4.5 shows the average performance and e�ciency of the three datacenter work-

loads. Fig. 4.5(a)-(c) represents the small, medium, and large batch, respectively. Each

subfigure analyzes four metrics, including throughput (achieved TOPS), TU utilization

(achieved TOPS/Peak TOPS), normalized cost e�ciency (achieved TOPS/TCO, aka

TOPS/mm4/Watt), and normalized energy e�ciency (achieved TOPS/Watt). Arith-

metic mean is used for averaging the throughput and geometric mean is used for aver-

aging other metrics as they are all ratios. Two important insights can be observed as

follows:

Firstly, an important insight observed from Fig. 4.5 is that the optimal design varies

w.r.t. optimization targets, which is di�cult to discover without tools like NeuroMeter.

For all the three batch size categories, the wimpy design with 32 cores and four 8x8

TUs per core, i.e., (X,N, Tx, Ty) = (8, 4, 4, 8), always has the highest TU utilization.

However, it is the brawny design with 8 cores and two 64x64 TUs per core that has

the highest throughput because of its much higher peak TOPS than the wimpy design

and thus compensates for the low TU utilization. The cost-e�ciency optimized design

is similar to the throughput-optimized design as they both prefer 64x64 TUs, except

the former prefers fewer yet larger cores to reduce the NoC area overhead. The energy-
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e�ciency optimized architecture also prefers brawny design with a slight drop in TU

size from 64x64 to 32x32 with both medium and large batch size. This is because the

energy consumption of systolic arrays scales quadratically with the length of the TU.

These discoveries also carry an important conclusion: while wimpy designs have higher

utilization, it is the brawny designs (with 64x64 and/or 32x32 TU size) that have the

highest performance and e�ciency.

Secondly, an important tradeo↵ exists among the brawny designs, where a large

improvement of e�ciency can be gained with a small sacrifice on throughput. As shown

in Fig. 4.5(a), when choosing the e�ciency-optimized design, i.e., (64, 4, 1, 2), over

the throughput-optimized design, i.e., (64, 2, 2, 4), the target accelerator gains 2.1x

cost-e�ciency improvements and 1.3x power-e�ciency improvement, with less than 16%

sacrifice on sustainable achieved TOPS. This is because, compared to the e�ciency-

optimized design, the throughput-optimized design has more cores to distribute and

balance computation but requires longer and more power-hungry inter-core NoC. Similar

tradeo↵s also exist in the medium and large batch size configurations as shown in Fig.

4.5(b) and (c). These tradeo↵s provide important design guidance for architecting ML

inference accelerators with di↵erent design priorities.

Summary of the Key Observations and Insights

The key observations and insights from the brawny and wimpy manycore ML accel-

erators are summarized as follows:

First, for datacenter inference chips, on-chip memory takes the largest die area among

all architectural components. On-chip memory is also a major power consumer. However,

on-chip interconnect starts to dominate the power consumption as the accelerators have

more and more relatively wimpier cores.

Second, wimpy designs have higher utilization because smaller TUs are easier to
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schedule and parallelize with sophisticated software; meanwhile, brawny designs achieve

better performance and e�ciency for datacenter inference chips because they have less

overhead from control logic and long distance on-chip interconnect.

Third, the optimal design varies w.r.t. the optimization target. There are also im-

portant tradeo↵s among the selection of design targets for an architect. For example, for

relatively brawny designs, we can achieve substantial benefits in e�ciency with only a

small sacrifice in throughput.

4.4 Case Study on Sparsity Implication

To showcase NeuroMeter’s capability in modeling a wide range of diverse ML acceler-

ator architectures, this section conducts a case study on implications of sparsity on both

tensor-unit (TU) based and reduction-tree (RT) based ML accelerators. Leveraging the

previous results of the latency-bounded design space exploration in Fig. 4.5(b), we pick

the power e�cient optima with 32x32 TUs (abbrev. TU32), and the utilization optima

with 8x8 TUs (abbrev. TU8) to further explore their performance and e�ciency when

dealing with sparse workloads. Thanks to NeuroMeter’s flexible capability in supporting

di↵erent architectures, we use the RT-based architecture with the same OPS per compute

unit as the corresponding systolic arrays, including 1024-to-1 RT (abbrev. RT1024) and

64-to-1 RT (abbrev. RT64).

A synthetic SpMV microbenchmark with di↵erent element-wise sparsities is generated

manually for a weight matrix of M ⇥ N and the batched vectors of N ⇥ K, where

M,N � 1024, and the batch size K � 32, to ensure su�cient parallelism for TU/RT

utilization. The sparse weight matrices use the Compressed Sparse Row (CSR) format

[93], including the non-zero elements and the row/column indices. The batched vectors

are assumed dense in this case study; and SpMSpV [94] (i.e., Sparse-Matrix-Sparse-
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Vector-Multiplication) is beyond the scope of this case study.

Since TF-Sim, the performance simulator paired with NeuroMeter in Sec. 4.3, does

not support sparse operations, we develop a simple roofline model similar to that in [95]

for runtime performance estimation, which is then combined with NeuroMeter to generate

power and energy e�ciency results. The modified simple roofline model is shown in the

equations below:

td = max(td comp, td bw) = max(
C

F
,
SV + SW

B
);

ts = max(ts comp, ts bw) = max(
↵ · y · C

F
,
SV + � · x · SW

B
);

EnergyE�ciencyGain =
(TOPS/Watt)s
(TOPS/Watt)d

EnergyE�ciencyGain =
(C/ts)/Powers

(C/td)/Powerd

EnergyE�ciencyGain =
Powerd · td
Powers · ts

where td the runtime for dense MV; and td comp and td bw are the compute time and

the memory time for the dense MV, respectively. According to the roofline model, the

overall runtime td is the maximum of these two terms. Similarly, ts is the SpMV runtime;

and ts comp and ts bw are the SpMV runtime bound by compute and memory bandwidth,

respectively. The symbol C (in OPs) is the computational operations required in the

dense MV; SV and SW (both in bytes) are the size of the batched input/output vectors

and the weight matrix respectively without considering sparsity; F (in OPs/sec) and

B (in bytes/sec) are the compute capability and memory bandwidth of the accelerator,

respectively.

The symbol x represents the non-zero ratio of the weight matrix, i.e., the lower the x,
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the higher the sparsity of the weight matrix. The symbol y is the reduction factor of the

total compute operation, and it is determined by the non-zero ratio x and the distribution

of zero elements. Particularly, the systolic array based TU conducts block-wise zero-

skipping to reduce computation, i.e., if the zero elements form a block of the size of TU’s

systolic array and align on the systolic array loading boundary, then this all-zero block can

be skipped for computation. For the whole sparse matrix, it is assumed to be partitioned

into TU-sized blocks and evenly mapped to all the on-chip systolic arrays with the block-

wise zero skipping. Similarly, RT conducts vector-size zero-skipping. The symbols ↵

and � denote the compute and storage overheads of sparse representations, respectively.

↵ is optimistically set to be one, assuming the overhead of loading and decompressing

CSR weight matrix can be overlapped with the computing time of systolic arrays and

reduction trees. Depending on sparsity, data type, and the size of the weight matrix,

� is a value between 2.0 and 2.5 in this case study. It is determined by CSR encoding

overhead. First, the whole weight matrix is tiled into 256x256-sized submatrices. Then,

each Int8 non-zero element requires an extra byte for column indexing; each tiled row

requires an extra byte for inner-submatrix row indexing; and each submatrix requires

two bytes for tile indexing.

The energy e�ciency gain is the ratio of energy e�ciency (i.e., OPS/Watt [96]) be-

tween the SpMV and its dense counterpart. Since the SpMV and its dense counterpart

are considered to achieve the same e↵ective operations, i.e., MxNxK, the energy e�ciency

gain is simplified to SpMV’s runtime energy reduction compared to its dense counter-

part. Considering the goal is to showcase NeuroMeter’s capability to model power, area,

and timing of a wide range of di↵erent ML accelerator architecture, more sophisticated

techniques to maximize the performance benefits of sparsity are beyond the scope of

this case study. This simple roofline analytical performance model is then paired with

NeuroMeter to study final energy e�ciency implications.
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Figure 4.6: The Energy E�ciency Gain of Sparse over Dense computation at Di↵erent
Sparsity Levels on (a) Tensor Unit and (b) Reduction Tree based Architectures. For
each architecture, its energy e�ciency at di↵erent sparsities is normalized against
that of the baseline dense processing on the same architecture. Thus, it indicates an
improvement when the energy e�ciency gain is larger than one. (© 2021 IEEE)

Fig. 4.6 shows the energy e�ciency gain of sparse over dense under di↵erent sparsity

levels for di↵erent architectures and configurations. For all designs, the energy e�ciency

increases as the sparsity grows. However, compared to the dense counterpart, the energy

e�ciency only benefits from sparsity when the sparsity level is larger than 0.5. This is

because the power saving from the block/vector-wise zero skipping is limited and is unable

to amortize the extra data transfer of CSR encoding when sparsity is low. Moreover, as

shown in Fig. 4.6, a clear transition point can be observed when sparsity is 0.9 in TU8

and RT64; while the e�ciency grows slowly in a low slope in TU32 and RT1024. This

implies that the brawny design gets e�ciency benefits mostly from the reduced CSR

encoding as sparsity grows rather than the block/vector-wise zero skipping.

