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ABSTRACT OF THE DISSERTATION

Polymorphic Compilation for Cross-Domain Acceleration

by

Sean Kinzer

Doctor of Philosophy in Computer Science
(Computer Engineering)

University of California San Diego, 2023

Professor Hadi Esmaeilzadeh, Chair

With general-purpose compute stacks struggling to meet computational demands

of emerging applications, there has been a shift in industry and the research community

toward domain-specific architectures. Each of these specialized architectures is designed

with domain-specific properties in mind, exploiting their algorithmic structure by using

specialized hardware capabilities. However, the divergence of architecture designs makes

them incompatible with mature compilation platforms which were designed to target general

purpose processors, and do not incorporate the domain knowledge necessary for optimizing

specific classes of program. Further, the applications motivating these domain-specific
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architectures are not confined to a single algorithmic domain.

Existing approaches for implementing end-to-end applications leave developers

with few choices. On the one hand, general purpose compilation stacks are expressive

enough to implement all of the different algorithms included in this task, at the cost of

diminishing performance from general purpose processors. On the other hand, domain

specific architectures tend to require their own distinct compilation frameworks because of

the unique architectural features as well as the need for a constrained language to restrict

functionality. This means a programmer must separately implement and compile each part

of their program with a different interface and compiler.

Alternatively, this dissertation sets out to provide a solution which compromises

between these two choices by allowing a degree of expressiveness for a subset of connected

algorithm domains to achieve performance benefits in end-to-end applications they are used

in. Specifically, this work enables cross-domain acceleration, which is the acceleration of

applications composed of tasks from multiple aglorithm domains using a single programming

interface. In addition, this work achieves polymorphic compilation, which is defined as

using the same compilation algorithms for different domain-specific architectures. Together,

these accomplishments form a compute stack capable of polymorphic compilation for

cross-domain acceleration. This compute stack demonstrates it’s effectiveness and flexibility

through VeriGOOD-ML where it is used to compile and optimize deep learning and data

analytics programs to two different parameterizable accelerators with unique instruction

sets.
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Chapter 1

Introduction

1.1 Motivation

With general-purpose compute stacks struggling to meet the computational demands

of emerging applications, there has been a shift in industry and the research community

toward domain-specific architectures [33, 46]. These specialized architectures harness

unique features of a target algorithm domain to achieve impressive improvements in both

performance and energy efficiency. A significant amount of focus within this shift has been

on designing architectures for Machine Learning (ML) [34, 22, 38, 30, 77, 76, 13, 58, 106,

23, 95, 14, 45, 21, 61, 57, 108, 12, 49, 72]. However, real-world applications are often not

confined to being composed entirely of ML algorithms, and instead span multiple different

algorithm domains, each with their own unique properties. As an example, Figure 1.1

demonstrates the sequence of actions required to enable self-driving cars, where first raw

sensor data from cameras is ingested and processed by a Digital Signal Processing (DSP)

algorithm, followed by sensor fusion of the surrounding environment, which is input to

a deep learning algorithm for object detection, and lastly the percieved distance and

objects in the environment are used to take an action through a control theory algorithm.
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Figure 1.1: The sequence for enabling self-driving cars relies on four separate algorithm
domains, which all must be completed in less than 1.6 seconds to match the average
human reaction time.

The performance of each individual algorithm within this sequence is crucial for making

self-driving vehicles feasible, as the vehicle must match human response time to be usable

on public roads.

To implement such an application, developers are left with the challenges of defining

a program spanning multiple algorithm domains and meets the performance and energy

effiency requirements from real-world conditions. As Figure 1.2 demonstrates, this challenge

is complicated by existing compilation stacks, requiring developers to choose between using

either (1) a general-purpose compilation stack expressive enough to implement the entire

application using a single interface, but lacking performance, or (2) multiple different

Domain Specific compilation stacks for each compilation target, requiring implementation

of separate programs for each stack and additional code to stitch each program together,

but capable of high performance and energy efficiency.

An alternate approach is to define a middle-ground which focuses on meeting the

performance and energy efficiency requirements imposed by real world applications for a

subset of algorithm domains, but not all domains. This dissertation sets out to realize this

middle-ground through a combination of Cross-Domain Acceleration and Polymorphic

Compilation.
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1.2 Cross-Domain Acceleration

Cross-Domain Acceleration is defined as accelerating an application composed of

tasks from multiple algorithm domains using a single interface. Therefore, achieving Cross-

Domain Acceleration entails defining a Cross-Domain Language (CDL) as a unified interface

for a subset of algorithm domains. Single-domain languages, referred to as Domain Specific

Languages (DSLs), have grown substantially in recent years [19, 98, 79, 28, 6, 84] due to their

impressive ability to simplify domain-specific program implementation. In addition, each

DSL is backed by a lower-level abstraction which harnesses domain specific characteristics

for both compilation to similarly specialized targets as well as optimization. Therefore, a

CDL must simultaneously provide familiar syntactic constructs spanning multiple algorithm

domains to simplify implementation, and also use an intermediate representation (IR)

Accelerator 
A

Compiler 
A

DSL A

Accelerator 
B

Compiler 
B

DSL B

Accelerator 
C

Compiler 
C

DSL C

(a) DSA Workflow.

Compiler/
Interpreter

ARM

x86

PTX

C/C++

Python

Rust

(b) General-Purpose Processor Workflow.

Figure 1.2: Designing end-to-end applications requires developers to choose from
expressive general-purpose compilation stacks or multiple, high-performance compilation
stacks with unique interfaces.
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capable of capturing each domain’s unique characteristics for optimization. Together, a

CDL and IR capable of meeting these requirements will achieve cross-domain acceleration.

To this end, this dissertation explores the foundations of cross-domain acceleration by

proposing a cross-domain stack composed of a CDL and IR capable of accelerating end-to-

end cross-domain applications.

1.3 Polymorphic Compilation

Although enabling cross-domain acceleration addresses the issue of expressiveness

across multiple algorithm domains, there is still the task of compiling an end-to-end

application to one of many different specialized Domain-Specific Architectures (DSAs).

One way to accomplish this task is to define separate compilation algorithms for each of the

potential architecture targets; a daunting task which would likely consume a large amount

of time. Instead, Polymorphic Compilation is defined as using the same compilation

algorithm for multiple different Domain-Specific Architectures (DSAs). With DSAs being

distinct from one another and possessing diverse compute granularities, resources, and

limitations, using the same algorithm for each one necessitates an abstraction capable of

capturing these properties to inform the compiler. In addition, DSAs tend to expose more

control to the compiler and are composed of hetereogenous compute units compared to

general purpose processors which rely on opaque caches and use fixed compute granularity.

Therefore, a low-level IR which explicitly encodes all scheduling details, from on-chip data

movement to where compute operations will be executed and in what order, is required. By

introducing the architecture abstraction as a compilation input, the constraints, capabilities,

and resources can be used to guide a unified compilation algorithm and achieve polymorphic

compilation. This dissertation proposes such an architecture abstraction and low-level IR,

and demonstrates it’s ability to perform polymorphic compilation.
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Figure 1.3: Dissertation overview.

1.4 Contributions

This section provides an overview of this dissertation, which consists of three

chapters. The first two chapters delve into the details of how cross-domain acceleration

and polymorphic compilation are achieved, followed by the details of a multi-year effort by

a team spread across three different universities resulting in an automated methodology for

generating verilog capable of executing programs compiled using the proposed polymorphic

compiler. The overall workflow for this dissertation is shown in Figure 1.3.

1.4.1 A Cross-Domain Computational Stack

Domain-specific accelerators obtain performance benefits by restricting their algo-

rithmic domain. These accelerators utilize specialized languages constrained to particular

hardware, thus trading off expressiveness for high performance. The pendulum has

swung from one hardware for all domains (general-purpose processors) to one hardware

per individual domain. The middle-ground on this spectrum–which provides a unified

computational stack across multiple, but not all, domains–is an emerging and open research

challenge. This chapter sets out to explore this region and its associated tradeoff between
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expressiveness and performance by defining a cross-domain stack, dubbed PolyMath. This

stack defines a high-level cross-domain language (CDL), called PMLang, that in a modular

and reusable manner encapsulates mathematical properties to be expressive across multiple

domains–Robotics, Graph Analytics, Digital Signal Processing, Deep Learning, and Data

Analytics. PMLang is backed by a recursively-defined intermediate representation allowing

simultaneous access to all levels of operation granularity, called srDFG. Accelerator-specific

or domain-specific IRs commonly capture operations in the granularity that best fits a set

of Domain-Specific Architectures (DSAs). In contrast, the recursive nature of the srDFG

enables simultaneous access to all the granularities of computation for every operation,

thus forming an ideal bridge for converting to various DSA-specific IRs across multiple

domains. Our stack unlocks multi-acceleration for end-to-end applications that cross the

boundary of multiple domains each comprising different data and compute patterns.

Evaluations show that by using PolyMath it is possible to harness accelerators across

the five domains to realize an average speedup of 3.3× over a Xeon CPU along with

18.1× reduction in energy. In comparison to Jetson Xavier and Titan XP, cross-domain

acceleration offers 1.7× and 7.2× improvement in performance-per-watt, respectively. We

measure the cross-domain expressiveness and performance tradeoff by comparing each

benchmark against its hand-optimized implementation to achieve 83.9% and 76.8% of the

optimal performance for single-domain algorithms and end-to-end applications. For the

two case studies of end-to-end applications (comprising algorithms from multiple domains),

results show that accelerating all kernels offers an additional 2.0× speedup over CPU, 6.1×

improvement in performance-per-watt over Titan Xp, and 2.8× speedup over Jetson Xavier

compared to only the one most effective single-domain kernel being accelerated. Finally,

we examine the utility and expressiveness of PolyMath through a user study, which shows,

on average, PolyMath requires 1.9× less time to implement algorithms from two different

domains with 2.5× fewer lines of code relative to Python.
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1.4.2 Enabling Polymorphic Compilation for Domain-Specific Ac-

celerators

Deep learning accelerators are emerging as the vehicle to deal with the compute

intensity of Deep Neural Networks (DNNs). The benefits of these domain-specific archi-

tectures stem from deviation from the fine-grained Von Neumman model of execution.

Instead, these accelerators exploit the algorithmic structure of the application domain by

matching it to specialized hardware capabilities. Four challenges make compilers for these

designs different than ones targeting conventional general-purpose processors. First, more

micro-architectural features and components need to be exposed, considered, and controlled

by the compiler. As an example, an accelerator compute block typically expose coarser-

grained operations than an ALU that performs an individual addition instruction (e.g., a

systolic array that performs a whole matrix operation). Second, the on-chip storage is no

longer a limited set of registers backed by a hardware-manage cache, it is usually several

software-managed scratch pads with various access semantics. Third, the interconnection

for on-chip data movement and off-chip loads/stores needs to be handled explicitly by

the compiler and with the appropriate granularity (e.g., tile size). Last but not least, the

compiler needs to match the rather coarse-grained operations (layers) of a DNN to the

varying granularity of computation and storage that is supported by the hardware. These

challenges call for rethinking of the compiler that has traditionally focused on generating

fine-grained instruction sequences while the micro-architecture is abstracted away almost

completely.

This chapter, alternatively, sets out to offer a novel abstraction for exposing the

architecture structure and its varying coarser-grained capabilities through a construct

dubbed Architecture Covenant Graph (ACG). This graph abstractly represents compute

units, memory modules, and interconnection and their programmable capabilities. By
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making the architecture accessible to the compiler with the appropriate abstraction, the

compilation workflow can adapt to modifications in accelerator design without necessi-

tating redevelopment of the compiler. This is made possible by accompanying the ACG

with mutable constructs, called Codelets, that initially express the functionality of the

DNN operations, and are progressively transformed by the compiler to become execution

mappings and schedules on the ACG. Our Covenant compiler brings these together to

target significantly different deep learning accelerators without the need to be redeveloped.

We compile 14 DNN layers from transformer models, deep recommender systems, and

convolutional neural networks on two different architectures. The Covenant compiler

achieves 93.8% of the performance of state-of-the-art compilers that use hand-tuned DNN

layer implementations.

1.4.3 VeriGOOD-ML

This chapter introduces VeriGOOD-ML, an automated methodology for generating

Verilog with no human in the loop, starting from a high-level description of a machine

learning (ML) algorithm in a standard format such as ONNX. The Verilog RTL is then

translated through a back-end design flow to GDSII, driven by a design planning approach

that is well tailored to the macro-intensive nature of ML platforms. VeriGOOD-ML uses

three approaches to build ML hardware: the TABLA platform uses a dataflow architecture

that is well suited to non-DNN ML algorithms; the GeneSys platform, with a systolic

array and a SIMD array, is optimized for implementing DNNs; and the Axiline approach

synthesizes small ML algorithms by hardcoding the structure of the algorithm into hardware,

thus trading off flexibility for performance and power. The overall approach explores the

design space of platform configurations and Pareto-optimal-PPA back-end implementations

to yield designs that represent different tradeoffs at the algorithmic level between area,

power, performance, and execution time. The overall methodology, from architecture to
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back-end design to hardware implementation, is described in this chapter, and the results

of VeriGOOD-ML are demonstrated on a set of ML benchmarks.
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Chapter 2

A Cross-Domain Computational Stack

2.1 Introduction

End-to-end applications ranging from delivery drones [83] to smart speakers [5]

cross multiple domains. One such application senses the environment, (1) pre-processes

the sensory data, feeds it to a (2) perception module that in turn invokes a (3) decision

making process to determine actions. Perception is currently reigned by Machine Learning

(ML), which has attracted significant attention, but applications are not just ML. Sensory

data processing relies on algorithms from Digital Signal Processing (DSP) while Control

Theory and Robotics bring forth the final action that may also feed the perception module.

Even though these domains work in tandem to realize an entire application, they are

becoming isolated by the current push towards Domain-Specific Accelerators (DSAs).

One the one hand, these accelerators tradeoff generality for performance and energy

efficiency by restricting programmability to a single domain [44]. On the other hand, the

traditional general-purpose computational stack cannot meet the computational demands

of emerging applications [46, 33, 116]. Although, Domain-Specific Accelerators (DSA)

bridge this performance gap, but make implementation an arduous task of dealing with
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isolated programming interfaces. Thus, expressiveness is becoming limited, making the

composition of an end-to-end application a major challenge for execution on accelerators.

As a consequence, users seeking to create compute-intensive applications composed of

algorithms from different domains must choose between either using a lower-performance,

general-purpose processor or bear the burden of manually stitching together various domain-

specific accelerators.

This emerging challenge creates a new tradeoff between performance and expres-

siveness, illustrated in Figure 2.1. On one extreme, we have General-Purpose Processors

that allow expressing all domains at the cost of performance and/or efficiency [44]. On

other extreme, are domain-specific accelerators [56, 21, 103, 40, 22, 39, 57] that can only

support a single domain to be executed on one particular specialized architecture, thus

are very performant. Even though certain DSAs offer computational stacks, composing

an end-to-end application that crosses the boundary of many domains requires intimate

knowledge of multiple different interfaces and various hardware accelerators to obtain

high performance. Recent efforts such as, Graphicionado [43], RoboX [102], TVM [19],

Tabla [77], aim to unify high-level coding within a single domain, cross-domain stacks for

accelerators still remains an open challenge (Figure 2.1).