Clearly, despite its relatively lower absolute energy e�ciency as shown in Fig. 4.5,

a wimpier architecture with fine-grained computing units can benefit from element-wise
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sparsity more than a brawnier coarse-grained architecture.

4.5 Summary

By combining the power, area, and timing results of NeuroMeter with performance

simulation, this chapter explores the manycore ML accelerator design in multiple sce-

narios. The first case study explores the brawny and wimpy designs in the datacenter

inference scenario. The results show that brawny designs with 64x64 systolic arrays are

the most performant and e�cient for inference tasks in the 28nm datacenter architectural

space with a 500mm2 die area budget. The results also reveal important tradeo↵s be-

tween performance and e�ciency. For datacenter accelerators with low batch inference, a

small (⇠16%) sacrifice of performance can lead to more than a 2x e�ciency improvement

(in achieved TOPS/TCO). The second case study showcases NeuroMeter’s capability to

model a wide range of accelerator architectures by studying the energy e�ciency (TOP-

S/Watt) implications of sparsity on di↵erent ML accelerators. The results show that

despite its relatively low energy e�ciency, it is easier for the wimpier architectures to

benefit from sparsity processing.
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Chapter 5

RSA: A Reconfigurable Systolic

Array based CNN Accelerator

5.1 Introduction and Contribution Overview

This chapter is dedicated to a reconfigurable systolic array (RSA) design for the

emerging convolutional neural networks (CNNs) which introduce the operator of depth-

wise convolution (DConv2d). Di↵erent from the traditional CNN workloads (e.g. ResNet

[1] and Inception [85]), the emerging CNN models with the DConv2d layers (e.g. NasNet

[86], MNasNet [97], E�cientNet [3, 98], and E�cientNet-X [99]) have lower operation

numbers (#OPs) and lower operational intensities. Compared with the widely-adopted

brawny homogeneous systolic array (HSA) based ML accelerators, the proposed architec-

ture of RSA in this chapter, increases the utilization of the array-based computing units

e↵ectively. The increasing array utilization successfully converts the decreasing #OP of

the emerging CNN model to a shorter latency and a higher throughput during runtime.

Brawny HSA-based accelerators, for example, Google’s TPU-series [13, 14, 15, 16],

have achieved satisfying performance on multiple ML workloads. However, as more
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and more ML models and emerging operators are proposed, it is observed that not all

emerging CNN models can achieve as good performance as the traditional CNN models

[1, 85]. Especially, although some emerging CNN models [3, 86, 97, 98, 99] achieve

similar levels of accuracy with fewer #OPs by introducing the DConv2d layers, the

reduced #OP does not e↵ectively turn into a shorter execution time during runtime.

Take E�cientNet-B0 [3] as an example, although DConv2d only takes less than 10%

in the overall convolution #OP, our analysis shows that DConv2d takes nearly 70% of

the overall convolution execution time. Further, we find that DConv2d’s unsatisfying

performance mainly comes from a large amount of extra ine↵ective multiplications when

padding zeros to tile DConv2d into loops of large-sized MatMuls during mapping the

DConv2d onto the brawny HSA-based accelerators. The ine↵ective multiplication has

“zero” as one multiplier input of the systolic cell, and further leads to an extremely low

array utilization of the brawny HSAs during runtime.

Inspired by the brawny vs wimpy study as in Sec. 4.3, an intuitive solution is first

explored by replacing the architecture of small numbers of brawny HSAs with the many-

core architecture of large numbers of wimpy HSAs. However, the results show that the

performance improvement of DConv2d cannot amortize the performance degradation of

the traditional convolution (Conv2d) in the wimpy HSA design. On one hand, the wimpy

architecture indeed improves the systolic array utilization, and later results to DConv2d’s

performance improvement. On the other hand, the reduction of the overall TOPS leads

to Conv2d’s performance degradation. This is because the wimpy architecture introduces

extra hardware overheads of the control logics and inter-core connections given the same

area and power budget as the brawny counterpart.

This chapter proposes an RSA-based CNN accelerator, where the systolic arrays

are allowed to configure into di↵erent working modes thanks to the reconfigurability of

the inner-array connections. The reconfigurable architecture can achieve both the high
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performance of brawny systolic arrays and the high utilization of wimpy systolic arrays

at the same time.

The contribution of this chapter is as follows:

1) An RSA-based CNN accelerator is proposed. It introduces quite small area and

power overheads as well as minor changes on control logics while achieving both the high

performance of the brawny design and the high array utilization of the wimpy design.

2) The hardware modeling of the proposed RSA architecture is built; and integrated

into NeuroMeter, the hardware modeling framework established in Chp. 3.

3) The results show that the proposed RSA-based accelerator achieves 1.25x-2.68x

performance gains on ResNet and E�cientNet compared with the TPU-v2 styled baseline.

In the rest of this chapter, Sec.5.2 discusses the HSA-based architecture and shows

di↵erent sweet points of array length on di↵erent workloads; Sec.5.3 proposes RSA, the

systolic array with reconfigurable interconnections; Sec.5.4 gives the hardware modeling

of RSA; Sec.5.5 shows the experiment results; Sec. 5.6 summarizes the chapter.

5.2 Motivation

The standard systolic array has been adopted by Google’s four generations of cloud

TPUs [13, 14, 15, 16]. TPU-v1 adopts the 256x256 systolic array; while the follow-up

generations of TPU-v2, TPU-v3, and TPU-v4i adopt the 128x128 systolic arrays. No

matter what size of the systolic array is adopted in the matrix multiplication units, the

existing TPUs have one common feature, i.e., all the systolic arrays on one chip have

the same size. We call this type of architecture as a manycore homogeneous systolic

array (HSA) based accelerator. A question is raised, i.e., what is the proper size of the

systolic array? The brawny vs wimpy study in Sec. 4.3 has explored the performance

of manycore HSA-based accelerators in the datacenter scenarios. This section further
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Table 5.1: Hardware Configurations and Peak TOPS of Manycore HSA-based Accel-
erators with Di↵erent Array Lengths

Tech Node = 28nm, Freq = 700MHz,
Area/Power Budget = 500mm2/300W
Idx Len(HSA) #Core Peak TOPS

Design 0 128 4 92.47
Design 1 64 8 46.59
Design 2 32 32 47.31
Design 3 16 128 48.74
Design 4 8 128 12.90
Design 5 4 256 7.17

shows di↵erent runtime performances when di↵erent ML models run on the manycore

HSA-based accelerator with the given array size. Especially, we observe that traditional

Conv2d and the emerging DConv2d prefer the HSAs of di↵erent sizes. This observation

implies that the HSA with a specific size cannot meet up the performance requirements

of all the CNN workloads. It further inspires the proposal of the systolic arrays with

reconfigurable interconnections (RSA), which will be later discussed in Sec. 5.3.

Following the hardware configuration in the brawny vs wimpy study in Sec. 4.3,

one design point per systolic array length is picked out to represent a typical design of

the manycore HSA-based accelerator with the specific systolic array length. Table 5.1

shows the selected designs of the manycore HSA-based accelerator where each core is

assumed to have one SA with a specific size. The single-core architecture is shown in

Fig. 4.1; the topology of 2D mesh is assumed as the inter-core connection with 256GB/s

bi-sectional bandwidth; the o↵-chip memory bandwidth is assumed 700GB/s in total.