As Figure 2.1 illustrates, by addressing this challenge, PolyMath defines a new point

in the Expressiveness vs. Performance design space. The ingredients of our approach are:

1. Exploiting the mathematical similarities across domains to design a modular and

reusable language, PMLang, that is expressive across Robotics, Graph Analytics, DSP,

Data Analytics, and Deep Learning. It offers one-to-one mapping between code and

mathematical formulation while retaining modularity, thus making it familiar to both

domain-experts and software engineers. PMLang offers light-weight type modifiers

based on domain semantics to enable accelerators to handle on-chip and off-chip data

allocation, storage, and transfer. PMLang is not an abstraction over existing domain
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specific languages, rather it explores a novel dimension of designing a unified, stand-

alone language across multiple domains. This unique dimension defines a class of

languages that we refer to as Cross Domain Languages (CDLs). To enable cross-domain

acceleration, PMLang and its associated compilation stack takes an initial step to bridge

CDLs with domain-specific architectures, that are constrained to a single domain.

2. To preserve expressiveness and provide flexibility for compilation to different accelerators,

we devise an intermediate representation that is a recursively-defined Dataflow Graph,

providing simultaneous access to all levels of operation granularity (srDFG). The

compute granularity of the kernels is not uniform across different accelerators, required

for cross-domain settings. Thus, we define srDFG recursively in that its nodes are

also srDFGs. As such, srDFG uniquely offers simultaneous access to various levels of

computation granularity within a single program, thus enabling leveraging different

accelerators. This capability enables cross-domain multi-acceleration–acceleration of a

cross-domain application on different accelerators. The flexible, recursive nature of our

IR shown in Figure 2.2, whose edges preserve the type modifier metadata.

3. PolyMath uses a modular compilation framework that conveniently enables creation

and application of pipelined compilation passes on the srDFG. To convert srDFGs to

executable accelerator code, PolyMath offers a graph lowering algorithm with a conversion

strategy which uses metadata embedded in the srDFG edges to flexibly translate the

graph nodes. The lowering algorithm applies transformations which produce a new

srDFG made up of compute kernels at the same granularity of the target accelerator.

Once lowered, the metadata associated with the srDFG edges is translated to the

accelerator’s own IR for final binary generation through its own scheduling and mapping

framework.

4. Last but not least, PolyMath will be the very first extensible, modular, and open-source

computation stack to enable the community to innovate and explore the impending
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challenges of cross-domain acceleration at a time when domain-specific compilation

stacks, except for DNNs, are elusive. Although there are many accelerators in the

literature, many of their compilation stacks are not available. By making PolyMath

open-source and extensible, the community can add other domains which align with the

core mathematical constructs in PMLang.

We show PolyMath’s balance of expressiveness and performance by compiling twelve

different algorithms across robotics, graph analytics, digital signal processing, data analytics,

and deep learning. These workloads achieve an overall speedup of 3.3× over a Xeon CPU

along with 18.1× reduction in energy. In comparison to Titan Xp and Jetson Xavier GPUs,

cross-domain acceleration offers 7.2× and 1.7× in energy reduction. We next measure the

tradeoff of cross-domain algorithm expression and find that PolyMath can achieve 83.9%

of the performance of the same algorithms implemented in their native stack’s language.

We also study two end-to-end applications that cross multiple domains. Accelerating all

the kernels offers an additional 2.0× speedup over CPU, 6.1× additional improvement

in energy requirements over Titan Xp, and 2.8× speedup over Jetson Xavier vs when

only one most effective kernel was accelerated. The results show that when only a part is

accelerated, the slower non-accelerated kernels dictates the overall improvement, whereas,

when all the algorithms in the application are accelerated Amdahl’s burden reduces, and the

improvement of all the domains is magnified. To evaluate the usability and expressiveness

of PMLang relative to Python, we conduct a user study and found that on average PMLang

required 1.9× less time to implement algorithms with 2.5× fewer lines of code. Finally, end-

to-end performance of Polymath is 76.8% of the performance of two manually implemented

end-to-end applications. Given the fact that PolyMath offers greater ease of programming

compared to Python, the automation overhead of 23.1% (=100%-76.8%) is a fair bargain.
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Figure 2.2: Visual representation of PolyMath’s srDFG.

2.2 PMLang: Mathematical Programming Interface

PMLang is designed to encapsulate the mathematical properties of these domains,

as they are tied together by similar operations on multi-dimensional data, include minimal

control-flow, and share use-cases such as cyber-physical systems. Consider the following

application in its entirety: An end-to-end neuroscience application requires multiple domains

to study the impact of deep brain stimulation on movement disorders and goes through the

following steps: (1) convert raw electrocorticographic (ECoG) brain signals to frequency

domain using fast Fourier transform (FFT); (2) apply logistic regression to classify these

frequency domain signals into various biomarkers; (3) based on the classification, use model

predictive control to send an optical stimulation back to the brain. This application crosses

three domains, DSP, Data Analytics, and Control Theory in each iteration to generate

deep brain stimulation signals.

There are numerous domain specific architectures for each of these algorithms/do-

mains individually; however, using them for this application would require writing each part

of the application in a different DSL, compiling them separately, and manually joining their

executables. Instead, PMLang allows users to write their application as a single program,
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thus, eliminating the overhead of stitching together stacks to execute the program across

multiple domain specific architectures.

Keeping the properties of target domains in mind, PMLang is designed to reduce

the time to code a mathematical expression into a formula-based textual format, enabled

by language constructs for modularity and light-weight type modifiers. Moreover for

code organization and reduction in implementation time, PMLang includes reusable

execution code blocks called components that perform operations on flows of data. These

components encapsulate a task comprised of either other components and/or mathematical

expressions which use traditional, imperative syntax to facilitate familiarity for experienced

programmers. For modularity and reusability, components have distinct boundaries and

arguments which are distinguished by type modifiers consisting of input, output, state,

and param; each of which is associated with how the component will use the argument,

shown in Table 2.1. By using type modifiers in component arguments to explicitly identify

data semantics PMLang binds operations to data being operated on for accelerators to take

advantage of.

The remainder of the section will delve into details of PMLang constructs through

an example. For brevity, we show the PMLang program for Model Predictive Control

(MPC) from Control Theory used for Robotics. MPC attempts to solve a constrained

optimization problem over a finite sequence of inputs. MPC can also be used for the

aforementioned brain stimulation application. We provide MPC in the context of a mobile

two-wheeled robot performing trajectory tracking, shown in Figure 2.3. Here, the sensors

send the current state of the robot as inputs to a model that predicts the next location,

then optimizes a sequence of control signals for moving the robot to the predicted location.

The program finds the optimal sequence of control signals, ctrl_mdl, over a finite period

of time to match a reference trajectory, pos_ref, that specifies the position and orientation

of the robot. At each point in time, the actual position and orientation of the robot is
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Figure 2.3: Visual of trajectory tracking for wheeled robot.

input to the algorithm, which optimizes the ctrl_mdl and sends the next control signal,

ctrl_sgnl, back to the robot. This process is summed up in the following steps:

Input: pos → the (x,y,θ) orientation of the robot.

Output: ctrl_sgnl→ (ν, ω) control consisting the velocity and angular velocity to be sent

to the robot.

State: u→ (v, ω) linear and angular velocities across a pre-determined time horizon h.

Step 1: Make a prediction Using input pos and cost matrices P and H, predict the

position and angle of the robot across horizon h.

Step 2: Compute the gradient of the objective function Calculate the error on

the predicted position and orientation, pos_pred, using pre-computed gradient coefficient

matrices HQ_g and R_g.

Step 3: Update the control model and send the output signal Using gradient, g,

update the control model, and send the output control signal, ctrl_sgnl.

2.2.1 Components

Components form the building blocks of PMLang, and are used to delineate different

parts of the program into multiple levels of execution. To delineate the access semantics for

each argument of the components, PMLang uses type modifiers ((input), output, state,

param). Using type modifiers relieves programmers from concern about the underlying
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1 predict_trajectory(input float pos[a],
2 input float ctrl_mdl[b],
3 param float P[c][a],
4 param float H[c][b],
5 output float pred[c]){
6 index i[0:a -1], j[0:b -1], k[0:c -1];
7 pred[k] = sum[i](P[k][i]*pos[i]);
8 pred[k] = pred[k] + sum[j](

↪→ H[k][j]*ctrl_mdl[j]);
9 }

10 update_ctrl_model(input float ctrl_prev[b],
11 input float g[b],
12 output float ctrl_mdl[b],
13 output float ctrl_sgnl[s],
14 param int h){
15 index i[0:b -2], j[0:s -1];
16 ctrl_sgnl[j] = ctrl_mdl[h*j];
17 ctrl_mdl[(h-1)*j] = 0;
18 ctrl_mdl[i] = ctrl_prev[(i+1)*h] - g[(i+1)*h]

↪→ ;
19 }
20 mvmul(input float A[m][n],
21 input float B[n],
22 output float C[m]){
23 index i[0:n -1], j[0:m -1];
24 C[j] = sum[i](A[j][i]*B[i]);
25 }
26 compute_ctrl_grad(input float pos_pred[c],
27 input float ctrl_mdl[b],
28 input float pos_ref[c],
29 param float HQ_g[b][c], // Input Cost

↪→ Gradient
30 param float R_g[b][b], // Cost Inverse

↪→ Hessian
31 output float g[b]){
32 index i[0:b -1], j[0:c -1];
33 float P_g[b], H_g[b];
34 err[j] = pos_ref[j] - pos_pred[j];
35 mvmul(HQ_g, err, P_g);
36 mvmul(R_g, ctrl_mdl, H_g);
37 g[i] = P_g[i] + H_g[i];
38 }
39 main(input float pos[3],
40 state float ctrl_mdl[20],
41 param float pos_ref[30],
42 param float P[30][3],
43 param float HQ_g[20][30],
44 param float H[30][20],
45 param float R_g[20][20],
46 output float ctrl_sgnl[2]){
47 float pos_pred[30], g[20];
48 index i[0:9], j[0:1];
49 RBT: predict_trajectory(pos, ctrl_mdl, P, H,

↪→ pos_pred);
50 RBT: compute_ctrl_grad(

↪→ pos_pred,ctrl_mdl,pos_ref,HQ_g,R_g,g);
51 RBT: update_ctrl_model(ctrl_mdl, g, ctrl_mdl,

↪→ ctrl_sgnl,10);
52 }

Figure 2.4: MPC for MobileRobot trajectory tracking in PMLang.
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accelerator-specific mechanisms for data exchange between different components. An input

argument is used to feed data into the component, and is read-only; an output argument is

used to return data from a component, and can only be written to; a state argument can

be read or written to, and represents data that is part of the state of the component, thus

is preserved across invocations/iterations; and a param argument is a constant that is used

to parameterize the component. These type modifiers describe whether or not the data will

be re-used (state), kept unchanged (param), or used once and discarded (input/output).

As an example, line 1 shows that argument pos is an input to the predict_trajectory

component. As another example, line 41 shows a state argument named ctrl_mdl which

indicates that ctrl_mdl is used, updated, shared across invocations of main, which matches

the MPC semantics of optimizing the control model over a series of time steps. Type

modifiers also enable custom accelerators to place input data such as pos in Read-only

FIFO buffers to reduce data communication overhead and hardware memory logic, or store

state data such as ctrl_mdl on-chip on the accelerator for fast repeated data accesses.

Using a single set of type modifiers to describe data semantics across multiple domains

unifies program implementation for end-to-end applications. This is exemplified in robotics

and deep learning, where one domain uses “model” and the other “weight” to describe the

same data semantics, both of which are described as state data in PMLang.

In addition to being reusable, these components allow users to conceive their

program as a collection of sub-steps at varying levels of granularity making it adaptable for

compilation to different accelerators. To instantiate a component, the programmer specifies

its name and arguments. An example of component instantiation is shown in line 49-51

where predict_trajectory, compute_ctrl_grad, and update_ctrl_model is instantiated.

Each instantiation creates a copy of the component, as if it were inlined. This is in contrast

to conventional languages that rely on a function call stack which is sequential in nature.

Instead, inlining enables the program to be mapped to our srDFG IR, which preserves
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opportunities for parallelism based on data flow dependencies.

2.2.2 Index Variables

PMLang is based on mathematical notations that do not use for loops and instead

use indices (e.g.,
∑n−1

i=0 Ai). To simplify programming based on formulae, PMLang uses

index variables to concisely specify operations performed over ranges of multi-dimensional

data without using explicit for loops. In its most basic form, an index variable represents

a range of integers, specified by its lower and upper bounds. Line 48 shows two such

index variable declarations: i and j. This approach reveals the inherent parallelism

in mathematical formulae since operations expressed using this approach are naturally

vectorizable without performing any loop transformations. For example, below is a PMLang

statement iterating over all js, each of which can be performed in parallel.
index j[0:s -1];
err[j] = pos_ref[j] - pos_pred[j];

Strided indexing. To support strided/non-sequential indexing (e.g., convolution), Poly-

Math also supports arithmetic operations on index variables as shown below.
ctrl_mdl[i] = ctrl_prev[(i+1)*h] - g[(i+1)*h];

Boolean conditional over indexing. Unlike a domain-specific language such as

Tabla [77] that focuses solely on data analytics, PMLang allows Boolean conditionals to

be applied to indices, which provides support for other domains such as graph analytics

and robotics. For instance, the following computes the sum of the non-diagonal parts of

the matrix A:
index i[0:N -1], j[0:M -1];
res = sum[i][j: j != i](A[i][j]);

Support for Boolean conditionals and non-sequential index variables flexibly incor-

porates common as well as specific-to-domain characteristics of algorithms across robotics,

graph analytics, DSP, data analytics, and deep learning. These features distinguish

PMLang from DSLs which either use (1) concise operations expressed through a fixed API

(e.g., named functions such as “dense” in TVM [19]), or (2) simply do not support these

20



construction since the specific target domain does not require them (e.g., Tabla [77].)

2.2.3 Mathematical Operations

Index variables allow for a nearly one-to-one mapping between mathematical notation

and PMLang code. PMLang offers standard mathematical operators to be used with multi-

dimensional data, expressed in a single statement by using index variables. PMLang’s

syntax for math expression of Cj =
n∑

i=0

Aj,i ×Bi is:

C[j] = sum[i](A[j][i]*B[i]);

Non-Linear operations. PMLang includes a set of built-in functions to be used in

math expressions commonly used across the multiple target domains, including non-linear

operations such as cosine/sine (DSP, robotics), gaussian (robotics, DSP, data analytics),

sigmoid/ReLU (deep learning, data analytics), etc. Including non-linear operations as part

of PMLang simplifies algorithm expression and allows PolyMath to leverage the performance

benefits of non-linear compute units in custom accelerators.

Reduction operations. PMLang is also equipped with built-in group reduction operations

such as sum, prod, max etc., to calculate the summation (
∑

), product (Π), or maximum

value of a sequence of numbers. These group reductions operations are converted to srDFG

with two levels of granularity: (1) the outer group DFG node that (2) encapsulates the

scalar inner operations (nodes). This multi-granular representation enables the compiler

to map the the outer encompassing node to a dedicated unit if the accelerator harbors it.

Otherwise, the inner basic nodes are mapped to individual ALUs. This crucial flexibility is a

unique feature of PolyMath and enables it be cross domain and target different accelerators.

Custom reduction operations. PMLang also supports custom group reduction operations,

as they are commonly used in graph analytics and DSP algorithms. Custom reduction

operations can be defined in PolyMath by specifying the arithmetic for a given set of input

arguments. Below is an example of the definition of the min reduction function and using
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Table 2.1: A subset of PMLang’s keywords and definitions.

Language Con-
struct

Keyword Description

Component string name Takes input, produces output, and reads/writes to state
arguments

Domain RBT, GA, DSP, DA, DL Specifies a component’s target domain
input Flow of data, can be exclusively read from within a compo-

nent scope
output Flow of data, can be exclusively written to within a compo-

nent scope

Type Modifiers

param Constant parameter used to parameterize a component
state Flow of data, can be written to or read from within a compo-

nent scopeIndex Types

index Specifies ranges of operations
Types bin, int, float, str, complex Data types used to for variable declarations.

it to find the minimum value for the matrix A:
reduction min(a,b) = a < b ? a : b;
res = min[i][j](A[i][j]);

2.2.4 Domain Annotations

PMLang uniquely targets multiple domains, each of which is eventually accelerated

with a Domain-Specific Architecture. As such, PMLang offers a light-weight mechanism

to specify the target domain for only top-level component instantiations without tying

it to a specific accelerator. All of the code within a component also inherits the same

domain, which alleviates the programmer from having to annotate all component instances

in their program. This is done by simply adding one of the five keywords: RBT (Robotics),

GA (Graph Analytics), DSP (Digital Signal Processing), DA (Data Analytics), and DL (Deep

Learning), as demonstrated below:
RBT: predict_trajectory(pos, ctrl_mdl, P, H, pos_pred);

2.3 Simultaneous-Recursive DataFlow Graph

Accelerator-specific or domain-specific IRs commonly capture operations in the

granularity that best fits the target architecture. One of the major challenges that

PolyMath faces is targeting multiple domains each of whose accelerators operate on different

granularities of computation. Even within a single domain, various architectures accept
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Figure 2.5: Overview of the srDFG MobileRobot algorithm including zoomed-in views
of its multiple levels of recursion.

computation in different granularities. To address this challenge, we designed srDFG, an

intermediate representation which is a recursively-defined dataflow graph, and provides

simultaneous access to each level of recursion, srDFG. Our srDFG enables the compiler

to simultaneously access all the granularities of computation for every component, thus

forming the ideal bridge to convert to various accelerator-specific IR. Furthermore, srDFG

enable multi-acceleration for end-to-end applications that cross the boundary of multiple

domains with different data and compute patterns across Robotics, Graph Analytics,

DSP, Data Analytics, and Deep Learning. Next, we describe the srDFG structure using

Figure 2.5, a visual representation of the MobileRobot algorithm described in Section 2.2.

2.3.1 srDFG Definitions

An srDFG is defined as a pair, (N,E), of nodes N representing PMLang operations,

and edges E representing input or output operands. An srDFG node n ∈ N is a pair

(name, srdfg) of a string representing the name of an operation, and its lower-granularity

operations srDFG composition. Each numbered box in Figure 2.5 represents the srdfg for

different nodes at varying granularities within the MobileRobot algorithm. As shown in 2 :

both the the subtraction operation and the mvmul component are nodes. An edge e ∈ E is

a tuple of source src and destination dst nodes, and the edge metadata md: (src,dst,md).

Edge metadata consists of the type, type modifier, and shape of the operand associated
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with the edge. For math operations, input and output edges represent operands and results,

whereas adjacent edges in component instantiations represent state, input and output

arguments. This is illustrated in 1 , where pos is the input argument, ctrl_sgnl is the

output argument, and ctrl_mdl is the state argument that creates a cycle for multiple

iterations. Given a node n, we denote the name and srdfg as n.name and n.srdfg , and

similarly denote src,dst,md in an edge e as e.src, e.dst, and e.md. Lastly, the domain

annotations previously described are translated to the srdfg.domain attribute for each

srdfg.

2.3.2 srDFG Semantics

As an example, the srDFG shown in 3 will begin operations when the data in edges

R_g and ctrl_mdl are ready. Each srDFG is a statically defined graph representing a single

instantiation on its input values, with each component instantiation or operation getting

its own srDFG, which allows for computing context sensitive information. As an example,

Figure 2.5 2 shows two unique nodes and pairs of input edges for the mvmul component,

and as a result each instantiation of mvmul gets its own node and srDFG. The srDFG in

2 also shows how edges propagate their metadata to the lower granularity nodes, as the

shapes of R_g and ctrl_mdl determine the number of element-wise multiplication nodes in

4 . The type modifier included in edge metadata can change depending on its srDFG, as

shown in 1 where the ctrl_mdl edge is a reusable state, but is an input edge for 2 .

2.3.3 Enabling Different Accelerators

Custom accelerators support unique set of operations performed on a variety of

different typed and shaped inputs and outputs. To ensure flexibility, each srDFG includes

operations as nodes, n, as well as the more fine-grained operations to define the node,

n.dfg . To illustrate this point, each srDFG in Figure 2.5 represents a possible operation
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v_temp[V] = reduce[u: u == V][v](process(e_w[u][v], v_p[u]));
v_p[V] = apply(v_temp[V], v_p[V]);
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Figure 2.6: Graph Analytics algorithm compilation starting from (a) a PMLang program
compiled to an (b) srDFG which is lowered and converted to (b) Graphicionado[43]
pipeline block IR.

supported by an accelerator. If 2 is supported by the target accelerator, the srDFG can

be transformed to consist only of the operations represented by each node in 1 . If 2 is

not supported but 3 is supported, then the operations in both 1 and 2 will be selected

for compilation. PolyMath’s base unit of lowering is a node, and if the nodes in the srDFG

cannot be lowered to a specific hardware because of unsupported nodes, the compilation

fails for that accelerator.

Each of these accelerator operations is closely tied to the types and shapes of its

operands. The srDFG uses the edge metadata to specify the operand information when

performing compilation of a node to an acceleration operation. For example, an accelerator

might support the element-wise multiplication in 4 , but requires the number of elements

being multiplied to perform the operation. Each input edge to 3 includes the shape as

part of its metadata, which allows for compilation of 4 . Domain-specific accelerators

differentiate how data is stored by receiving this information from the programmer on how

the variables are used. For example, the ctrl_mdl edge in 1 has the state type modifier

which causes the accelerator to store the data local to the component.
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2.4 Compilation Framework

PolyMath performs compilation in three steps: (1) compilation from PMLang to an

srDFG; (2) lowering the srDFG to the granularity of the different domains and converting it

to the accelerator’s IR; (3) invoking the accelerator’s provided compiler to generate the final

binaries. Figure 2.6 illustrates these phases for a PMLang graph analytics implementation

which is compiled to an srDFG, and then lowered and converted to Graphicionado’s

pipeline IR.

2.4.1 srDFG Generation

For each PMLang program, compilation forms an Abstract Syntax Tree (AST) using

syntax analysis. The program AST is then traversed and a symbol table S is created,

storing information contained in each component. The component information consists

of variable names and variable metadata md (e.g., edge type, type modifier, and shape).

For each component, a DFG is formed by stitching statements together using static single

assignment. Lower-level, srDFG operations are formed for element-wise operations or group

operations, which means edges may represent both scalar and multi-dimensional values.

After completing AST traversal generating srDFGs from PMLang statements, a

single srDFG is generated starting with the highest level component main. Previously,

component statements were skipped because all component srDFGs were not created.

When the main srdfg is traversed, a component node nc is created using previously skipped

component statements and their argument type modifiers, preserving the domain annotation

as nc.dfg.domain attribute. Edges adjacent to nc are added to srdfg by using the type

modifiers for arguments in the component signature of nc, where type modifiers are (1)

in/out edge sfor input/output, and (2) edges such that e = (src,dst,md) where src = dst for

state. The srDFG is repeated for each component statement recursively, creating nodes
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and edges to generate the lower levels of operation granularity for each component, which

inherit the top-level domains.

2.4.2 Example srDFG Passes

PolyMath implements a modular framework and set of APIs that enable custom,

target-independent passes over the IR. These passes take an srDFG as an input and produce

a transformed srDFG. This feature conveniently enables applying pipelines of passes on the

same IR. Also, traditional passes such as constant propagation, constant folding, etc. are

supported via this PolyMath pass infrastructure. We cover one such compiler pass below.

Algebraic combination. Transformation passes in PolyMath benefit from simultaneous

access to all levels of operation granularity for a program. This bolsters traditional compiler

passes such as algebraic simplification that are typically limited by single granularity IRs

which hide opportunities for simplification. In contrast, a PolyMath pass can identify hidden

algebraic simplifications which span multiple levels of granularity which would remain

obscured in other flat IRs. As an example, if an srDFG with a top-level matrix-vector

multiplication is added to the output of another matrix-vector operation contained in another

node’s subgraph, the matrix vector operations can be fused together by concatenating their

inputs. This transformation opportunity remains unidentified in flat IRs, but PolyMath

uniquely reveals these transformation prospects by preserving a program’s multi-granularity

in the srDFG and supporting transformations crossing granular boundaries.

2.4.3 Compilation from srDFG to Accelerator IR

Compiling a srDFG to a domain-specific architecture consists of (1) lowering

srDFG operations supported by the target accelerator (Algorithm 1) and (2) forming valid

accelerator IR by translating and combining each srDFG node (Algorithm 2). Algorithm 1

27



Algorithm 1: srDFG Lowering Algorithm
function Lower(srdfg, Om)

let (N,E) = srdfg.subDfg
let Ot = Om[srdfg.domain] for each n ∈ N do

if n.name /∈ Ot then
let subDfg =Lower(n,Om)
srdfg← srdfg[n 7−→ subDfg]

return srdfg

Algorithm 2: Compilation Algorithm
function CompileProgram(srdfg, AccSpec)

let πd ← ∅ for d ∈ Domains
let (N,E) = srdfg
for each n ∈ N do

let (+d, md) = AccSpec[n.domain]
let t = md[n.name]
πd = πd + t(srdfg, n)
for each in_edge ∈ n do

if (n.domain ̸= in_edge.src.domain) then
πd = πd + tload(in_edge, n)

for each out_edge ∈ n do
if (n.domain ̸= out_edge.dst.domain) then

πd = πd + tstore(n, out_edge)
return πd1, . . . , πdn

is a function Lower which takes as input a dataflow graph srdfg which is a pair (N,E)

of nodes N and edges E defined in Section 2.3.1. PolyMath lowers srDFG operations to

different domains with accelerator targets that support different granularity operations.

Lower uses a map, Om, with domain names as keys, and lists of domain-specific accelerator

operation names, Ot, as values to lower srDFG nodes to the correct granularity.

The algorithm consists of first using the srdfg.domain attribute as a key to determine

the correct granularity of operations for lowering, storing the set of supported operations

in Ot. For each node n, if n.name is not included in Ot, n.srdfg inherits the srdfg domain,

and lowers n in srdfg by replacing it with a srDFG comprised of only supported operations.

Replacing n in the srdfg consists of substituting src or dst in adjacent edges (src,dst,md)

with a node in the subDfg if src = n or dst = n. Once each n ∈ N has been replaced

with supported operations based on Ot. By preserving different levels of granularity in the

srDFG, the same srDFG is capable of generating dfg ’s with operations supported by a

28



variety of custom accelerators. For instance, the hierarchy of RoBoX begins at the System

level, followed by finer grained Task computations all the way down to varying operation

granularities in it’s macro dataflow graph, such as Vector, Scalar, and Group operations.

Once a srdfg has been lowered, it is compiled to an IR suitable for the accelerator

using Algorithm 2. Accelerator IR for a domain d, denoted with πd, is comprised of

accelerator IR fragments, each of which is a basic operator and its arguments. To generate

each πd for the different targets, Algorithm 2 takes as input a lowered srDFG produced by

Algorithm 1, and accelerator specifications for the targets corresponding to each domain.

Acceleration specifications for each domain are stored in AccSpec, and define how srDFG

nodes are translated and merged to form accelerator IR. A specification for domain d is a

pair (md, +d) where:

• md is a map from operator names to a translation function for that operator. The

translation functions, t, works as follows: given a srdfg and a node n, t(srdfg,n) returns

the accelerator IR fragment πd representing the accelerator operation for n.

• +d is an operator that combines an accelerator IR πd and an accelerator IR fragment

produced by td.

Having defined the necessary variables, we can describe Algorithm 2. The algorithm

extracts the nodes and edges in the srDFG, then applies a translation function to each

node, creating an accelerator IR fragment. Each IR fragment for each of the program’s

domains is separately accumulated into complete representations of an accelerator program

IR, and are returned by the algorithm.

The most complicated part of the compilation are the translation functions, t. The

translation function does two things: (1) identify the correct accelerator IR operation, and

(2) assign the correct arguments for that operator. Assigning the correct arguments uses

these steps:

1. Convert types to the equivalent accelerator type
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2. Use edges with input type modifier as input arguments

3. Use edges with output type modifier as output arguments

4. Initialize IR variables for edges with the state type modifier

5. Add constants for arguments with param type modifier

If the accelerator IR fragment requires the shape of operation arguments, it is also included

as part of the arguments to the operator or declaration operation. To ensure data is

transferred between domain boundaries, load and store IR fragments are created when

there are sources and destinations with different domains than a node. As a final step,

accelerator provided compilers are used to create binaries from the generated IR.

Compilation flexibility. The combination of Algorithm 2 and 1 enables compilation

to different types of domain-specific accelerator because of two key properties. First,

simultaneous access to each level of srDFG recursion allows supported accelerator operations

to be translated. Unsupported srDFG nodes on the particular accelerator are refined

and transformed to the appropriate level of granularity through recursion which enables

identification of the accelerator-supported operations. Second, the metadata stored in the

srDFG allows the IR generation to be parameterized based on the target accelerator. As

a result, users can create different accelerator specifications for different accelerators and

these same algorithms will do the appropriate mapping. Each algorithm can be instantiated

for a number of different mappings without changes to the high-level algorithm.

2.5 Evaluation

Table 2.2 illustrates the difference between conventional general-purpose stacks,

domain-specific stacks in the literature, and PolyMath. As shown, PolyMath represent a

middle ground between domain-specificity and generality, enabling cross-domain multi-

acceleration.
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Table 2.2: A comparison of computational stacks.
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[2

6]
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Robotics ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Graph Analytics ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

DSP ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Data Analytics ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Deep Learning ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Genomics ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SAT Solvers ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

2.5.1 Experimental Setup

Algorithms and Datasets.