The core number is determined under the area/power budget of 500mm2/300W with the

technology node of 28nm and the clock rate of 700MHz. Fig. 5.1 compares the perfor-

mance of E�cientNet-B0 [3] with batch size 128 on manycore HSA-based accelerators

with di↵erent array lengths. It is observed that:

First, the median HSA-based accelerators (i.e., 32x32, 16x16) get much better perfor-
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mance on the overall latency compared with the brawny HSA (i.e., 128x128, 64x64) and

the wimpy HSA-based accelerators (i.e., 8x8, 4x4) as shown in Fig. 5.1(a). To further

look at the operator-wise performance, the brawny HSA-based accelerators perform the

worst on DConv2d among all the design points. It uses about 70% of the overall latency

to process DConv2d, which only takes up 8.9% of the overall #OP. This implies that the

TPU-styled brawny HSA-based accelerator may not work well for the workloads which

introduce the DConv2d operator, even if DConv2d takes only a very small proportion.

Meanwhile, the wimpy HSA-based accelerators perform the worst on Conv2d. This im-

plies that it is unable to get satisfying performance by directly shrinking the size of each

HSA and increasing the core number.

Second, Conv2d and DConv2d have di↵erent performance sweet spots, i.e., Conv2d

gets the optimal latency on the 32x32 HSA-based accelerator; while DConv2d gets the

optimal latency on the 16x16 HSA-based accelerator. This implies that one size for all

arrays may not win on all the operator types.

Third, the optimal points of di↵erent metrics diverge on DConv2d as shown in Fig.

5.1(b), i.e., the optimal point of runtime TOPS for DConv2d layers on 16x16-HSA based

accelerator, while the array utilization keeps increasing as the array length gets smaller.

Considering the peak TOPS reduces monotonically from the brawny HSA-based acceler-

ators to the wimpy counterparts shown in Table 5.1, the unsatisfying performance of the

manycore wimpy HSA-based accelerators results from the insu�cient computing power

due to the extra high area overhead when building up the manycore architecture.

The above observations inspire us that: (1) A high peak TOPS does not necessarily

mean satisfying performance, yet an extremely low peak TOPS will lead to poor perfor-

mance; (2) One size for all arrays cannot work well on all workloads; (3) Due to the high

array utilization on both Conv2d and DConv2d, wimpy HSA-based architecture has the

potential of achieving better performance. If the architecture provides more computing
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power, the end-to-end performance will improve prominently.

5.3 Architectural Design

As illustrated in Fig. 5.2(a), the systolic array with reconfigurable interconnections,

RSA, splits the original standard systolic array into multiple basic subarrays. Addition-

ally, RSA introduces the two-by-two crossbars as reconfigurable interconnections between

the nearby basic subarrays, and input/output memory banks. For each basic subarray,

besides the interconnections between nearby systolic cells, RSA introduces a pair of ver-

tical/horizontal bypass interconnects for each basic subarray to allow the dataflow to

route aside the current basic subarray.

One or multiple basic subarrays can make up an active array, whose constituting

systolic cells are working together in a systolic way. To better illustrate how to reconfigure

RSA in di↵erent working modes, we assume the original systolic array is sized of 128x128,

and each basic subarray is sized of 32x32, with 16 basic subarrays in total. Fig. 5.2(b)

illustrates how it is configured to work as a 128x128 standard systolic array where all the

16 basic subarrays are active and make up one large active array; Fig. 5.2(c) illustrates

how it is configured to work as dual independent 64x64 active arrays when the rest eight

32x32 basic subarrays are idle; Fig. 5.2(d) illustrates how it is configured to work as four

independent 32x32 active arrays when the rest twelve 32x32 basic subarrays are idle.

To parameterize RSA’s architecture, we have:

(1) The overall systolic array has X ⇥X systolic cells in total.

(2) Each basic subarray has Xbase ⇥ Xbase systolic cells, then the total number of basic

subarrays, NBSA equals |X/Xbase|2.

(3) In one working mode, each active array has Xact ⇥ Xact systolic cells; and equiva-

lently, each active array is made up of |Xact/Xbase| basic subarrays. The active arrays
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have to be placed on the diagonal of the overall systolic array. There are |X/Xact| active

arrays in total (equivalently |X · Xact/X
2
base

| basic subarrays are in working), while the

rest (NBSA � |X ·Xact/X
2
base

|) basic subarrays are idle.

(4) X, Xact, and Xbase are all power-2 numbers, where Xbase  Xact  X. There are

(log2 X�log2 Xbase+1) possible values forXact, where each value corresponds to one work-

ing mode. On one extreme where Xact = Xbase, RSA is configured to have only X/Xbase

basic subarrays on the diagonal in the working mode. On the other extreme where

Xact = Xbase, RSA is configured to work functionally the same as the original (X ⇥X)-

sized systolic array. In the rest of this chapter, if no further explanation, RSA(X,Xbase)

is used to describe the hardware architecture of RSA; and RSA(X,Xbase, Xact) is used to

describe the working mode when the active array of RSA is configured in the length of

Xact during runtime.

5.4 Hardware Modeling

5.4.1 Area

Besides the basic subarrays which can be directly modeled by the standard systolic

arrays, RSA contains the 2-by-2 crossbars and the bypass interconnections as well. As-

sume ABSA and AXbar denote the area of one Xbase ⇥Xbase-sized basic systolic subarray

and one 2-by-2 crossbar 1; |pwire| and |DW | denote the wire pitch and the bitwidth of

the bypass interconnections; each segment of the bypass interconnection aside one basic

1The power, area, and timing model of the standard systolic, crossbar, and wire can refer to previous
works of NeuroMeter [29] and McPAT [40].
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((a)) RSA’s architecture: systolic array with
reconfigurable interconnections between ba-
sic subarrays.

((b)) RSA configured to work as a 128x128
standard systolic array, with all the sixteen
32x32 basic subarrays active.

((c)) RSA configured to work as two inde-
pendent 64x64 active arrays, with the rest
eight 32x32 basic subarrays idle.

((d)) RSA configured to work as four inde-
pendent 32x32 active arrays, with the rest
twelve 32x32 basic subarrays idle. The red
marks show the two possible critical paths.

Figure 5.2: Reconfigurable Systolic Array (RSA): Its architecture and how it is config-
ured into di↵erent modes, where the dark blue blocks are the active systolic subarrays,
the light blue blocks are the idle ones; the light yellow blocks are 2:2 crossbars; the
light green blocks are memory banks.
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subarray has the length of
p
ABSA. Then, RSA’s area can be calculated as in Eq. 5.1.

ARSA = ABSA ·NBSA + AXbar · (NBSA +
X

Xbase

)

+ |pwire| ·
p
ABSA · 2NBSA · |DW |

(5.1)

5.4.2 Timing

In a standard systolic array, the critical path of one cycle is made up of the systolic

cell itself, while the critical path of RSA includes the systolic cell, the bypass intercon-

nections, and the crossbars on the bypass interconnections. The red mark in Fig. 5.1(c)

illustrates the two possible critical paths of RSA, where the small red block represents one

systolic cell and the red arrows represent the critical path inside the crossbars and bypass

interconnections. Assuming TSC , TXbar, and TWire denote the latency of one systolic cell,

one 2-by-2 crossbar, and the bypass interconnection with unit length, respectively, RSA’s

cycle time can be calculated in Eq. 5.2.

TRSA = TSC + TXbar ·
X

Xbase

+ TWire ·
p
ABSA · ( X

Xbase

� 1) (5.2)

5.4.3 Operator Mapping

Among the three parameters of RSA, the parameters of X and Xbase are determined

during hardware design; while Xact is determined by the workload characteristics during

compilation. Similar to the operator mapping in Sec. 4.2, we will first tile the given

MatMul operator into the blocks of unit MatMuls, where the unit MatMul matches

the Xact-by-Xact active array size; and then operate these unit MatMul blocks with the

parallelism of X/Xact. Eq. 5.3 shows the time consumption tMatMul when processing

batched MatMul(M, N, K) in the active array length of Xact. And we will pick out

the optimal active array length where the shortest execution time is achieved during

60



RSA: A Reconfigurable Systolic Array based CNN Accelerator Chapter 5

compilation. Although Eq. 5.3, where MatMul(M,N,K) tiles into unit operators of

MatMul(Xact, Xact, Xact), looks similar to Eq. 4.1, where MatMul(M,N,K) tiles into unit

operators of MatMul(Xt, Xt, Xt), the time consumptions in these two equations are quite

di↵erent. This is because – Eq. 5.3 is able to process one MatMul(Xact, Xact, Xact) in

Xact cycles since other basic subarrays on that column are all bypassed; while Eq. 4.1

has to process one MatMul(Xt, Xt, Xt) in X cycles to go through all systolic cells in the

column due to the strict one-cast datapath.