Table 2.3 shows workloads from Robotics, Graph Analytics, DSP, Data Analytics,

and Deep Learning domains and the lines of code (LOC) for the PMLang implementation.

Table 2.4 shows a break down of end-to-end application domains, algorithms, configurations,

and PMLang LOC.

Single domain workloads. In Robotics domain, we have two benchmarks, MobileR-

obot [65] and Hexacopter [59]. Section 2.2 discusses the two-wheeled MobileRobot in detail.

Hexacopter is a six-rotor micro UAV that uses motion planning and orientation control to

determine trajectory. For both these workloads the physical robot and task specification is

expressed in PMLang. For Data Analytics we have Low Rank Matrix Factorization (LRMF)

and Kmeans clustering. LRMF converts a large matrix into two smaller matrices, which

if taken product of, represent the original matrix. For LRMF we use two Movielens [41]

datasets. Kmeans clustering partitions data into k-clusters. For one Kmeans workload

cluster hand written digits with mnist [71] dataset. The second benchmark uses data from

the UCI repository [73] to cluster households with similar electricity consumption. In

the Digital Signal Processing domain we have four benchmarks, two for each Fast Fourier

Transform (FFT), and Discrete Cosine Transform (DCT). The FFT implementation is
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Table 2.3: Benchmarks and workloads used to evaluate PolyMath.

Domain Benchmark Algorithm Config/Dataset PMLang
LOC

Mobile Robot Model Predictive Con-
trol

Trajectory Tracking, Horizon =
1024

52
R

ob
ot

ic
s

Hexacopter Model Predictive Con-
trol

Altitude Control, Horizon = 1024 197

Twitter Followers Breadth-First Search #Vertices=61.57M,
#Edges=1468.36M

14

Wikipedia Links Breadth-First Search #Vertices=3.56M,
#Edges=84.75M

14

G
ra

ph
A

na
ly

tic
s

LiveJournal Single Source Shortest
Path

#Vertices=4.84M,
#Edges=68.99M

14

MovieL (100k) Low Rank Matrix Fac-
torization

1682 movies, 943 users; 100000
ratings

43

MovieL (20M) Low Rank Matrix Fac-
torization

40110 movies, 259137 users;
244096 ratings

43

D
at

a
A

na
ly

tic
s

DigitCluster K-Means Clustering 784 features;120000 images;K=10 41
ElecUse K-Means Clustering 4 features; 2075259 data points;

K=12
41

FFT-8192 Fast-Fourier Transform 1D FFT-real; 8192x1 input 12
FFT-16384 Fast-Fourier Transform 1D FFT-real; 16834x1 input 12
DCT-1024 Discrete Cosine Trans-

form
1024x1024 image; 8x8 kernel,
stride=8

31

D
S

P

DCT-2048 Discrete Cosine Trans-
form

2048x2048 image; 8x8 kernel,
stride=8

31

ResNet-18 Deep Neural Network Batch Size = 1, ImageNet 117

D
ee

p
Le

ar
ni

ng

MobileNet Deep Neural Network Batch Size = 1, ImageNet 102

Table 2.4: Algorithmic composition of end-to-end applications.

Benchmark Algorithm Domain Config/Dataset LOC

Brain Stimul
Fast-Fourier Transform (FFT) DSP 1D FFT, 4096 Input 12

Logistic Regression (LR) Data Analytics 4096 features 8
Model Predictive Control (MPC) Robotics Horizon = 1024 64

Option Pricing Black-Scholes (BLKS) Data Analytics 8192 options 10
Logistic Regression (LR) Data Analytics 129549 words 8

a fine-grained butterfly and bit-reversal to transform a signal to frequency domain. The

DCT algorithm applies a filter kernel to an input image and is used for compression. For

Deep Learning, we use two popular convolutional neural networks, ResNet-18 [48] and

MobileNet [53] for object classification. For Graph Analytics, we implement and apply

Breadth-First Search on two graphs, one of Twitter users and followers [67] and another of

Wikipedia links [27].

End-to-end cross-domain applications. Table 2.4 shows the end-to-end applications

for our case study, the different domains they comprise of, and specification of each
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Table 2.5: Domains and accelerators used for evaluations.

Domain PolyMath Accelerator Baseline Framework
Robotics ROBOX (ASIC) ACADO/cuBLAS

Graph Analytics GRAPHICIONADO (ASIC) Intel GraphMat/Enterprise

Data Analytics HyperStreams(FPGA) / TABLA (FPGA) MLPack/OpenBlas/CUDA

DSP DECO (FPGA) FFTW3/cuFFT/NVIDIA-DCT

Deep Learning TVM-VTA (FPGA) TVM/Tensorflow

algorithm. The brain stimulation application,BrainStimul, is described in Section 2.2.

The stock market application, called OptionPricing, predicts call option price in stock

market and uses two data analytics algorithms. This application first performs sentiment

analysis through logistic regression on news articles to understand market signals and then

Black-Scholes to predict the price.

Optimized CPU and GPU implementations.

Table 2.5 and 2.6 shows the optimized CPU and GPU framework their specifications.

The robotics’s CPU implementation uses ACADO Toolkit [51] to implement optimized,

self-contained C code and uses cuBLAS [90] libraries for GPUs. For graph analytics, we

used Intel GraphMat [112] for CPU implementations and Enterprise [75] for GPU. The DSP

workloads use C subroutine libraries [37, 93] for CPU and Nvidia implementations [91, 94]

for GPU. For data analytics, we use mlpack [25], a fast and flexible C++ ML library

built on top of OpenBLAS [120], NVBLAS [92], and Armadillo [104]. The Deep Learning

workloads are compiled using optimized Tensorflow [6] for CPU and GPU. All of our

experiments were performed on an Intel Xeon E7, Titan Xp GPU, and low-power Jetson

Xavier AGX.

Domain-Specific accelerators.

Table 2.5 shows the accelerator used for each domain. To evaluate each benchmark

on domain-specific accelerators, PolyMath was used to compile programs to the target

accelerator IR, and the target accelerator’s compiler was used to generate executable binaries.
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Table 2.6: CPU, FPGA, and ASIC specifications.

CPU FPGA ASIC GPU
Chip Xeon

E-2176G
UltraScale
KCU1500

ROBOX/ GRAPHICIONADO Titan Xp/ Jetson AGX
Xavier

Cores 6 - - 3,840/ 512

Memory/
BRAM

128GB 75MB 512KB/ 64MB 12 GB/32 GB

Power 80W 35W 3.4W/7W 250W/30W

Frequency 3.7 GHz 150MHz 1GHz/ 1GHz 1.5GHz/ 1.3GHz

Logic Tables - 1,451 - -

Compute Units - 5,520 256/8 -

RoBoX’s [102] Macro DFG from srDFG as it offers programmable ASIC for system, tasks,

and penalties for control algorithms optimized using MPC. We use Graphicionado [43],

an ASIC accelerator for graph analytics algorithms expressed as vertex programs, as the

target for the Graph Analytics workloads. We compile FFT and DCT srDFG representation

to DeCO [56], a DSP block based FPGA accelerator, by translating to it’s DFG, which

is then compiled as executable binaries. For LRMF and kmeans we convert srDFG to

Tabla [7], an open source template-based FPGA accelerator for machine learning, by

compiling a srDFG to a DFG.We use TVM-VTA [81], a programmable deep learning FPGA

accelerator, as the target for Deep Learning workloads, as it is state-of-the-art and open-

source. Each DSA requires specific levels of operation granularity: single operation [77, 56],

coarse DNN layers [81], and coarse time snapshots [102], enabled by each srDFG’s multi

granularity, for mapping of kernels to the accelerator.

Multi-acceleration. For BrainStimul, we compile parts to DeCO [56] (FFT-4096),

Tabla [77] (Logistic Regression), and RoBoX [102] accelerators. For OptionPricing, we

execute logistic regression based sentiment analysis on Tabla [77] and Black Scholes on

HyperStreams [82]. All accelerators are cascaded as a single System On Chip (SOC),

comprised of memory and a host. A light-weight manager executes on the host, ensuring

data dependencies between different accelerators and initiating DMA transfers between

DRAM and local accelerator memory. This setting is similar to prior work [18] that also

uses an array of micro-accelerators.
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Figure 2.7: Runtime and Energy improvement of PolyMath over CPU.

2.5.2 Experimental Results

The goal of PolyMath is to facilitate the use of the wide variety of custom accelerators

across end-to-end cross domain applications. It does so by abstracting away hardware

level details through a versatile, extensible, and a modular stack that can maintains

the required levels of kernel granularities best suited for each design. In this section we

compare domain-specific accelerators executing PMLang code with optimized CPU and

GPU implementations to better understand the portability of PolyMath. We then perform

case studies through two end-to-end applications and observe that PolyMath allows cross

domain multi-acceleration.

Performance and Energy Comparisons

Single kernel comparisons. Figure 2.7 and Figure 2.8 show the speedup of PolyMath

compiled programs listed in Table 2.3 to domain specific accelerators over Xeon E-2176G

CPU, Titan Xp GPU, and Jetson Xavier AGX as the baseline, respectively. On average,

PolyMath translated implementations outperform Xeon E-2176G and Jetson Xavier by

3.3× and 1.2× in terms of runtime and offer 7.2× and 1.7× more Performance-per-Watt
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Figure 2.8: Runtime and Performance-per-Watt improvement of PolyMath over GPU.

over Titan Xp and Jetson Xavier GPUs. Smaller benchmarks such as MovieLens-100K

and ElecUse are unable to fully utilize Titan XP, thus cannot obtain higher benefits in

comparison to Jetson but incur higher PPW. The average still demonstrates an increase in

both performance and energy in the cross-domain setting. PolyMath implementations also

offer 18.1× more energy efficiency over CPUs, but due to many lower power accelerator

backends only offers 40% of the GPU performance. This is especially true for discrete cosine

transform and deep learning benchmarks; DCT due to its high coarse granular matrix

multiplications for which DeCO a programmable FPGA accelerator is not as effective

as Titan Xp and deep learning models because our backend for CNNs is VTA that is

designed as a low-power accelerator but is also being compared to a high-end GPU for

uniformity. Note that PolyMath does not contribute any overhead specifically for deep

learning acceleration because it offers direct conversion of srDFG to the TVM nodes.

Optimal performance comparison. The accelerators used for execution of PolyMath

implementations also offer custom stacks that are built for their target architecture. We

compare PolyMath to implementations in their native stack, which represent optimal

executions to demonstrate the cross-domain overhead of our stack to native implementations.
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Figure 2.9 compares the performance of PolyMath implementations with the optimal

performance that can be reached by programs written by experts for each of the accelerators.

The figure shows that PolyMath achieves 83.9% the optimal runtime.
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Figure 2.9: Percent of optimal runtime for PolyMath translated implementations
compared to hand-tuned implementations.

The performance of PolyMath relative to optimal implementations is dependent on

the domain and the algorithm because each stack differs in the level of data semantics that

can be complex to compile to from a more expressive language. For instance, accelerators

specializing in Deep Learning often utilize three primary type modifiers for variables

in neural network graphs: input, output, and weights–each of which can be directly

mapped to type modifiers in PMLang, thus incur zero overhead. In contrast, Robotics

algorithms contain unique data semantics, such as task penalties, constraints variables,

time varying references, etc., which do not differentiated with PolyMath type modifiers,

thus implementations do not reach optimal performance. Accelerators such as DeCO

require specific topologies for their graph-based IR, i.e. balanced DFGs, because they rely

on stage-based computation, which results in reduced execution time relative to PolyMath

translations. In the case of Data Analytics, we see a low percentage of optimal performance

for ElecUse, because the benchmark is small, which makes any extra operations included
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in the srDFG have a more significant impact on performance relative to the optimal

implementation. In contrast, DigitCluster uses the same algorithm but on a larger dataset,

thus can amortize the overhead more effectively. It is important to note that the optimal

performance is reached by a specialized program on each accelerator written by an expert,

whereas PolyMath offers support for multiple domains constituting end-to-end applications

that can be expressed as single comprehensive program, coupled with srDFG to pave way

for compilation to multiple accelerators.

End-to-End Application Case Study

PolyMath offers means to express cross domain applications as a single program which

can be compiled to multiple accelerators pertaining to each of these domains. Figure 2.10

shows the runtime and energy improvement of the end to end applications in comparison

to CPU. Figure 2.11 illustrates the runtime and performance-per-Watt improvement in

comparison to Titan Xp and Jetson. Figure 2.10a and Figure 2.11a shows these results for

BrainStimul and Figure 2.10b and Figure 2.11b for OptionPricing application. In these

graphs we provide entire application improvement for all possible acceleration combinations,

from one domain algorithm accelerated to cross-domain where all algorithms are accelerated.

Each end-to-end result incorporates data communication overheads from data transfer

between hardware. Stand-alone kernel acceleration, as shown in , can offer very high

speedups. However, when these kernels are incorporated within a more comprehensive

application, those speedups do not manifest in the entire application because the non-

accelerated kernel becomes a bottleneck. For instance, the gap between the highest benefit

obtained from the best single-domain acceleration and cross-domain end-to-end acceleration,

is 1.85× for BrainStimul and 2.06× for OptionPricing (Figure 2.10). Every kernel that

is added for acceleration not only benefits itself from specialized execution but also reduces

the Amdahl’s burden and magnifies other accelerated component’s impact. The benefits
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Figure 2.10: Runtime and energy improvement over CPU of end-to-end applications
for different combinations of accelerated domains.
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of individual kernel acceleration are present despite end-to-end communication runtime

overheads of 23.4% and 17.0% and energy overheads of 21.8% and 12.4% for BrainStimul

and OptionPricing, respectively.
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Figure 2.11: Runtime and Performance-per-Watt improvement over GPU for combina-
tions of accelerated domains for end-to-end applications.

Figure 2.11a and 2.11b show the BrainStimul and OptionPricing results for both

Titan Xp and Jetson. Figure 2.11a shows that PolyMath offers 1.2× runtime improvement

over Titan Xp compared to 1.8× over Jetson. In contrast, PolyMath improves performance-
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per-watt by 8.3× over Titan Xp compared to 2.8× for Jetson due to its lower power

consumption. As Figure 2.11b shows, the OptionPricing benchmark underutilizes the

Titan Xp, only offering 1.5× and 9.2× improvement in performance and performance-

per-watt compared to 1.4× and 1.9× over Jetson. This is caused by the difference in

levels of coarse parallelism in the algorithms. Overall, the PolyMath implementation of

OptionPricing still outperforms both GPUs for both runtime and performance-per-watt.
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Figure 2.12: Percent of optimal performance for BrainStim and OptionPricing com-
pared to hand-tuned implementations.

Lastly, Figure 2.12 shows end-to-end Polymath implementations achieve 76.7%

optimal performance for BrainStim and 76.9% for OptionPricing compared to entirely

manual implementations of each application. Given the fact that PolyMath offers greater

ease of programming compared to Python (Figure 2.13), the automation overhead of 23.1%

is a fair tradeoff.

User Study

To determine the usability of PMLang, we conducted a user study with 20 program-

mers who are either professional software engineers or PhD students in computer science.
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The goal of the user study is to measure the expressiveness of PMLang by comparing it to

Python, an intuitive programming language which is commonly used in three of the focus

domains of PolyMath: DSP, Data Analytics, and Deep Learning. The study tasked each

user in the study with implementing either a DSP or Analytics algorithm in Python or

PMLang. The users were divided into four groups; Kmeans in Python, Kmeans in PMLang,

DCT in Python, and DCT in PMLang. For fairness and ease in expression of tensor

algebraic operations, we allow the users to import Python modules such numpy [31]. Each

participant in the user study has varying levels of expertise (from beginner to proficient)

in the target domains, and is proficient in Python. Every participant went through the

following process:

1. Participants were introduced to PMLang with a short, six-minute video which walked

through the language and small examples.

2. To avoid any algorithm knowledge bias, participants were randomly assigned either the

DSP or ML algorithm to implement in either Python and PMLang.

3. To minimize variation in algorithm understanding, users were not allowed to begin

their first implementation before having read and confirmed their understanding of the

algorithm.

4. We timed participants during their implementations and measured their Lines of Code

(LOC) after completion.

Results. Figure 2.13 compares the LOC between Python and PMLang as a ratio of Python

LOC to PMLang LOC in (a), and the implementation time of Python and PMLang as a ratio

of Python implementation time to PMLang implementation time in (b). The results show

that PMLang required 2.5× fewer lines of code on average and 1.9× less implementation

time on average. The Kmeans implementation averaged 3.3× fewer LOC, whereas for DCT

the average reduction of LOC is 1.8×. In general, the Kmeans algorithm is more verbose

than DCT and on average required 47.6% more lines of Python code than DCT. Because
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Figure 2.13: Reduction in Lines of Code (LOC) and coding time with PMLang over
Python for Kmeans and DCT.

there were more lines of code included in Kmeans, there was more opportunity to reduce

multi-line operations to a single PMLang statement, which explains the difference in LOC

reduction.

The greater complexity of Kmeans appears to have an effect in the speedup of

implementation time as well, where the average speedup for Kmeans was 2.6× and

the average speedup for DCT was 1.2×. Part of this speedup can be attributed to

typing more LOC in PMLang, but it is also a result of being able to directly translate

mathematical notation to the equivalent PMLang statement. These results indicate that

the more complicated the mathematical program is, the more the programmer will benefit

from implementing the program in PMLang. Further, PMLang is expressive enough for

programmers unfamiliar with the language to write algebraic expressions more efficiently

than they would write the same expressions in a language they are familiar with, Python.

2.6 Related Work

DSLs for custom architectures. There are various domain-specific languages designed

to facilitate the use of hardware accelerators. These languages are mostly designed for a

single domain [36, 17, 98, 111] or like Spatial [63], they focus on conveniently expressing
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lower level hardware-centric information. Another language, Halide [98], allows expression

of image processing pipelines and contains constructs for filter-based algorithms. Lime [15]

focuses on high-level synthesis from Java, thereby enabling execution of Java programs on

both FPGAs and CPUs. Instead, PolyMath offers a Cross-Domain Language (CDL) and

compute stack to explore the emerging tradeoff between expressiveness and performance

while leveraging currently isolated, domain-specific accelerators.

Mathematical and scientific computing environments. There are numerous scientific

and numerical programming environments [78, 16, 110, 97], and frameworks [31, 96].

PolyMath uniquely provides a 1-to-1 mapping of mathematical expressions to its statements

and leverages the natural parallelism in formulas without any explicit annotations for

vectorization In contrast, MATLAB [78], Julia [16], or R, require manual effort from

the user to identify the parallelism across different computations, vectorize its code, and

determine column/row arrangements for matrix operations. Moreover, these languages do

not delineate between the semantics of data in their programs and do not offer a multi-

granular representation, as offered by PolyMath, to enable usage of various domain-specific

accelerators.

Intermediate Representations. A number of intermediate representations [69, 74]

provide abstractions to enable program analysis using virtual resources. Both LLVM and

JVM operate at the granularity of a single CPU instruction, which is highly inefficient

for domain-specific architectures. Some works [64] have adapted LLVM to guarantee

independence between parallel operation threads by using a dataflow graph structure

intended for heterogeneous platforms. A number of other works [19, 80, 100, 115, 101, 70]

focus on the domain of machine learning and have implemented an end-to-end approach for

optimization on heterogeneous platforms after performing optimizations from a high-level

language. These works supported limited algorithm domains [19, 80, 100, 115, 101], and

rely on C/C++ or other general-purpose programming languages [70, 64], requiring the
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programmer to express complex mathematical expressions in unintuitive ways. MLIR [70]

is a hierarchical, high level IR, but is general-purpose and as such is on the end of the

expressiveness curve (Figure 2.1). Whereas PolyMath is restricted by its mathematical

language (PMLang) to a limited set of domains, falling in the middle of the spectrum of

expressiveness. Furthermore, MLIR does not have any compilation stack to support variety

of accelerators from different domains as PolyMath does and is practically demonstrated

in the evaluations. Tiramisu [28] introduces a scheduling language with novel commands

to explicitly manage the complexities that arise when targeting multicores, GPUs, and

distributed machines. Tiramisu offers an IR based on the polyhedral model to allow

fine-grained optimization. As such, Tiramisu can serve as a potential backend for PolyMath

that deals with the higher-level complexity of expressing cross-domain application and not

low-level fine-grained optimization.

Acceleration frameworks and toolchains. TensorFlow [6] is an end-to-end open

source platform for expressing ML algorithms in Python. Deep learning accelerators (e.g.,

TPU [57]) leverage Tensorflow. Similarly, a variety of deep learning frameworks [23, 35, 106]

allow users to run their DNNs on FPGA based hardware designs. Full stack solutions

such as Tabla [77] and RoBoX [102] support classical supervised machine learning and

model predictive control in robotics, respectively. Other toolchains [99, 10, 9, 109] aim

to simplify running deep neural networks on hardware accelerators by performing design

space exploration to find the best configuration for their particular design. These solutions,

however, are bound to their own custom architectures for particular platforms (FPGAs

or ASICs). In contrast, the srDFG offers a flexible hook that can be translated to these

toolchains and frameworks as well as to future accelerator designs and platforms. The

cross-domain nature of PolyMath that supports Robotics, Graph Analytics, DSP, Data

Analytics and Deep learning sets it apart from these domain-specific stacks.
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2.7 Conclusion

As domain-specific accelerators are becoming prevalent, there is an emerging tradeoff

between expressiveness and performance. This paradigm–a pendulum swing from general-

purpose processing to the opposite direction–creates implicit programming silos between

different domain. This paper set out to explore the region between these extremes and

explore the new expressiveness-performance tradeoff. To that end, we defined a cross-

domain computational stack, PolyMath, that bridges the expressiveness gap between

multiple domains, Robotics, Graph Analytics, DSP, Deep Learning, and Data Analytics.

The results from user study and performance evaluations showed that PolyMath strikes

an effective balance between expressiveness and performance while enabling cross-domain

multi-acceleration. It is time to look beyond the timely, yet temporary, success of domain-

specific accelerators and devise a future that enables end-to-end applications. The current

approach towards acceleration excludes significant opportunities by restricting the domain.

To harness these untapped opportunities, a new paradigm needs to emerge that breaks

the boundaries of domains, but also preserves the benefits of domain-specificity. PolyMath

takes the initial step in breaking this new ground.
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Chapter 3

Enabling Polymorphic Compilation for

Domain-Specific Accelerators

3.1 Introduction

Deep Learning has taken the IT industry by a storm and it is set to penetrate

various disciplines and markets from healthcare [8] and social networking [86] to gam-

ing [117] and entertainment [29]. However, its success is predicated upon the availability of

responsive execution platforms as DNNs require massive computations [32, 47]. In fact,

they have become the driving use-case for the development and adoption of domain-specific

accelerators [57, 50]. These new architectures require state-of-the-art and highly optimized

compilers prior to even delivering the expected performance and efficiency gains.

Four challenges make compilers for these designs different than ones targeting

conventional general-purpose processors. First, these architectures no longer adhere [76,

106, 21] to the long-held abstraction of fine-grained Instruction-Set Architectures (ISAs) and

Von Neumann model [119]. Therefore, more micro-architectural features and components

need to be exposed, considered, and controlled by the compiler. For instance, an accelerator
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compute block typically exposes coarser-grained operations than an ALU that performs an

individual addition instruction (e.g., a systolic array performs a whole matrix operation).

Second, the on-chip storage is no longer a limited set of registers backed by a hardware-

managed cache, it is usually several software-managed scratch pads with various access

semantics. Third, the interconnection for on-chip data movement and off-chip loads/stores

needs to be handled explicitly by compiler, with the appropriate granularity (e.g., tile size).

Finally, the compiler needs to match the rather coarse-grained operations (layers) of a

DNN to the varying granularity of computation and storage, supported by the hardware.

To address these challenges, one option is to take a software-centric approach [69, 19]

by restricting architectures to a standardized ISA that makes the compiler reusable.

However, this approach limits the architectural innovations, offering orders of magnitude

benefits through novel, specialized execution semantics. Another option is to take a

hardware-centric approach [106, 101] that demands re-implementing new compiler stacks

and optimization infrastructure for each accelerator.

Alternatively, this paper takes on these challenges and sets out to simultaneously

enable the reuse of the compiler while reducing constraints on the architecture. To achieve

these conflicting objectives, we propose a compilation framework that integrates a novel

architecture abstraction, dubbed the Architecture Covenant Graph (ACG), in its workflow.

Traditional ISAs focus on what fine-grained instructions an architecture can perform,

which typically operate with a register file and an opaque caching system. In contrast,

ACG is defined to capture accelerator structure as a graph consisting of compute units,

on-chip/off-chip memory components, and interconnect; each of which contains operational

capabilities as attributes.

To leverage this abstraction, we also devise the Codelets construct which is combined

with the ACG to enable our Covenant compiler to target varying types of DNN accelerators.

While the ACG abstracts the architecture, the Codelets represent the DNN operations and
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are gradually transformed into accelerator execution schedules by the Covenant compiler.

Each Codelet represents DNN layers as sequences of operation on input variables to produce

output variables. During compilation, Codelets are transformed into schedules by mapping

operands to ACG memory locations, and assigning operations to ACG compute nodes

capable of execution. Once operands and operations are mapped to ACG nodes, the

dependence between operations and their operands is translated to explicit data transfer

operations over the ACG interconnect.

While a number of inspiring works have achieved multi-target compilation and

scheduling support [19, 101, 6], the requirements for efficiently scheduling and generating

code for new targets can be prohibitive. For scheduling to new targets, frameworks such

as TVM [19] use flexible, target-agnostic scheduling directives to optimize DNN kernels,

but each DNN operator schedule requires hand-tuning by architectural experts. As an

alternative to manually scheduling, FlexTensor [123] and then Ansor [122] proposed novel

search algorithms capable of identifying optimal schedules using stochastic search and

performance measurements, but are inflexible to scheduling on new and unique architectures.

Our approach provides the opportunity to adapt these scheduling techniques to new targets

and further prune the space of transformations by coalescing architectural characteristics

into the schedule. For code generation, both TVM as well as Glow [101] intentionally

exclude architectural details because they rely on LLVM [69] as a backend, which is not

designed for accelerators. Instead, we provide a malleable technique for code generation

which is particularly important for architectures ordinarily using intrinsics which cause

powerful instructions to be treated as black boxes by compilers. To support additional

accelerators as compilation targets, these frameworks require creation of custom compiler

backends and hand-tuned schedule templates.

Our Covenant compiler is intended for an orthogonal purpose: automatically

scheduling and generating code for accelerators without a unified, LLVM-like backend
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by integrating an architecture abstraction into the compiler. This is one of the main

contributions of the work, in addition to the ACG and Codelet constructs which enable

Covenant to target varying deep learning accelerators.

To demonstrate the flexibility of the Covenant compiler, we implement ACGs for

Qualcomm© Hexagon™ HVX 1 DSP [24] and an open-source DNN accelerator [106]. For

both architectures, we compile 14 different DNN layers across a combination of transformer

networks, neural recommender systems, and convolutional neural networks and measure

their performance. When targeting Hexagon, our automated approach achieves 93.8% of

the performance of TVM’s hand-scheduled templates that rely on manually constructed

intrinsic. Compared to manually-implemented DNN layers in Qualcomm’s nnlib which

include hand-written assembly kernels, we achieve 31.3% improved performance. Besides

Hexagon, we target an open-source DNN accelerator [106] that shows the flexibility of the

Covenant compiler to target an entirely different architecture. The Covenant compiler

achieves 182× performance improvement using the DNN accelerator compared to a CPU

baseline. Finally, we illustrate the feasibility of implementing optimizations using the

Covenant compiler by combining different optimization passes and achieve 128.6× speedup

compared to unoptimized code on Hexagon. These results show the flexibility of the

Covenant compiler for automating scheduling and code generation for accelerators while

maintaining high-performance by integrating architecture characteristics through the ACG

and Codelets.
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3.2 The Missing Link: An Abstraction for Micro-

Architecture Specification

General-purpose processors are based on the von Neumann model of computing,

which is a sequential fine-grained instruction execution model. Hence, compilation for these

processors is made possible by exposing the Instruction Set Architecture (ISA), through

which the micro-architecture is completely abstracted away. However, rapidly emerging

Instruction 
Cache

PC

IF
/I
D

ID
/E
X

EX
/M
EM

ME
M/
WBRegister 

File AL
U Data 

Memory

(a) Pipeline processor microarchitecture.

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

DMA

RFRFRFRF

RFRFRFRF

RFRFRFRF

RFRFRFRF

Controller

DRAM

ALU ALU ALU ALU

Gl
ob

al
 B

uf
fe

r

Ve
ct

or
 

Un
it

Vector Scratchpad

(b) Example DNN accelerator microarchitecture.

Figure 3.1: Comparison of microarchitectures for general purpose processors and DNN
accelerators.

1Qualcomm Hexagon HVX is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
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DNN accelerators tend to use other models of computing, such as systolic in the case of

Google’s TPU [57, 88] and dataflow in the case of Microsoft’s Brainwave [23, 35]. These

DNN accelerators typically consist of one or more arrays of Processing Elements, that

can only perform simple arithmetic operations in parallel, as shown by the example in

Figure 3.1b. Typically these PEs are connected to one another as well as on-chip memory

through software-managed interconnection and memory hierarchy. As such, compilation

for these novel architectures requires exposing more of the microarchitectural details. In

contrast, general-purpose processors use a pipeline to enable a number of ALUs to carry

out instructions, as illustrated in Figure 3.1a. They are also connected to the memory

through a hardware-managed cache. The fundamental differences in the compute model

and the organization of the architecture and microarchitecture between DNN accelerators

and general-purpose processor clearly demonstrates the need for a new abstraction for

compilation. However, exposing every detail makes compiler design an adhoc practice for

each specific microarchitecture that is not reusable. Instead, DNN accelerator abstractions

are required to enable a reusable compilation workflow for different types of DNN accelerator

microarchitecture. The following section details such an abstraction, called the Architecture

Covenant Graph (ACG).