TMatMul(Xact) = (d
b · d M

Xact
e · d N

Xact
e · d K

Xact
e

X/Xact

e+ 2) ·Xact · TRSA (5.3)

5.4.4 E↵ective TOPS

When RSA runs the workload of batched-MatMul(M, N, K), where M = N = K =

Xact, RSA will switch to the working mode with active arrays lengthed Xact, only the

active arrays on the diagonal are in work while the other subarrays are idle and can be

clock gated. Therefore, RSA’s throughput can be calculated as in Eq. 5.4.

TOPSRSA = | X

Xact

| · 2X2
act

· fRSA = 2
X ·Xact

TRSA

(5.4)

When the same workload runs on HSA, the original batched-MatMul will be composed

into MatMul(X,X,X). Although the nominal runtime TOPS increases to 2 · X2 · fHSA.

However, only partial of the runtime TOPS are e↵ective, which correspond to the sub-

arrays on the diagonal and have the value of (2 · X · Xact · fHSA), are e↵ective; others

correspond to the ine↵ective operations with input values of zero.
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5.4.5 Dynamic Power

RSA’s dynamic power depends on RSA’s working mode because the idle subarrays

and the unselected bypass interconnections can be clock-gated. Assuming Pdyn(BSA),

Pdyn(Xbar), and Pdyn(Wire) denote the dynamic power of one basic subarray, one 2-

by-2 crossbar, and the single-bit bypass interconnection with unit length, respectively.

Then, RSA’s dynamic power, when each active array has the size of Xact ⇥Xact, can be

calculated as in Eq. 5.5.

Pdyn(RSA) = Pdyn(BSA) · |X ·Xact/X
2
base

|

+ Pdyn(Xbar) · (NBSA +X/Xbase)

+ Pdyn(Wire) ·
p

ABSA · X �Xact

Xbase

· 2 · |DW |

(5.5)

5.4.6 Static Power

Assume Pleak(BSA), Pleak(Xbar), and Pleak(Wire) denote the static power of one basic

subarray, one 2-by-2 crossbar, and the single bit bypass interconnection with unit length,

respectively. Then, RSA’s static power can be calculated as in Eq. 5.6.

Pleak(RSA) = Pleak(BSA) ·NBSA

+ Pleak(Xbar) · (NBSA +X/Xbase)

+ Pleak(Wire) ·
p

ABSA · 2NBSA · |DW |

(5.6)

5.5 Experiment

The architecture of TPU-v2 [14, 15] is used as a baseline which has dual cores each

with single 128x128 standard systolic array per core. The original HSA-based Tensor

Unit in TPU-v2 is replaced with the proposed RSA in 5.3. The proposed RSA’s hardware
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Table 5.2: NeuroMeter Estimated Area of Dual RSAs (the left six columns) and HSAs
(the rightmost column), where RSA(X,Xbase) is Configured as X = 128 and Xbase

Ranges from 4 to 64; HSA is Configured as in TPU-v2 (16nm@700MHz).
Xbase 4 8 16 32 64 RSA(GeoMean) HSA(128)

Area (mm2) 72.2 72.1 72.4 73.2 73.0 72.6 56.6

15

18.4%31.5%

78.6%

Figure 5.3: NeuroMeter Estimated Peak Power of RSA and HSA, where HSA is
Configured as in TPU-v2 (16nm@700MHz).

modeling in Sec. 5.4 is integrated to NeuroMeter for the chip-level hardware simulation.

Sec. 5.5.1 explores the peak performance, area, and power of the proposed RSA; Sec.

5.5.2 further explores RSA’s runtime performance and e�ciency with the given workloads.

5.5.1 Hardware Analysis

Table 5.2 and Fig. 5.3 show the area and power of the proposed RSA with di↵erent

granularities of basic subarrays compared with the baseline of the dual 128x128 standard

HSAs, whose configuration is the same as TPU-v2 under the 16nm technology node and

700MHz clock rate simulated by NeuroMeter.

Table 5.2 shows the areas of five groups of RSA(X, Xbase) with di↵erent granularities

of basic subarrays. Here, X, the length of the overall systolic array, is configured as 128 for

each group; andXbase, the length of the basic subarrays, ranges from 4 to 64. The baseline

HSA(128) represents TPU-v2’s dual 128x128 systolic arrays. The observation shows

that RSAs under di↵erent granularities of basic subarrays have negligible di↵erences in

area. Based on NeuroMeter’s simulation, the geometric mean area of the five RSAs (i.e.,
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72.6mm2) introduces 28% area overhead compared with HSA(128) (i.e., 56.6mm2).The

published area of HSA(128) of TPU-v2 (i.e., 50.4mm2) is listed aside to demonstrate the

credibility of NeuroMeter’s simulation results. Although RSA introduces nearly 30% area

overhead on Tensor Unit itself in the experiment results, the original Tensor Units only

take 24%, 8%, 11%, and 11% respectively in the published four generations of TPUs

[13, 14, 15, 16]. Considering the RSA introduces negligible changes on dathpath and

control logics of the original HSA-based architecture, RSA does not introduce other area

overhead besides Tensor Unit itself. In summary, the proposed RSA introduces about

5% area overhead on the whole-chip level.

Fig. 5.3 illustrates the peak power of five groups of RSA(X, Xbase) with di↵erent

granularities of basic subarrays. The bars of di↵erent colors show RSA’s peak power

when the active array is configured as di↵erent lengths (Xact). Because the length of the

active array is unable to be configured smaller than the length of the basic subarray, the

active array has fewer available configurations as the basic subarray gets larger. Similar

to the observation from the area side in Table 5.2, the peak power of the same active array

configuration has negligible di↵erence among di↵erent basic subarray sizes. Comparing

the geometric mean of di↵erent RSAs and the baseline of HSA(128), we find that the

proposed RSA introduces 18.4% power overhead when the active array is configured as

128x128, while RSA achieves 31.5% to 78.5% power e�ciency when the active array is

configured from 64x64 to 4x4.

5.5.2 Runtime Performance

Table 5.3 compares the runtime TOPS, latency, and throughput before and after

replacing TPU-v2’s HSA-based tensor units with RSAs. Three workloads are involved,

including E�cientNet-B0 (abbrev. E0), E�cientNet-B7 (abbrev. E7), and ResNet-50
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Table 5.3: Runtime Performance Comparison Before and After Replacing TPU-v2’s
HSA-based Tensor Units with RSAs.

Workload Array Type Runtime TOPS Latency (ms) Throughput (fps)
E0, BS=1 HSA 1.81 0.8 1,250
E0, BS=1 RSA 4.85 0.3 3,333
E0, BS=128 HSA 3.61 51.72 2,475
E0, BS=128 RSA 6.06 30.8 4,156
E7, BS=1 HSA 5.75 13.12 76
E7, BS=1 RSA 9.65 7.82 128
E7, BS=128 HSA 9.05 1067.88 120
E7, BS=128 RSA 11.31 854.59 150
ResNet, BS=1 HSA 14.76 1.06 943
ResNet, BS=1 RSA 22.76 0.69 1,449
ResNet, BS=128 HSA 22.59 88.55 1,446
ResNet, BS=128 RSA 35.79 55.87 2,291

Table 5.4: Runtime Performance Comparison on DConv2d and Conv2d Before and
After Replacing TPU-v2’s HSA-based Tensor Units with RSAs.

Runtime TOPS Latency (%) OP Count (%)
Workload Array Type DConv2d Conv2d DConv2d Conv2d DConv2d Conv2d
E0, BS=1 HSA 0.22 6.3 73.75 26.25 8.81 91.19
E0, BS=1 RSA 0.63 13.52 66.67 33.33 8.81 91.19
E7, BS=1 HSA 0.36 24.97 69.78 30.22 4.93 95.07
E7, BS=1 RSA 0.69 29.88 77.37 22.63 4.93 95.07
E0, BS=128 HSA 0.46 10.88 78.13 21.88 8.81 91.19
E0, BS=128 RSA 0.69 24.41 69.31 30.69 8.81 91.19
E7, BS=128 HSA 0.56 43.1 80.04 19.96 4.93 95.07
E7, BS=128 RSA 0.7 52.76 79.63 20.37 4.93 95.07
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(abbrev. ResNet). The results show that the runtime TOPS increases 1.25x-2.68x on

three workloads for both small and large batch sizes when RSA is introduced. Moreover,

the performance improves more on small batch size than large batch size. This implies

that the workloads with lower operation intensity will gain more benefits from introducing

RSA as the tensor unit. The performances of all three workloads are improved. This

implies that RSA does not only benefit the operator of DConv2d but also helps the

traditional Conv2d. This supports the observation in Sec. 4.3 that 128x128 systolic

arrays are NOT always the best from another perspective. Table 5.4 further compares

the runtime TOPS and the array utilization of DConv2d and Conv2d before and after

replacing TPU-v2’s HSA-based tensor units with the proposed RSAs. It gives a better

illustration of the reduced proportion of DConv2d in the overall latency after applying

the proposed RSAs.