3.2.1 Architecture Covenant Graphs

We describe ACG and it’s design rationale by using a running example of a generic

DNN accelerator microarchitecture and the corresponding ACG in Figure 3.2. Figure 3.2a

visualizes the microarchitecture for an example DNN accelerator, including its off-chip

memory and software-managed, on-chip memory in purple, programmable interconnection

in green, and three functional units with unique capabilities in yellow.

To capture the data movement properties on DNN accelerator microarchitectures

such as these with programmable interconnection and different types of functional unit for
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(b) Architecture Covenant Graph (ACG) example.

Figure 3.2: Example DNN accelerator architecture and its ACG.

mapping operations to, the ACG is modeled as directed graph as shown in Figure 3.2b. Each

ACG is comprised of vertices representing programmable memory and compute components,

and unidirectional or bidirectional edges connecting each component. The edges represent

the programmable interconnection between the on-chip/off-chip memory and compute

components. Edge direction is required for enabling a reusable compilation workflow, as it

informs the scheduler of valid paths for moving data, such as DRAM to Global Scratchpad,

and Global Scratchpad to one of the functional units in Figure 3.2a. In this example,

for each of the interconnections, data can be read and written to and from each of the
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functional units (Scalar Unit, Vector Unit, Matrix Unit) and the Global Scratchpad,

as well as between DRAM and the Global Scratchpad. In some other cases multiple on-

chip scratchpads are used for different purposes, with some scratchpads being restricted

to sending data to functional units and unable to receive data, in which case the edge

between them would be unidirectional. This is unlike traditional memory and caches in

general-purpose processors, which are passive and generally do not execute instructions to

send or receive data. Instead, the processor core is the active party that loads or stores

data to these passive structures. In contrast, the compiler for a DNN accelerator often

needs to generate instructions for memory components since they are active elements.

Figure 3.2a also includes three separate programmable functional units capable of executing

separate operations in parallel: a Matrix Unit, a Vector Unit, and a Scalar Unit. By

using a directed graph, the compiler is capable of identifying opportunities for parallelizing

operations across multiple functional units by selecting graph nodes which support the

operation and have a common memory node predecessor.

However, scheduling the data movement also requires validation that the size of

data being transferred is able to fit on the intermediate storage nodes such as Global

Scratchpad in Figure 3.2a because there is no hardware-controlled data caching mechanisms.

To distinguish between the attributes necessary for computation versus memory, ACG uses

compute nodes shown in yellow and memory nodes shown in purple, each of which have

distinct sets of attributes for informing the compilation process. In addition, lower-level

architecture components shown in gray in Figure 3.2a such as the Controller for sending

control signals to other components and Operation Schedule Memory for storing operations

are not included in the ACG. With the primary goal being machine code generation, the

ACG excludes components such as these and other low-level details because they are not

programmable, and do not provide relevant information to the compiler.

Lastly, the unique properties across different DNN accelerator microarchitectures
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and even across their functional units binds them closely to the binary codes necessary

for execution. As an example, the Matrix Unit in Figure 3.2a uses dataflow execution

to perform matrix multiplication, only requiring data availability from the scratchpad to

execute instead of relying on an explicit matrix multiplication binary code. In addition,

making data available may require a sequence of binary codes for separately sending

each input data to the functional unit rather than a single, dedicated code. Therefore,

the ACG specifies binary code for a DNN accelerator as mnemonics without tying them

to a specific computation model or set of execution semantics. This allows the code

generation implementation to be reused across different architectures by because sequences

of mnemonics can be defined for a finite set of operations which are delineated by the ACG

nodes and edges.

Below, the specification used for mnemonics is detailed, in addition to the different

attributes of compute nodes, memory nodes, and edges, included in the ACG.

Memory

DRAM

Global 
Scratchpad

data_width=32
banks=7

depth=1024

data_width=8
banks=64
depth=220

Figure 3.3: ACG storage nodes and their capabilities.

Software-controlled memory such as Global Scratchpad in Figure 3.3 allows the

compiler greater control over data reuse, but also require explicit mnemonics for operations

such as off-chip data transfers. To ensure valid memory accesses during execution, the
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access semantics and capacity of the memory needs to be known to the compiler so that

memory request addresses are properly aligned. As shown in Figure 3.3, each memory node

includes attributes defining their access semantics, such as the data_width for specifying

the smallest unit of accessible data in bits is 32. The data_width is particularly important

for DNN accelerators supporting mixed precision operations, because certain functional

units might support 16-bit operations but read data from a memory component storing

each 16-bit operand with a 32-bit data_width. In this case, the compiler must ensure that

16-bit operands are stored in 32-bit chunks rather than packed together, and the increased

memory consumption for the operation is accounted for.

In addition, memory nodes use the banks attribute to denote the number of banks

in a memory component, as it is common for on-chip memory to include varying number of

banks for reading and writing multiple data in parallel to/from coarse grained functional

units such as the Vector Unit or Matrix Unit shown in Figure 3.2b. Each bank is capable

of sending data_width bits of data at a time, which means data_width×banks determines

the size of an addressable element in the memory component. When selecting the sizes

of on-chip data to be stored and operated on, the compiler must use this information to

ensure the size is correctly aligned in memory by requiring data chunks are divisible by the

size of an addressable element. As an example, the Global Scratchpad has 32× 7 = 224

bit entries, which must be taken into account when generating mnemonics requiring address

calculation based on immediate values.

Finally, compilers can exploit large on-chip scratchpads for data reuse by partitioning

operands into chunks called tiles which are stored on-chip and operated on together. To

validate tile selection, the compiler must ensure all being stored at once is within the

capacity of the on-chip memory being used. For the Global Scratchpad, the capacity

can be calculated by multiplying the depth attribute by the addressable element size:

224× 1024 = 229, 376 bits, or 28,672 bytes.
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Figure 3.4: ACG interconnection examples

When it comes to generating code for transferring data on and off a DNN accelerator,

a single binary code is often insufficient due to the limitations imposed by the interconnection

between on and off-chip memory. For instance, DRAM in Figure 3.2a is connected to Global

Scratchpad through a bidirectional Off-Chip Memory Interface interconnection. This

link constrains the amount of data in bits transferred at a time, or may allow for more

than one unit of Global Scratchpad data to be moved in a given cycle. In the running

example, a directed edge called Mem. Interface represents these types of interconnection

which represent the supported programmable communication capabilities. The directed

ACG edges use the bandwidth attribute to define the amount of data in bits capable of

being transmitted in a single operation as shown in Figure 3.4. This information is crucial

during compilation, as DNN accelerators provide more flexible data transfer capabilities

allowing variable-sized data transfers between on and off-chip memory. Furthermore, the

bandwidth determines the number of memory requests the compiler needs to generate for

this specific edge to load a tile of data.

In addition, the Interconnection is capable of sending data to multiple parallel

programmable functional units, with unique data processing properties, therefore requiring

different bandwidths. To distinguish between the different data transmission properties

between a single interconnection and different DNN accelerator components, the ACG
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includes several Interconnection edges with unique bandwidths.

This is particularly important when making scheduling decisions, because a coarse-

grained operation could be mapped to multiple parallel functional units with hardware-

controlled synchronization, but the interconnection between on-chip storage and certain

functional units may require multiple data transfer operations for sending the necessary

operand data.

Compute

Scalar 
Unit

Vector 
Unit

Matrix Unit

(i16,1)=ADD((i16,1),(i16,1))

(i32,1)=MUL((i16,1),(i16,1))

(i32,2)=MAC((i16,2),(i16,2),(i32,2))

(i16,2)=ADD((i16,2),(i16,2))

(i32,1,2)=MMUL((i16,1,2),(i16,2,2))

(i32,1)=ADD((i32,1),(i32,1))

(i32,2)=MUL((i32,2),(i32,2))

Figure 3.5: ACG compute nodes and their capabilities.

DNN accelerators provide unique opportunities for mapping coarse-grained oper-

ations to a variety of compute resources, as shown in Figure 3.2a, which includes a 2×2

Matrix Unit, 2-wide Vector Unit, and Scalar Unit. The ACG represents programmable

functional units as compute nodes, using an attribute called capabilities to describe

the coarse-grained functionality supported by the corresponding architecture component.

Figure 3.5 demonstrates capabilities for each compute in Figure 3.2b, with each compute

node supporting varying granularity, datatype, and number of operations. Capabilities
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encapsulate opportunities for parallelism and type-specific operations in the compute nodes.

They are defined by an operation name and an ordered list of datatype and element

size pairs for each input/output operand associated with the operation. A subset of the

supported operations are defined in Table 3.1. For example, the Vector Unit supports the

ADD operation, taking two input operands with two, 16-bit integer elements and generates

two 16-bit integer output elements. The sizes and datatypes are included in the operand

specification because the specialized compute units in DNN accelerators are capable of

performing different operations in parallel on varying kinds of operand datatypes and sizes.

By defining capabilities this way, the compiler can identify which functional units can

Table 3.1: Subset of supported capabilities and their definitions.

Type Name Description

Unary

RELU Rectified Linear Unit function.
SIGMOID Logistic sigmoid.
TANH Hyperbolic tangent function.

Binary

ADD/SUB Element-wise addition and subtraction.
MUL/DIV Element-wise multiplication and division.
MAX/MIN Element-wise maximum/minimum.
MMUL Matrix-matrix multiplication.

Ternary MAC Multiply-accumulate.
GEMM General Matrix Multiply.

execute parts of the DNN layer in parallel by matching the operation name and data type

to the functional unit capability, and then breaking the coarse grained DNN operation into

the same size chunks. To demonstrate this, consider an element-wise addition operation

specified as: (i16,3)=ADD((i16,3),(i16,3)). The compiler can decompose this operation

into a scalar addition on the Scalar Unit and a vector addition on the Vector Unit, as

both compute nodes support 16-bit integer addition at different granularities. To ensure

the full range of layer mappings are exposed to the compiler, capabilities defined for a

compute do not require one-to-one mappings between capability primitive and a functional

unit’s mnemonic. As an example, the Vector Unit might not directly support a multiply-

accumulate (MAC) operation using a single mnemonic, but it can be defined as a capability

by breaking it into separate multiply-add mnemonics.
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Mnemonics

Thus far, the ACG has described the structure and programmability of a DNN

accelerator, but the mnemonics which can be composed to carry out the data movement and

operations represented in the ACG must also be defined to generate executable binaries. In

contrast to general-purpose processors which use instructions and assume a von Neumann

compute model, different DNN accelerators depend on different compute models with

unique machine code semantics. Thus, machine codes for a DNN accelerator are defined as

mnemonics stored as an ACG attribute for generating sequences of mnemonic code. Each

individual mnemonic is defined with customizeable attributes for analysis/optimization,

and an ordered list of named fields with fixed bitwidth, which can represent either a

constant number or an enumerated set of values. As an example, a mnemonic with the

ADD id is defined above and includes 4 fields, where src1,src2 and dst are constant fields

representing the starting addresses in scratchpad, and target is an enumerated value

field which can be set to one of SCALAR or VECTOR depending on the functional unit to

be executed on. By generically defining mnemonics in this manner, they can be used for

different types of DNN accelerators without binding the mnemonics to certain execution

semantics.

3.3 Codelets

To flexibly enable DNN compilation to domain-specific architectures, a programming

abstraction must capture both the semantics of an operation, and the relevant microar-

chitecture components it is tied to. In addition, a construct for enumerating the different

types of macro-mnemonics required for code generation must be designed. Covenant uses

compute kernel abstractions called Codelets which are complimentary to the ACG to enable

compilation. Codelets are defined prior to compilation as a sequence of operations on
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mnemonic ∈Mnemonic ::= mnemonic name(opcode){field∗, attr∗}

(a) Mnemonic definition syntax.

# Example: ADD #3,#0,#1, VECTOR
mnemonic ADD(3) {

ifield("SRC1_ADDR",8),
ifield("SRC2_ADDR",8),
ifield("DST_ADDR",8),
efield("TGT", 1, ["SCALAR","VECTOR"])

}

(b) Example of ADD mnemonic definition.

Figure 3.6: Example of a mnemonic definition.

parametric-shaped operands called surrogates which represent DNN layers. Initially, the

operations do not include architecture-specific details, which enables their portability across

different architectures. However, during Covenant compilation each Codelet is gradually

transformed to define the sequence and mapping of operations based on an ACG. Codelets

are declared using a DNN layer name, and are composed of compute, transfer, and loop

operations which represent operations on tensors, movement of data, and repetition of

operations. As an example, an add Codelet can be defined as shown in Figure 3.7a. To

integrate ACG information into the compiler, Codelet operations rely on different types of

surrogate variables to encompass both data attributes (e.g., datatype, shape) and ACG

location throughout execution.

3.3.1 Surrogate Variables

The process for generating valid sequences and mappings of operations on data is

inherently tied to accelerator attributes. As such, surrogate variables in Codelets encode

shape information, datatype and ACG location:
x=inp([dim1,...,dimN],dtype,loc);

Data movement is tracked by requiring surrogate variables to be associated with a single

61



cdlt add {
N=param();
a=inp([N],null,null);
b=inp([N],null,null);
c=out([N],null,null);
loop n(N) {

c[n]=compute(null,"ADD",a[n],b[n]);
}

}

(a) Initial Codelet.

cdlt add {
# Size and datatype are set
a=inp([12],i16,null);
b=inp([12],i16,null);
c=out([12],i16,null);
loop n(12) { # Number of iterations is set

c[n]=compute(null,"ADD",a[n],b[n]);
}

}

(b) Codelet mapped to a DNN layer.

Figure 3.7: Example of a add Codelet.

ACG location, defined by the loc attribute. Using single location surrogates has the added

benefit of distinguishing between a DNN layer input and a tile generated from operand

data because they will each be represented by different variables with a similarly different

shape and layout in memory. To further simplify Codelet compilation, different types of

surrogate variable with unique semantics are used. For instance, Codelets are defined

with the basic assumption that it will receive a certain number of inputs and generate

outputs, defined as inp and out type surrogates. In addition, each DNN layer performs

similar sets of operations on different shaped tensors, and sometimes use parameters to

define how the layer is executed, both of which are represented as param surrogates. Prior

to compilation, other unset fields such as the location and datatype are set to null to

indicate they have not been assigned. When a relu layer is mapped to a Codelet, each

param surrogate is replaced with with the corresponding layer-specific value, which results

in known input/output sizes and operation sizes as shown in Figure 3.7b The datatype
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is also set during the layer mapping, and is assumed to be provided in the DNN layer

specification.