5.6 Summary

This chapter proposes a reconfigurable systolic array (RSA) based CNN accelerator,

which introduces quite small area and power overhead as well as minor changes on control

logics while achieving both the high performance of the brawny designs and the high

array utilization of the wimpy designs. The hardware modeling of the proposed RSA is

built and integrated into NeuroMeter. The results show that the proposed RSA-based

accelerator achieves 1.25x-2.68x performance gains on ResNet and E�cientNet compared

with the TPU-v2 styled baseline.
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Chapter 6

Cost-Aware Exploration for

Chiplet-based Architecture

6.1 Introduction and Contribution Overview

This chapter is dedicated to build the analytical cost model for chiplet-based archi-

tecture and to conduct the cost-aware exploration to help the user to make the design

decision on whether it will really make profit to adopt an advanced technology, espe-

cially the chiplet-related ones. The early-stage evaluation from the cost perspective is an

essential supplement beyond the power, area, and timing discussed in Chp. 3-5.

Recently, the “chiplet”-based System-in-Package (SiP) becomes the potential replace-

ment of the conventional System-on-Chip (SoC) which su↵ers from the increasing com-

plexity and cost of new technology nodes. The SiP breaks a monolithic die based 2D

SoC into multiple smaller pieces and keep them in the same package. These dies can be

of di↵erent functionalities, hybrid technology nodes, and/or from multiple IP designers.

Such a heterogeneous integration greatly reduces the design complexity of each die since

more pre-built IP designs can be used.
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Despite the advantage of simplifying the design for each individual die, SiP induces

new design challenges on the inter-die connections. For example, Fig. 6.1 shows two

major types of chiplet systems, i.e. (1) the interposer based 2.5D technology [24, 25]

and (2) the organic substrate based multi-chip module (MCM) [27, 28, 100, 101]. In the

first type, the interposer based 2.5D technology, an extra layer of interposer is introduced

between the functional dies and the substrate for the inter-die connection; while the latter

one, MCM, directly assembles the silicon dies onto the organic substrate, where the extra

build-up layers are introduced for the die-to-die interconnections. The interposer can be

implemented by di↵erent materials, including silicon [25], organic [24], etc. Di↵erent

materials have di↵erent characteristics of performance and cost.

So far, the majority of the chiplet system research focuses on either demonstrating

the prototypes to showcase the feasibility of the chiplet technologies [27, 28, 100, 101]; or

studying the workload-aware dataflow [102], and the network-on-package [103, 104, 105]

under the performance, energy, and thermal constraints. However, little attention has

been given to the cost, which will become a critical factor when considering whether to

adopt the chiplet and SiP as a mainstream design approach. All the potential advantages

of the chiplet related technologies ultimately have to be translated into cost savings when

evaluating a design strategy. For example, some interesting design questions for the

chiplet-based SiP development at the early stage include:

(1) How would the chiplet technology a↵ect the cost terms? For example, an extra

process cost is incurred by a more complex placement-and-routing of the interposer or

substrate for inter-chiplet connection; the bonding cost is also increased due to higher

die count. However, the smaller silicon die size of each functional die results in a higher

die yield than that of a larger 2D die and potentially reduces the cost.

(2) How to break a monolithic system to a chiplet system? If a monolithic system is re-

designed in a chiplet way, it is not clear whether its scale is large enough to gain su�cient
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Figure 6.1: Illustration and comparison between di↵erent SiP interconnection technologies

die yield improvement, which will later be translated into cost benefits. Meanwhile, it is

also unclear what is the optimal partitioning granularity and which packaging technology

should be chosen from the cost perspective.

(3) How to manage the heterogenous integration? Di↵erent functional components

have di↵erent paces of technology scaling. For example, AMD’s EPYC2 CPU [27, 28]

employs advanced technology nodes in computing logic and mature technology nodes in

memory and I/O for cost e�ciency. How to assign the technology nodes used in each die

of the SiP system is worth of exploring for cost e�ciency.

A straightforward approach to obtain the cost and answer these questions is to turn

the chiplet design into product. However, such an approach may not be suitable for the

emerging SiP chiplet systems. The cost of the design choices, including the inter-chiplet

connection, the homogeneous/heterogeneous integration, makes up a large and complex

design space that is not yet well explored. A prototype that is not well optimized towards

the cost may mislead the design decision; and prototyping itself is costly. The ability to

estimate the cost of the SiP at the early design stage is naturally invoked.

An analytical cost model can be the solution for cost estimation and guide the early-

stage cost-aware design flow. Previously, cost model has been used in evaluating the TSV-

69



Cost-Aware Exploration for Chiplet-based Architecture Chapter 6

based 3D architecture [56] or the silicon interposer based 2.5D integrated system [57, 58].

These works cannot be adopted in the chiplet-based SiP design because the heterogeneity,

which is the key to the advantage of the chiplet-based SiP, never appears in previous

technologies that only support homogeneous integration.

In this chapter, we make, to our best, the first attempt to build a cost model for

chiplet-based SiP design space exploration. With the input of the system scale (e.g., the

transistor count of compute die, memory cell count, and other statistics), the partition

granularity (e.g., the die count), and the technology node, the proposed cost model will

first translate the system scale into the area and the number of wiring layers. The cost

breakdown of the die, the bonding, and the package is then calculated based on these

data. With the collected data of transistor density as well as the wiring pitches, the

proposed cost model is able to support the 2.5D Silicon interposer, the 2.5D organic

interposer, and MCM under the technology nodes ranging from 28nm to 5nm to support

the heterogeneous integration.

The proposed cost model induces several case studies; and several new observations

are made on top of that. First, in most scenarios, the organic interposer and the MCM

based SiP can obtain cost benefits while the manufacture cost of silicon interposer is as

high as a silicon die of the same scale at a mature process. Second, a large number of

chiplets and finer-grained partitions do not always lead to the cost e�ciency, especially

when the system scale is not large enough. Because the increased yield cannot amortize

the growing bonding cost. Third, a hybrid system, which partitions the core logics and the

I/O circuits into di↵erent dies, achieves prominent benefits on cost e�ciency compared

with the monolithic systems under both mature and advanced technology nodes. Because

the extra bonding and package cost of the chiplet system is much smaller than the cost

reduction from assigning the mature technology node to the I/O components. Note

that the modeling results are subject to parameter changes because the chiplet-based
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SiP technology keeps evolving and is still under development. Such changes will not

a↵ect the major contribution of the proposed cost model, which is firstly applicable to a

heterogeneous chiplet-based SiP.

6.2 Analytical Cost Model for Chiplet System

Sec. 6.2.1 introduces how to translate the number of gate modules (e.g., the logic

gate count, the memory cell count, or the transistor count) into higher-level information,

especially the number of metal layers and build-up layers. Sec. 6.2.2 show hows to

estimate the individual die cost. Sec. 6.2.3 and Sec. 6.2.4 discuss the bonding cost and

the package cost of the 2.5D chiplet system respectively.

6.2.1 The Estimation of Metal Layer and Build-Up Layer

The Estimation of Metal Layer

According to the Rent’s rule [106], a theoretical upper bound of the average wire

length given the number of gates and the routing e�ciency can be expressed in Eq. 6.1:

L̄ =
2

9

� 1� 4p�1

1�N
p�1
g

�
(7
N

p�0.5
g

� 1

4p�0.5 � 1
�

N
p�1.5
g

1� 4p�1.5
) (6.1)

where Ng is the number of the gate modules; p is the Rent’s exponent which represents

the routing e�ciency; and L̄ is the average wire length in the unit of gate pitch.

Given the average wire length, the number of metal layers nmetal is estimated as in

Eq. 6.2:

nmetal =
f.o.L̄w

⌘

r
Ng

Adie

(6.2)

where f.o. is the gate fanout; L̄ is the average wire length in Eq. 6.1; w is the wire pitch;
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Table 6.1: Numbers of metal layers under di↵erent technology nodes for di↵erent
chip scales. Parameters: The Rent’s exponent p = 0.6, the number of gate modules
Ng = (# of Transistors)/(4 Million), the fanout f.o. = 4, the wire pitch w = 3.6�,
the utilization e�ciency of metal layers ⌘ = 0.1.