Once a Codelet has been mapped to a DNN layer instance, the Covenant compiler

applies ACG attributes to transform the Codelet. To begin, the compiler assumes that

inp and out surrogates are stored on the highest level of the ACG memory hierarchy,

identified as the memory node with the longest path to each functional unit. Once the

operand surrogates are mapped, computations are mapped to compute nodes in the ACG

and data movement operation to and from the target compute node are added. The last

surrogate type, locals, represent data stored on the intermediate nodes on the path from

an inp location to compute node location or compute node location to an out location.

Each local surrogate is created as a result of transfer and compute operations, and their

attributes are inferred based on the source operation as we will discuss below.

3.3.2 Codelet Operations

DNN accelerators provide diverse sets of programmable compute and memory

resources for enabling more parallelism when it comes to computation and additional

opportunity for data reuse due to programmable memory. In contrast to von Neumann

architectures which use uniform memory accesses and sequential computation models,

scheduling for DNN accelerators adds an extra layer of difficulty by having to keep track

of where data is stored and where computation is occurring. Codelets address these

complexities using three categories of operations to represent DNN operations: loop,

transfer and compute. Each operation operations type has a fixed set of attributes which

determine layer-specific and architecture-specific properties required for scheduling and

code generation. To demonstrate how the Covenant compiler uses these constructs to

handle the added complexity we will reference the example shown in Figure 3.8. In the

example, the add Codelet shown in Figure 3.8b is targeting the ACG in Figure 3.8a, and
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MEM1 MEM2

PE1

PE2

bandwidth=64

data_width=8
banks=2

depth=1024

(i16,1)=ADD((i16,1),(i16,1))

(i16,2)=ADD((i16,2),(i16,2))

(a) Example ACG use for compilation.

cdlt add {
a=inp([12],i16,"MEM1");
b=inp([12],i16,"MEM1");
c=out([12],i16,"MEM1");
c1=transfer(i16(0),"MEM2",[2]);
loop n(0,6,2) {
# Using only 25% of bandwidth!
a1=transfer(a[n],"MEM2",[2]);
# Much more available memory!
b1=transfer(b[n],"MEM2",[2]);
# Unused PE!
c1[0]=compute("PE2","ADD",a1,b1);
transfer(c1,c[n],[2]);

}
}

(b) Codelet prior to being fully scheduled.

cdlt add {
a=inp([12],i16,"MEM1");
b=inp([12],i16,"MEM1");
c=out([12],i16,"MEM1");
c1=transfer(i16(0),"MEM2",[6]);
loop n(2,stride=6) {

# Tile loops, maximum bandwidth use
a1=transfer(a[n],"MEM2",[6]);
b1=transfer(b[n],"MEM2",[6]);
loop n1(2,stride=3) {
# Split operations between PE1 and PE2, in parallel
c1[n1]=compute("PE2","ADD",a1[n1],b1[n1]);
c1[n1+2]=compute("PE1","ADD",a1[n1+2],b1[n1+2]);

}
transfer(c1,c[n],[6]);

}
}

(c) Scheduled Codelet

Figure 3.8: Example Codelet scheduling using an ACG.
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the the starting location of inp and out surrogates is set to MEM1.

Compute operations: To accommodate the variation in operations supported by different

compute units, the compute operations are defined using the coarse-grained capabilities

described in Section 3.2.1, and operate on tensor operands. Every compute operation has

is defined with the ACG compute node it is mapped to, it’s capability name, and the

surrogate operands and their offsets:
c[i]=compute(loc,capability, op1[off1], op2[off2],...,opN[off3]);

To specify tensor offsets, compute operands can be indexed using loop operations, which

can be converted to address offsets for programmable memory by combining the size of the

surrogate and the addressing information for it’s ACG location.

The ADD compute operation in Figure 3.8b can be mapped to either PE1 or PE2,

as both include the supported capability but with different granularities. The compiler

automatically determines the mapping by selecting the ACG node capable of performing the

most operations at a time, PE2 in this case, because it can do two element-wise additions

at a time. Once selected, the Covenant compiler updates the location field in the compute

operation with the target compute node.

Transfer operations After mapping each compute operations in the Codelet, the compiler

orchestrates data movement across programmable memory by adding explicit transfer

operation to the Codelet. transfer operations are used in Codelets to represent data

movements across a DNN accelerator, explicitly codifying scheduling of data locations as

required by domain-specific compilers. In Figure 3.8b, this can be accomplished by first

finding the shortest path between MEM1 and PE2 and adding transfer operations for each

operand and each edge. transfer operations are specified with a source, destination, and

the transfer size in number of source elements in each dimension of the source operation.

The semantics of a transfer operation can differ depending on the type of source and

destination used, which accommodates the different operations required by programmable
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memory:
dst=transfer(src[i],"MEM1", [n]); # Move data to MEM1
dst=transfer(i16(0),"MEM1", [n]); # Allocate new memory at MEM1
transfer(src[i],dst[i], [n]); # Overwrite data stored in dst

In the first two examples, the destination is specified by an ACG node name, which tells the

compiler that memory needs to be allocated at that location and a new local surrogate is

generated. When the source of allocation transfers is an operand with an index offset, the

compiler will generate a local surrogate with n elements as its size, the same datatype

as the src, at MEM1. Alternatively, new memory can be allocated for reuse if the source

operand is a constant value which includes its type and size. In cases where the destination

is an operand such as dst, memory at dst location will be overwritten and no additional

surrogates will be generated.

To determine the needed transfer type for Figure 3.8b, the Covenant compiler adds

transfer operations for each of the edges between the source operand location and compute

target. Specifically, the compiler generates new memory allocation operations necessary for

storing the outputs of ADD on MEM1 as shown in Figure 3.8c. The compiler also generates

transfer operations for each inp to the intermediate memory nodes. Lastly, the compiler

must send the on-chip results stored in MEM2 to MEM1, which will write data to the location

of c. Once inserted, each transfer operation can be combined to calculate the cumulative

size of the data for each memory node at different points in the Codelet by tracking the

transfer operations and their sizes, as well as operand datatypes.

Loop operations: Lastly, to represent repeated operations, addressing offsets, and

operations execution amounts, loop operations with the same semantic meaning as “for”

loops are used. To satisfy the need for operand address offsets, loop operations can be

used as indices for operands in both transfer and compute operations, which is commonly

used in DNN operation descriptions to specify which tensor elements are being operated

on. Each loop operation is used for specifying DNN layer semantics, and therefore does
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not include attributes relating to the ACG. loop operations are created using a variable

name, lower and upper iteration bounds, the stride, and opening a scope for execution

using curly braces:
loop i(0,6,2) { ... } # Iterate from 0 to 6, stride=2

To use loops as indices for surrogates, loop name is put inside brackets alongside a surrogate

to represent an address offset. A key component of compilation is tiling, and loops offer a

familiar construct to apply tiling transformations, as loop splitting is a commonly technique

for tiling on general purpose processors. When tiling a Codelet, loops are split into groups

according to the number of transfers required to send data from it’s source to the compute

destination. Splitting a loop operations consists of factoring the number of iterations into

an outer loop operations with a step size corresponding to how large a tile will be, and an

inner loop operations which has a range equivalent to the outer loops step size.

3.3.3 Macro-Mnemonics

For DNN accelerators, generating valid mnemonics is conditioned on which functional

unit is being used because the same operation can generate different mnemonics depending

on the compute unit. The Covenant compiler ensures valid code generation by combining

operations types, operand types, and their ACG node attributes to select pre-defined

functions for generating sequences of mnemonics called macro-mnemonics. These macro-

mnemonics use the Codelet operation type it is matched with, the ACG node(s) it is

associated with, and the containing Codelet as contextual input to define mnemonics

generation. Each mnemonic is generated by populating it’s fields with either statically

determined values or by using attributes of Codelet operations.
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3.4 Enabling Optimization

Compiler optimizations for DNNs have been shown to enable significant performance

improvements when targeting CPU and GPU [10, 122]. However, state-of-the-art, stochastic

optimization techniques which rely on performance measurements to guide the algorithm

cannot be applied to domain-specific architectures without the ability to generate executable

code. When targeting domain-specific architectures, optimizations have the potential to

offer even greater benefits due to their tendency to provide more compute and memory

resources with greater programmability.

The Covenant compiler is intended to be a community driven project which improves

as a crowd-sourced effort. Therefore, the initial goal is to provide a framework which

enables new and existing optimization algorithms to be constructed and benefit from the

use of the ACG rather than introducing new optimizations. Below, we discuss how existing

optimizations can be transformed by integrating architectural details into the algorithm.

Algorithm 3: Codelet Tiling Validation
function ValidTiling(codelet, ACG)

let V ← ∅ // Valid tilings
let fi =loop iteration factors for loopi ∈ codelet
let P =factor permutations ∈ fi
for each p ∈ P do

let constraint_sat = True
// Keep track of data stored on each ACG storage node
let storage[s] = 0 for each storage node s ∈ ACG
for each t =transfer ∈ codelet do

let p_t = {factor ∈ p|factor ∈ t.offsets}
let xfer_size = t.operand.dtype.bits×Π(p_t)
storage[t.dst]+ = xfer_size // Update t.dst storage
if (xfer_size mod t.src.data_width) ̸= 0 or storage[t.dst] > t.dst.capacity
then

constraint_sat = False
break

if constraint_sat == True then
V = V + p

return V

Codelet optimization passes are defined as functions which take an individual

Codelet and the ACG as arguments, and return the transformed Codelet. Providing the
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ACG as an argument allows for retrieval of certain characteristics embedded in the ACG

because Codelet operations only contain the ACG node names as attributes. The attributes

embedded in ACG nodes bolster common optimizations used in traditional compilers which

might otherwise be applied using a heuristic.

Tiling Validation is one example of commonly used optimizations is loop tiling, where

loops are grouped into smaller blocks of operations on tiles of data to increase the data

locality as previously discussed. In contrast to other frameworks, tiling is built into

Covenant scheduling algorithm rather than being an optimization pass, although further

optimization of tile selection can be implemented as a Codelet optimization. Here, we show

how tiling validation is performed in the Covenant compiler, and can be extended to search-

based optimization passes. When tiling operations for targeting general purpose processors,

loop ranges can be split using almost any permutation of numbers which are factors of the

loop iterations because memory is typically hardware-controlled which prevents invalid

memory requests. In contrast, domain-specific architectures often provide programmable

memory where certain tiling permutations will lead to invalid programs instead of slower

programs. As shown in Figure 3, Covenant validates tiling by first collecting all valid

factors of the Codelet loop ranges in fi, and then generating all unique combinations of

those factors in P . The first concern for tile validation is sufficient memory space to store

each tile, which is a map of memory ACG nodes to data sizes,storage, is initialized to 0

to track total storage for the permutation p. Each factor in p represents a possible stride

for a loop operation, and each transfer operation uses loop operation as index offsets.

This allows the transfer size to be computed using the product of loop strides and the

datatype size of the transfer operand, t.operand.dtype.bits. Once the transfer_size is

computed, it is added to the destination memory node in t. The tiling can be validated by

first checking if the transfer_size is divisible by the data width of the source memory

node to ensure addressability, and then the capacity of destination memory node is verified.
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If these constraints are satisfied, the tiling permutation is validated and is added to a set

of possible tilings for final scheduling.

Loop Unrolling Loop unrolling is another common optimization, used to reduce the

impact of loop branching as well as memory overheads by transferring more data in a loop

body and unrolling computations for the transferred data. Using the ACG, opportunities

for loop unrolling can be identified by iterating over transfer operations, and checking the

bandwidth of the edge connecting the source and destination ACG nodes. If the transfer

size is less than the edge bandwidth, more data can be transferred in a single operation if

the destination ACG node does not reach maximum capacity.

Parallelization A central focus of domain-specific architectures for DNNs is providing

as many opportunities for parallelism as possible. Taking advantage of the parallelism in

such architectures is not always trivial, especially when heterogeneous compute cores are

available with varying capabilities. However, the ACG simplifies parallelism identification

through the capability attributes in compute nodes, which can be combined to form the

equivalent operation and therefore be performed in parallel. As an example, Figure 3.9a

demonstrates an ReLU operation on two 25-element tensors targeting an ACG composed

of two compute nodes: a “SIMD” capable of performing four ReLU operations at a time,

and a processing engine (“PE”) capable of a scalar ReLU. The two tensors do not factor

perfectly into the SIMD, which demonstrates a common difficulty when trying to identify

parallelization. One solution to this problem is to introduce additional operations which

pad zeros to each of the tensors so that they can be tiled correctly. Instead, the ACG can

be used to identify other compute units, namely “PE”, capable of being combined with the

SIMD to form tiles of parallel operations.

Mnemonic Packing For micro-architectures using Very Long Instruction Words (VLIW),

multiple instructions can be performed in parallel by “packing” them together. In these

architectures, compiler needs to identify independent instructions and pack them to increase
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cdlt relu {
a = inp("DRAM",[25],i32);
c = inp("DRAM", [25], i32);
loop i(25) {

c[i]=compute("PE","RELU",a[i]);
}

}

(a) Pre-scheduled operations

cdlt relu {
a = inp("DRAM",[25],i32);
c = out("DRAM", [25], i32);
loop i(25,stride=5) {

# SIMD: RELU((i32,4),(i32,4)), PE: RELU((i32,1),(i32,1))
c[i]=compute("SIMD","RELU",a[i]);
c[i+4]=compute("PE","RELU",a[i+4]);

}
}

(b) Parallelized operations

Figure 3.9: Parallelization Identification Using an ACG.

utilization. With Codelet operation being coarsely defined to represent multiple mnemonics,

forming mnemonic packets is performed during code generation as an optimization. To

form mnemonic packets, ACG resource availability as well as mnemonic dependencies need

to be identified. To enable packing, the ACG node executing each mnemonic is identified

to determine the resources consumed by a VLIW packet and integrated into the packing

algorithm. For dependency analysis, the field attributes in mnemonics can be annotated

with read and write semantics to identify sequences of independent mnemonics. Using

both of these mnemonic attributes allows packet formation by iterating over mnemonics

for a Codelet and creating a packet with a single mnemonic occupying the tgt resource.

Then, independent mnemonics capable of execution in the current packet, determined by

the consumed ACG resources and available VLIW slots, can be hoisted into the current

packet.
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Table 3.2: DNN Layer Benchmarks.