TechNode
� (nm)

Tx Density
(MTx/mm2)

# of Transistors
1M 10M 100M 1B 10B 100B

28 2.93 2 4 8 13 19 27
20 4.89 2 4 7 12 18 25
16 6.86 2 4 7 11 17 24
12 10.63 1 4 7 10 16 22
10 14.02 1 4 6 10 15 22
7 24.11 1 3 6 9 14 20
5 42.83 1 3 6 9 13 19

⌘ is the utilization e�ciency of the metal layers; Ng is the number of the gate modules;

and Adie is the die area.

Leveraging Eq. 6.1 and Eq. 6.2, we estimate the numbers of metal layers under di↵er-

ent technology nodes. Table 6.1 shows the estimated numbers of metal layers from 28nm

to 5nm process. We collect the transistor density from WikiChip [107] and interpolate

the missing technology nodes according to ITRS’ scaling down ratio [108]. We use the

number of the transistors as the indicator of the chip scale.

The Estimation of Build-Up Layer

In a monolithic-die based 2D system, all the signal interconnections are routed on the

metal layers of the functional die. In the 2.5D chiplet system, the wiring on the metal

layers of the Network-on-Chip (NoC) is partially o✏oaded to the build-up layers of the

Network-on-Package (NoP) on the interposer or the substrate. This requires calculating

the number of build-up layers when estimating the cost of the chiplet system. Considering

that the pins of the inter-chiplet connections can only be placed at the edge of the chiplet,
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the number of the build-up layer is estimated in Eq. 6.3:

Nbuild up layer =
pitch ·Npin · R̄wire

⌘Aroute

(6.3)

where pitch is the wire pitch of the build-up layers; Npin and R̄wire are the number of the

microbumps and the average wire length, respectively, determined by the chiplet system;

Aroute here is the total routable area on the interposer or the substrate.

6.2.2 Manufacture Cost Model of An Individual Die/Interposer

The manufacture cost model of an individual die can either be used to estimate the

manufacture cost of a monolithic 2D chip directly; or later be used as a component

to calculate the overall manufacture cost of a 2.5D chiplet system. We start from the

manufacture cost of a single functional die, then discuss the silicon interposer and the

organic interposer.

Manufacture Cost of An Individual Die

Eq. 6.4 shows that the manufacture cost of a functional die (Cdie) is determined by

the wafer cost (Cwafer) and the number of dies per wafer (Ndie). Here, the cost of the

wafer (Cwafer) is determined by the wafer’s technology node (TechNode) and the number

of the wafer’s metal layer (Nmetal), i.e. Cwafer = Cwafer(TechNode) + Nmetal · Cmetal,

where Cmetal is the cost per metal layer. The number of dies per wafer (Ndie) calculates

how many rectangular dies with the size Adie can be obtained from a round wafer with

the diameter �wafer.

Cdie =
Cwafer

Ndie

=
Cwafer(TechNode, Nmetal)
⇡⇥(�wafer/2)2

Adie
� ⇡⇥�waferp

2⇥Adie

(6.4)
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Besides the raw manufacture cost per die, the yield of the die should be considered

as well when deploying the die into a monolithic 2D or interposer based 2.5D chiplet

system. Using the negative binomial yield model [109], Eq. 6.5 shows the yield of a

functional die (Ydie). Here Ywafer is the yield of the wafer. Adie is the area of the die. ↵ is

a process dependent clustering parameter, frequently between 1 (high defect clustering)

and 3 (moderate defect clustering). And D0 is the defect density. The defect density of a

new process is initially high, but it decreases generally by 2-5x for historical technologies

as the process gets mature.

Ydie = Ywafer ⇥ (1 +
AdieD0

↵
)�↵ (6.5)

Manufacture Cost of An Interposer

The silicon interposer can be regarded as silicon die at a relatively mature (or even out-

of-date) technology node with TSVs and several layers of passive1 metal interconnection

on it. Without further clarification, the case studies in Sec. 6.3 assume that the silicon

interposer is made up from the 300mm wafer with 1P/4Cu layers at the 65nm technology

node. Eq. 6.6 shows the cost (Csil int) and yield (Ysil int) of a silicon interposer.

Csil int =
Cwafer

Nsil int

=
Cwafer

⇡⇥(�wafer/2)2

Asil int
� ⇡⇥�waferp

2⇥Asil int

Ysil int = Ywafer ⇥ (1 +
Asil intD0

↵
)�↵

(6.6)

Here, Cwafer and Nsil int are the wafer cost and the number of partitioned silicon inter-

posers from a wafer. �wafer and Asil int are the wafer diameter and the area per silicon

interposer. Ywafer, D0, ↵ are the yield, defect density, and defect clustering parameter

1Here, only the passive interposer is considered. The active interposer, which allows to place logics
on it, is out of discussion of this chapter.
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of the interposer wafer. The area of the silicon interposer, Asil int, can be calculated as

the sum of the area of all functional dies and overhead of die-to-die interconnection, i.e.,

Asil int =
P

Adie ⇥ (1 +Roverhead), where Roverhead represents the area overhead ratio.

Di↵erently, the organic interposer is built in a panel form (i.e., a large square or

rectangle), rather than a wafer form (i.e., a round plate). Eq. 6.7. shows the cost

(Corg int) and yield (Yorg int) of an organic interposer.

Corg int =
Cpanel

Norg int

=
Cpanel

Apanel/Aorg int

Yorg int = Ypanel ⇥ (1 +
Aorg intD0

↵
)�↵

(6.7)

Here, Cpanel andNorg int are the panel cost and the number of organic interposers obtained

from a panel. Apanel and Aorg int are the area of the panel and the organic interposer,

respectively. Ypanel, D0, ↵ are the yield, defect density, and defect clustering parameter

of the interposer panel, respectively. They are collected from ICKnowledge [110] and are

determined by the technology node.

6.2.3 Bonding Cost Model

The unpackaged interposer-based chiplet system is made up of n functional dies on

top and one interposer die at the bottom; while the MCM based chiplet system directly

deploys n functional dies onto the organic substrate. The bonding cost of the unpackaged

chiplet system is calculated by Eq. 6.8 and Eq. 6.9, which represent the interposer-based

chiplet system (Cint 2.5D) and the MCM-based chiplet system (CMCM 2.5D), respectively.

Cint 2.5D =
Cint
Yint

+
P

n

i=1 (
Cdie(i)
Ydie(i)

+ Cbond(i))
Q

n

i=2 Ybond(i)
(6.8)
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CMCM 2.5D =

P
n

i=1 (
Cdie(i)
Ydie(i)

+ Cbond(i))
Q

n

i=2 Ybond(i)
(6.9)

Here n is the number of function dies. Cdie(i), and Ydie(i) are the manufacturing cost

and yield for the i
th functional die (Eq. 6.4 and Eq. 6.5). Cbond(i) and Ybond(i) are the

bonding cost and yield for the i
th die. In most cases each functional die is assumed to

have the same bonding cost and yield. Cint and Yint are the manufacturing cost and the

yield for the interposer (Eq. 6.6 and Eq. 6.7). Comparing Eq. 6.8 and Eq. 6.9, the cost

of the interposer based chiplet system has an extra term of Cint
Yint

, which depends on the

material of the interposer.

6.2.4 Package Cost Model

The package cost depends on the type of package. Flip chip based organic substrate

can be used in both interposer based and MCM based chiplet systems. For simplification,

the flip chip based organic substrate is used to showcase the package cost model. Similar

cost models can also be used in other package types. In addition to the package type, the

package cost is also determined by three factors, i.e., the package area, the layer number

of package (#core and #buildup), and the pin count.

1) The area of organic substrate (Asub): Asub is the interposer area or the sum of the

chiplet area, together with microbump, C4 bump, and other overheads.

2) The layer number of organic substrate: The organic substrate is built up in a sand-

wich structure. The core layers in the structure provide mechanical strength in the middle

and the build-up layers are for wire routing on the top and the bottom. In the interposer-

based chiplet system, the inter-chiplet connections are routed on the interposer, leaving

only the routing to the external I/O and power supply on the substrate. While in the

MCM system, the inter-chiplet connections are routed on the substrate instead. This
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Figure 6.2: Package cost of organic substrates

makes the substrate routing of MCM much more complex than the former. And the

routing complexity is further reflected on the number of build-up layers, as discussed in

Sec.6.2.1. Referring to the published chips and prototypes [24, 26], the number of core

layers is usually set as 1 or 2, and the number of the build-up layers is between 5 and 11.

3) The pin count (Npin): Npin can be estimated by the Rent’s Rule [111] and it will

a↵ect the overall packaging cost. In this chapter, we directly take the pin count as an

input of the package cost. Estimating the pin count according to the die characteristics

is outside the scope of this chapter.

Given the numbers of core layers and the build-up layers, we collect the package cost

under di↵erent combinations of substrate area and pin count from ICKnowledge [110].

With the collected data, we derive an empirical function of the package cost (CP ) with

respect to the combination of the substrate area (Asub) and the number of pins (Npin)

in Eq.6.10. µ0, µ1, µ2 are the regression parameters determined by the numbers of core

layers and the build-up layers.

CP = µ0Asub + µ1Npin + µ2 (6.10)

Fig. 6.2 shows the regressive package cost model of the organic substrates of two
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di↵erent configurations (a) 2 core layers and 5 build-up layers; and (b) 2 core layers

and 9 build-up layers. The result shows a satisfying linearity of the developed regressive

model. We will use this regressive package model in the follow-up case studies.

6.3 Case Study

In this section, we leverage the developed cost model to conduct a series of case studies

and showcase the cost characteristics of the chiplet based architecture under di↵erent

scenarios. We start from a homogeneous multi-chiplet system which evenly partitions

the monolithic system into multiple chiplets (Sec. 6.3.1). We then study a heterogeneous

multi-chiplet system with HBM stacks (Sec. 6.3.2). Finally, we explore a heterogeneous

multi-chiplet system which partitions the core components and IO components onto

di↵erent chiplets under di↵erent processes (Sec. 6.3.3).

6.3.1 Homogeneous Chiplet System

The homogeneous chiplet system partitions the monolithic 2D system into multi dies

evenly. The homogeneous partition has a double-folded e↵ect on cost. First, the par-

tition leads to a higher yield due to a smaller area per die and potentially reduces the

cost. Second, it introduces the extra cost overhead of chiplet bonding, silicon/organic

interposer, and/or more complex packaging. The fold that finally wins out depends on

the configuration of the target system. A quantitative analysis is required to determine

the scale and the type of the chiplet system when it can achieve higher cost e�ciency.

The improvement of the cost e�ciency is calculated in Eq.6.11 and used to measure how

the cost changes after refactoring the monolithic 2D system into a functional-equivalent

chiplet system. When �CostE↵ > 0, it implies that the cost e�ciency of the chiplet
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system is better than that of the 2D monolithic counterpart.

�CostE↵ =
Cost(Monolithic)� Cost(Chiplet)

Cost(Monolithic)
⇥ 100% (6.11)

Fig. 6.3 shows the relative cost e�ciency of the chiplet system under di↵erent sce-

narios. The four values of area (i.e., 200mm2, 400mm2, 800mm2, 1600mm2) exemplify

the system scales of small, medium, large, and extremely large. Three di↵erent technol-

ogy nodes (5nm, 7nm, and 16nm) are covered. We explore the three di↵erent package

technologies, i.e., silicon interposer, organic interposer, and MCM, under the numbers of

chiplets of 2, 4, and 8. The wafer cost and the defect ratio of di↵erent technology nodes

are collected from ICKnowledge [110]. We observe that:

First, silicon interposer based chiplet system rarely gets cost benefits unless in the

large scaled system under the most advanced process (� 800mm
2, 5nm); while the organic

interposer based chiplet system and MCM are able to get cost benefits in most scenarios.

Moreover, the cost e�ciency of organic interposer and MCM is quantitatively similar to

each other in the explored design scenarios. This implies that although MCM has no

interposer layer, it requires a complex substrate with higher cost to route the die-to-die

interconnections. Further, we explore the switching points: the system scale that can get

cost benefits from the chiplet design. As listed in Table 6.2, we find that the switching

points of the MCM based chiplet system are always smaller than that of the organic

interposer based chiplet system under the di↵erent technology nodes. Especially, the

switching points of MCM are always smaller than 200mm2. This implies that the MCM

is more likely to be adopted in the small scaled systems.

Second, introducing a larger number of chiplets and finer-grained partition does not

always lead to the cost e�ciency, especially when the system scale is not very large. Take

7nm organic interposer-based SiP as an example. When the system scale is 200mm2,
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Table 6.2: Switching points of organic interposer/MCM based chiplet systems under
di↵erent technology nodes

Tech
Node

Chiplet
Type

7nm 10nm 12nm 16nm 20nm 28nm

2D Area
(mm2)

Org 2.5D 178 191 264 279 313 479
MCM 119 120 126 128 131 149

Tx Count
(Billion)

Org2.5D 17.17 10.71 11.22 7.66 6.12 5.62
MCM 11.48 6.73 5.36 3.51 2.56 1.75

the dual-chiplet system wins out in terms of cost e�ciency compared with other finer-

grained partitioned design options. When the system scale gets larger, the quad-chiplet

system wins out. We further explored the relationship between the cost and the scale

of the chiplet system under di↵erent bonding yields. The three subfigures of Fig. 6.4

respectively show the optimal numbers of chiplets of di↵erent scales under the bonding

yields of 0.9, 0.95, and 0,99. The results show that: (1) with a higher bonding yield, the

chiplet system starts to get a better cost e�ciency than the monolithic counterpart at

a smaller system scale (or smaller die area); (2) with a higher bonding yield, it is more

likely that the SiP with a large number of small dies can get lower cost than the SiP with

a small number of big dies.

6.3.2 Heterogeneous Chiplet System with HBM Stacks

The heterogeneous chiplet system with high bandwidth requirement integrates the

core dies and the HBM stacks onto the silicon interposer or the organic interposer. Each

HBM stack is made up of a base die at the bottom and several layers of memory dies

atop [112]. For the base die, the area of a 1024-bit signal interface is mainly determined

by the pitch width of the microbumps. The pitch width is set as 45µm for the silicon

interposer and 110µm for the organic interposer. MCM is excluded in this case study

because the C4 bump pitch is too large to place the whole signal and I/O interface under
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Figure 6.3: Cost e�ciency improvement of chiplet systems under di↵erent technology nodes

the area constraint of existing HBMs2.

This case study aims to study the extra cost introduced by HBM stacks. Fig. 6.5

visualizes the relative cost breakdown of interposer 3 and bonding, where the manufacture

cost of core dies as the 100% base unit. The three subfigures show the system scales of

200mm2, 400mm2, and 800mm2 under 7nm process respectively. We observe that the

organic interposer based chiplet system introduces less than 50% overhead for HBM

stacks and the bonding yield takes the majority of the overhead. While for the silicon

2According to public data [112], HBM1 takes the area of 5.48mm⇥ 7.29mm. This implies that when
the bump pitch width is larger than 197µm, the 1024-bit I/O interface will use up the overall area budget
of HBM stack.

3The cost of interposer considers the area of HBM stacks. Yet the cost of memory stacks is not
calculated due to the lack of data.
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Figure 6.4: Cost of organic interposer based homogeneous chiplet vs area of monolithic
chip under of corresponding bonding yield and 7nm process

interposer based chiplet system, the relative cost overhead is much larger.

6.3.3 Heterogeneous Chiplet System with Hybrid Processes

Considering the technology scaling of I/O and other peripheral circuits are much

slower than that of the compute logic and the on-chip memory [113], the cost e�ciency

may potentially increase if di↵erent components are assigned to di↵erent dies and are

implemented in di↵erent technology nodes. Inspired by AMD’s EYPC2 CPU [27, 28], this

case study explores the heterogeneous architecture where the cores and the IO peripheral

circuits are split into di↵erent dies and implemented in di↵erent technology nodes. As
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shown in Fig. 6.6, we study the MCM based chiplet system under di↵erent system

scales and di↵erent I/O proportion. To quantitatively explore the cost e�ciency of the

heterogeneous chiplet system, we compare the cost of a 7nm monolithic system, a 12nm

monolithic system, and three hybrid systems with di↵erent numbers of core dies where

the core dies and the I/O die are respectively assumed at 7nm and 12nm technology

nodes. The three subfigures of Fig. 6.6 respectively show the circumstances when the

numbers of transistors on the core die are 5 billion, 10 billion, and 50 billion. And each

subfigure includes the proportions of I/O circuits in the range of {30%, 40%, 50%}.

We find that the hybrid system which partitions the core logics and the I/O circuits

into di↵erent dies achieves salient benefits on cost e�ciency compared with the mono-

lithic systems under both the mature and advanced technology nodes. Moreover, as the

scale of the chiplet system gets larger, both the cost e�ciency of the hybrid system and

the optimal number of core dies increase. For the three di↵erent system scales in Fig.

6.6, the optimal chiplet system respectively achieves 34%, 48%, and 77% cost e�ciency

improvement compared with the 7nm monolithic counterpart, and the optimal numbers

of core dies are respectively 2, 4, and 8.

6.4 Summary

This chapter builds an analytical cost model for the 2.5D chiplet system under various

interconnection options and technology nodes. A series of case studies are conducted to

explore the cost characteristics under both homogeneous and heterogeneous scenarios.

By analyzing the case study results, several observations are made on the interposer

selection, design partition granularity, and hybrid technology node adoption for the cost-

e�cient chiplet-based SiP design.
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Figure 6.5: Relative cost overhead of heterogeneous chiplet system with HBM stacks
of di↵erent scales under 7nm process
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Figure 6.6: Cost of MCM based heterogeneous chiplet system with hybrid processes
under di↵erent system scales
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Chapter 7

Summary

7.1 Thesis Contribution

This thesis research addresses the urge for the early-staged hardware modeling for

domain-specific accelerator design; and showcases examples of hardware-and-software

co-design space for machine learning (ML) accelerators to address a broad spectrum of

workload characteristics. The thesis research helps explore the co-design workflow and

automation toolset to increase the productivity on domain-specific accelerator design.

The contributions are listed as follows:

1. Analytical Hardware Modeling This thesis develops NeuroMeter, an inte-

grated power, area, and timing modeling framework for ML accelerators. With the

integrated electrical characteristics models (e.g., resistance-capacitance path model and

Elmore delay model) of typical circuit structures in it, NeuroMeter, the proposed model-

ing tool, allows the user to input the high-level architectural specifications and technology

enablers alone. The tool itself formulates the possible circuit representations of ML ac-

celerators, explores the design space internally and transparently, and generates a fast

and accurate estimation on power, area, and chip timing. It enables the runtime analysis
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of system-level performance and e�ciency when the runtime activity factors are provided

at the pre-RTL design stage.

2. Cost-Aware Analysis on Chiplet and Heterogeneous Integration This the-

sis develops an analytical cost model that can estimate the cost of the 2.5D chiplet-based

System-in-Package (SiP) systems under various interconnection options and technology

nodes. The cost modeling is used as a good supplement beyond the analytical modeling

of power, area, and timing. It helps the user figure out whether SiP’s design flexibility

enabled by various inter-chiplet connection and heterogeneous integration can be trans-

lated into cost e�ciency at the early design stage. Leveraging the proposed analytical

cost model, a series of case studies is conducted to explore the cost characteristics of the

2.5D chiplet-based SiP system in di↵erent scenarios. By analyzing the case study results,

several observations are made on the interposer selection, design partition granularity,

and technology node adoption for cost-e�cient chiplet-based SiP design.

3. E�cient Architecture Exploration By combining the power, area, and timing

results of NeuroMeter with performance simulation, this thesis explores the manycore ML

accelerator design in di↵erent scenarios; and proposes new architecture, i.e.

First, the brawny vs wimpy study shows that brawny designs with 64x64 systolic

arrays are the most performant and e�cient for inference tasks in the 28nm datacenter

architectural space with a 500mm2 die area budget. The exploration also reveals im-

portant tradeo↵s between performance and e�ciency. For datacenter accelerators with

low batch inference, a small (⇠16%) sacrifice of performance can lead to more than a 2x

e�ciency improvement (in achieved TOPS/TCO).

Second, this thesis also conducts a case study on energy e�ciency (TOPS/Watt)

implications of sparsity on di↵erent ML accelerators to showcase NeuroMeter’s capability

to model a wide range of accelerator architectures. The results show that despite its

relatively low energy e�ciency, it is easier for wimpier accelerator architectures to benefit
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from sparsity processing.

Third, this thesis proposes a reconfigurable systolic array (RSA) based CNN accel-

erator, which introduces quite small area and power overhead as well as minor changes

on control logics. The internal reconfigurability of the proposed RSA enables both the

high performance of small numbers of brawny systolic arrays and the high utilization of

large numbers of wimpy systolic arrays. Especially, it increases the utilization especially

for the operators of depthwise convolution with low operational intensity. The result

show that the performance of ResNet and E�cientNet achieves 1.25x-2.68x gain on the

proposed RSA based accelerator compared with the TPU-v2 styled baseline.

7.2 Future Work

The experiences from my thesis research naturally lead to a wide range of future

directions. We listed them as below from the following two aspects:

1. Analytical Hardware Modeling With the technology node scaling down, the

circuit-level electrical characteristics models (e.g., resistance-capacitance path model and

Elmore’s model) for FinFET and gate-all-around (GAA) nanosheet are required if the ad-

vanced technology nodes (7nm) are planned to support in the future hardware modeling

tools. With the slowdown of Moore’s law, the 2.5D chiplet integration and fine-grained

3D integration have attracted more attention from both industry and academia. Beyond

the single-chip level power, area, and timing (PAT) modeling tool proposed in this the-

sis, future work may extend it to a chiplet system level PAT modeling framework which

supports 2.5D (or 3D) integration with the inter-chiplet (or inter-tier) connections with

resistance-inductance-capacitance (RLC) path modeling as well as the interposers and

the substrates.

On top of PAT analysis, future work will explore the integration cost as well to
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evaluate whether the advantages of 2.5D or 3D integration ultimately can be translated

into cost feasibility at the early design stage. Besides the manufacture cost and the

package cost discussed in the analytical cost model in this thesis, the testing cost and

the cooling cost also play an important role in the early-stage design decision. With the

consideration of 2.5D chiplet system or 3D integration, the thermal issue may become

critical compared with the 2D monolithic system. Besides power, area, timing, and cost,

future work may consider the thermal issue collaboratively at the early design stage.

2. Architectural Exploration and Hardware/Software Co-Design Looking

forward, the borderline between the architectural innovation and the software optimiza-

tion is becoming blurred. There is a large space to explore for the cross-stack optimization

between hardware, software, and algorithm. An automatic and ML-guided workflow is

in need for more e�cient hardware/software co-optimization and exploration. A high-

performance compiler framework and a unified intermediate representation (IR) are in

need to serve as a bridge between the continuously evolving algorithms and the “Cam-

brian explosion” [61] of domain-specific hardware platforms. The innovations inspired

from reconfigurability at the architectural level and beyond may be further applied on

even broader ML workloads and software optimizations, including but not limited to

multi-precision [114], structured or unstructured pruning [115, 116], dynamic sparsity

[117, 118, 119], and runtime optimizations [120, 121].
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J. Wawrzynek, and K. Asanović, Chisel: constructing hardware in a scala
embedded language, in DAC Design Automation Conference 2012, pp. 1212–1221,
IEEE, 2012.

[82] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
Parameter variations and impact on circuits and microarchitecture, in Proceedings
of the 40th annual Design Automation Conference, pp. 338–342, 2003.

[83] J. Dean, 1.1 the deep learning revolution and its implications for computer
architecture and chip design, in 2020 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 8–14, IEEE, 2020.

[84] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

98



[85] C. Szegedy, V. Vanhoucke, S. Io↵e, J. Shlens, and Z. Wojna, Rethinking the
inception architecture for computer vision, in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2818–2826, 2016.

[86] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, Learning transferable
architectures for scalable image recognition, in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 8697–8710, 2018.

[87] “Tf-graph.” https://www.tensorflow.org/api_docs/python/tf/Graph.

[88] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[89] “Accelerated linear algebra (xla): Optimizing compiler for machine learning.”

[90] “Space-to-batch operation.”
https://www.tensorflow.org/api_docs/python/tf/nn/space_to_batch.

[91] “Space-to-depth operation.”
https://www.tensorflow.org/api_docs/python/tf/nn/space_to_depth.

[92] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel,
K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee, A. Malevich, D. Mudigere,
M. Smelyanskiy, L. Xiong, and X. Zhang, The architectural implications of
facebook’s dnn-based personalized recommendation, in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 488–501,
IEEE, 2020.

[93] J. L. Greathouse and M. Daga, E�cient sparse matrix-vector multiplication on
gpus using the csr storage format, in SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 769–780, IEEE, 2014.
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