Model Layer N IH/ IW OH/ OW KH/ KW IC/ OC # Heads

BERT-LG

GEMM1 384 1 1 1 1024/4096 -
GEMM2 384 1 1 1 4096/1024 -
ATN1-GEMM 384 1 1 1 1024/64 16
ATN2-GEMM 384 1 1 1 64/384 16
ATN3-GEMM 384 1 1 1 384/64 16
ATN4-GEMM 384 1 1 1 1024/1024 1

DLRM

FC1 1 1 1 1 745/367 -
FC2 1 1 1 1 367/512 -
FC3 1 1 1 1 512/256 -
FC4 1 1 1 1 256/1 -

InceptionV3 FC1 1 1 1 1 2048/1000 -
CONV1 1 299 149 3 3/32 -

MobileNetV3 CONV1 1 224 112 3 3/16 -
CONV2 1 112 112 3 16/64 -

ResNet50
FC1 1 1 1 1 512/1000 -
CONV1 1 224 112 7 3/64 -
CONV2 1 224 56 3 64/64 -

3.5 Evaluation

3.5.1 Experimental Setup

Benchmarks. To evaluate covenant, we use a comprehensive set of benchmarks from

various classes of DNNs including image classification (InceptionV3 [113], ResNet-50 [48]),

object detection (MobileNetV3 [52]), natural language processing (BERT-Large [32]), and

neural recommendation systems (DLRM [85]). For image classification and object detection

networks we choose convolutional and fully-connected layers that make up the majority of

these networks. For BERT-Large, we benchmark the GEMM layers and the self-attention

layer of an encoder block. Finally, for DLRM, we benchmark its Multi-Layer Perceptron

(MLP) fully-connected layers. Table 3.2 lists all the DNN layer benchmarks with their layer

dimensions. N shows the sequence length for language models and the batch size for other

DNNs. IW/IH and OW/OH show the input/output width/height dimensions of the layers,

while KW/KH parameters specify the weight kernel dimensions. Note that for FC/GEMM

layers, these dimensions are equal to one. Finally, IC/OC column show the number of

input/output channels for the DNN layers. We use INT8 precision for inputs/weights and

INT32 precision for outputs of layers.
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Target Architectures

To demonstrate the flexibility of Covenant for multi-target compilation, we use two

distinct architectures: Qualcomm© Hexagon™ HVX 1 DSP [24] and an open-source DNN

accelerator [106]. For each architecture, we use the ACG DSL for Covenant compilation.

DNNWeaver. DNNWeaver is a parameterizable DNN architecture which consists of two

main compute components: (1) a systolic array connected to several on-chip buffers that is

capable of executing various-sized convolution and GEMM layers, and (2) a SIMD vector

processing array connected to two vector scratchpad memories that supports the remainder

of layers (e.g. pooling, activation, normalization, etc.) As shown in Figure 3.10a, the

systolic array is connected to four separate on-chip buffers by unidirectional edges, where

it reads input activation data, model weights, and bias data from IBUF, WBUF, and BBUF

buffers, respectively, and writes output to OBUF buffer. Additionally, the SIMD array is

connected to OBUF with a unidirectional edge to consume its data, while is also connected

Syst ol i c 
Ar r aySI MD WBUF

OBUFVMEM1 VMEM2 I BUFBBUF

DRAM

(a) DNNWeaver ACG

GRF

XUNI T1 XUNI T2 LD/ ST1 LD/ ST2

L2

VRF

MPY1 MPY2 SHI FT XLANE

(b) Hexagon ACG.

Figure 3.10: Visualization of ACGs for DNNWeaver and Hexagon. Blue nodes are
memory and green nodes are compute.

1Qualcomm Hexagon HVX is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
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Table 3.3: A Subset DNNWeaver and Hexagon ACG Attributes.

Architecture ACG Node Example Attributes

DNNWeaver

Systolic Array (i32,64)=GEMM((i8,64),(i8,64,64),(i32,64))
SIMD (i32,64)=ADD/SUB((i32,64),(i32,64))

(i32,64)=SIGMOID/TANH((i32,64))
VMEM1/2 data_width=32; banks=64; depth=2048
IBUF data_width=8; banks=64; depth=2048
WBUF data_width=8; banks=4096; depth=4096
OBUF data_width=32; banks=64; depth=2048
BBUF data_width=32; banks=64; depth=1024
DRAM data_width=8; banks=1; depth=32 billion

Hexagon

CORE (u8,8)=ADD((u8,8),(u8,8))
(i32,1)=ADD((i32,1),(i32,1))
(i32,1)=MAC((u8,4),(u8,4),(i32,1))
(i32,1)=MUL((i32,1),(i32,1))

HVX (i32,32)=ADD/SUB((i32,32),(i32,32))
(i32,32)=MVMUL((u8,32,4),(u8,4))
(i32,32)=GEMM((u8,32,4),(u8,4),(i32,32))
(u32,32)=GEMM((u8,32,4),(u8,4),(u32,32))

GRF data_width=32;banks=4;depth=32
VRF data_width=1024;banks=32;depth=32
L2 data_width=8;banks=32;depth=1024

with bidirectional edges to two scratchpad memories (VMEM1/2) to read/write vectors

during computations. Table 3.3 lists a subset of attributes for DNNWeaver ACG nodes.

Hexagon. Qualcomm© Hexagon™ HVX 1 is a Digital Signal Processor (DSP) created by

Qualcomm Technologies, which uses VLIW instructions and includes vector extensions.

Figure 3.10b illustrates the ACG of HVX. As shown, HVX incorporates a scalar core

that supports a diverse set of scalar instructions (Add, Mul, MAC, Max, etc.) and uses

a General Register File (GRF) for operand read/write. In addition to the scalar core,

Hexagon includes an additional SIMD processor for vector instructions, with 32 lanes

each capable of performing a range of four 8-bit operations to a single 32-bit operation

per lane, called Hexagon Vector Extensions (HVX). As opposed to DNNWeaver where all

the data transactions between DRAM and on-chip buffers are governed explicitly by the

instructions, Hexagon HVX is similar to typical general-purpose processors and incorporates

hardware-managed caching mechanisms for loading/storing from/to DRAM, which is why

DRAM is not included in the ACG.
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Performance Measurements and Comparisons

Baseline frameworks. We compare the performance of our proposed Covenant compila-

tion framework to two other frameworks: nnlib and TVM. For all three comparison points

we use the Hexagon DSP as the target architecture and evaluate the performance of the

compiled benchmark DNN layers. For benchmark baselines, we use optimized PyTorch [96]

implementations on an Intel Xeon E7 CPU. nnlib [55] is a framework developed by Qualcomm

for offloading DNN operations to Hexagon, comprising a set of hand-tuned C code and

assembly kernels for DNN layers. TVM [19] is a compilation stack that supports a variety of

general-purpose architectures as well as its own custom accelerator, VTA [81]. To compile

to Hexagon DSP using TVM, we used hand-tuned schedules and manually defined intrinsics

developed by Qualcomm experts, which generate optimized LLVM code for Hexagon.

Improvement over Eyeriss
Nnlib TVM Covenant

BERT-GEMM1 138.91 84.97 85.12
BERT-GEMM2 148.46 85.24 85.28
BERT-Self-Attn 114.22 83.58 84.16
DLRM-FC1 54.62 83.63 76.09
DLRM-FC2 50.134 82.55 77.7
DLRM-FC3 42.64 82.01 67.51
DLRM-FC4 21.15 56.59 24.8
InceptionV3-C1 32.0853420356.9563423665.34134277
InceptionV3-FC1 30.1936691584.9004388483.86184613
MobileNetV3-C1 32.0673546356.9529738465.29133007
MobileNetV3-C2 85.4404674879.3159799981.56613251
ResNet50-C1 89.2872664979.8629713781.91738902
ResNet50-C2 127.345547683.7045354384.31741182
ResNet50-FC1 28.7241030183.9674349879.77538925
Geomean 58.14 76.56 71.82
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Figure 3.11: Performance comparison of various frameworks.

Performance measurements. To measure the performance of the codes compiled by

Covenant, nnlib, and TVM targeting Hexagon DSP, we use the built-in cycle-accurate

Hexagon SDK simulator developed by Qualcomm experts. To assure a fair comparison, we
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include the device execution time, which manifests the actual runtime of the DNN layers

on the target hardware, for all the comparison points and use that without considering host

execution overheads. To evaluate the capability of the Covenant framework in targeting

multiple architectures, we also use DNNWeaver, an open-source DNN accelerator [106].

To measure the runtime of the Covenant compiled code on DNNWeaver, we used its

open-sourced cycle-accurate simulator [2]. To verify the correctness of the compiled codes

for all the frameworks and target architectures, we compare the outputs generated by the

simulators with the software implementation of the DNN layers in PyTorch.

3.5.2 Results

Framework Comparison

Figure 3.11 shows the speedup enabled by the three compilation frameworks targeting

Hexagon DSP, compared to a baseline CPU implementation. Across all benchmarks,

Covenant provides an average of 31.3% improvement compared to nnlib’s hand-tuned kernels.

Covenant also achieves 93.8% of TVM’s performance on average. As Figure 3.11 shows,

all three frameworks perform better on larger layers having more operations. This results

from the compounding parallelization optimizations across more loop iterations. Among all

benchmarks, BERT-GEMM1 and BERT-GEMM2 layers see the maximum performance gains,

as the larger number of computations in these layers provide highest code optimization

opportunities. Relative to TVM, the DLRM-FC4 has a smaller speedup in Covenant because

it includes a branch instruction for the single-iteration OC loop, whereas TVM generated

code avoids this overhead. With regard to nnlib, the improvements are more significant

for larger layers, due to inclusion of hand-tuned tensor transformations allowing more

MAC operations per cycle. However, these transformations can be detrimental for smaller

layers (e.g., DLRM) and convolutional layers where the total size of reduction dimensions
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is smaller because the transformations cannot maximally utilized, and the overhead is

magnified. Lastly, TVM is also able to achieve consistent speedups across each benchmark,

similar to Covenant, with the added advantage of LLVM optimization passes. As a result,

TVM manages to achieve high performance for even small benchmarks such as DLRM-FC4,

but does not attain the significant speedups of nnlib which required specialized tensor

transformations.

Optimization Results

Improvement over Eyeriss
Vectorizati

on
Packing Unrolling

BERT-GEMM1 47.80 127.33 169.69
BERT-GEMM2 47.95 127.83 170.41
BERT-Self-Attn 47.71267437126.9827131169.1567104
DLRM-FC1 46.17 116.70 151.37
DLRM-FC2 45.13 111.13 142.35
DLRM-FC3 44.31 105.96 133.87
DLRM-FC4 21.79 30.19 30.19
InceptionV3-C1 38.60 94.19 118.58
InceptionV3-FC1 47.68 126.11 167.43
MobileNetV3-C1 38.59 94.13 118.49
MobileNetV3-C2 46.05 120.79 159.44
ResNet50-C1 46.24 121.47 160.48
ResNet50-C2 47.49 126.08 167.66
ResNet50-FC1 46.74 120.78 158.44
Geomean 43.00 105.59 135.19
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Figure 3.12: Performance improvements based on code optimizations implemented in
Covenant.

We evaluate the effectiveness of three Codelet optimizations when targeting

Qualcomm© Hexagon™ HVX1 DSP [24]. Figure 3.12 shows the benefits across the bench-

mark DNNs enabled by the optimizations. The baseline is vanilla Covenant implementations

for the DNN layers. We first use Vectorization based on the parallelization techniques

described in Section 3.4. We then enable Mnemonic Packing, as described in Section 3.4, on

top of Vectorization. Finally, we add the third optimization, Loop Unrolling as discussed in

Section 3.4. As the figure 3.12 shows, Vectorization is the most effective technique. This is
1Qualcomm Hexagon HVX is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
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Improvement over Eyeriss
Hexagon DNNWeave

r
BERT-GEMM1 85.12 3546.390587
BERT-GEMM2 85.28 1401.268919
BERT-Self-Attn 84.16 1410.411333
DLRM-FC1 76.09 354.9422126
DLRM-FC2 77.7 252.9449312
DLRM-FC3 67.51 354.32936153
DLRM-FC4 24.8 80.27679075
InceptionV3-C1 65.34134277 614.5037707
InceptionV3-FC1 83.86184613 154.93095528
MobileNetV3-C1 65.29133007 259.8786307
MobileNetV3-C2 81.56613251332.9635873
ResNet50-C1 81.91738902479.5408333
ResNet50-C2 84.31741182 2217.361153
ResNet50-FC1 79.77538925301.60397067
Geomean 71.82 490.97

Sp
ee

du
p/

Ba
se

lin
e 

C
PU

 Im
pl

em
en

ta
tio

n

0.0x

100.0x

200.0x

300.0x

400.0x

500.0x

BERT-GEMM1

BERT-GEMM2

BERT-Self-Attn
DLRM-FC1
DLRM-FC2
DLRM-FC3
DLRM-FC4

InceptionV3-C1

InceptionV3-FC1

MobileNetV3-C1

MobileNetV3-C2

ResNet50-C1

ResNet50-C2

ResNet50-FC1
Geomean
Hexagon DNNWeaver

14
10

.4
x

35
46

.4
x

12
7.

3x

14
01

.3
x

61
4.

5x

22
17

.4
x

49
0.

9x
71

.8
x

Figure 3.13: Performance results of evaluated hardware, while using Covenant for
compilation.

a due to massive data-level parallelism available in both DNN layers, as well as Hexagon’s

Vector Extensions. Among the benchmarks, DLRM-FC4 sees the least improvement due

to its relatively smaller matrix dimensions. On average across all DNN layer benchmarks,

Vectorization achieves 43.0× speedup compared to the baseline CPU implementation.

Mnemonic Packing leverages the mnemonic level parallelism opportunities in compiled

DNN mnemonics to utilize the four available instruction slots in Hexagon DSP VLIW

architecture. On average, it brings about an additional 2.4× performance improvements.

Finally, Loop Unrolling is enabled to facilitate efficient memory accesses, which provides a

1.3× extra performance improvements, on average.

Multi-Target Compilation

To demonstrate the flexibility in targeting various hardware architectures, we use

Covenant to compile to two different styles of architectures. Hexagon DSP is a more

general-purpose-style architecture that supports a wide range of operations. On the other

hand, DNNWeaver is a domain-specific specialized DNN accelerator with a systolic array

architecture that only supports DNN execution. Figure 3.13 shows the performance of
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these two hardwares compared to the baseline CPU implementation. On average, Hexagon

brings 71.8× speedup over baseline CPU, while DNNWeaver provides 490.9× performance

improvements, both using Covenant for compilation. The higher speedups offered by

DNNWeaver are due to two reasons: 1) DNNWeaver harbors 32× more number of compute

resources compared to Hexagon and 2) it utilizes a systolic array architecture which is

specialized for vector-matrix multiplications, as opposed to SIMD architecture of Hexagon

HVX. Across all benchmarks, DNNWeaver performance improvements are more pronounced

for larger DNN layers, as they require large matrix multiplications, suitable for systolic

array architectures.

3.6 Related Work

With the growing interest in DNN accelerators, creating efficient and flexible

compilers for them is increasingly vital. This work fundamentally differs from prior works

in that it integrates a novel accelerator architecture abstraction (ACG) into the compilation

stack through Codelets construct. These two enables seamless reuse of the same compiler

across various accelerators. Below, we discuss the most related works.

Compiler Infrastructure for DNN Accelerators. MLIR [70] and Glow [101] seek to

enable compilation for different targets by offering multiple levels of IR. However, they fall

short of code generation due to not offering a mechanism to describe the target hardware.

Tensorflow’s XLA [6] is another framework that uses a high-level graph IR for compilation

to general-purpose processors and domain-specific Google’s TPUs. Similarly, XLA is a

set of optimizations on a specialized IR that is a representation of the DNN and does not

concern itself with abstractions for the hardware (i.e., ACG and Codelets).

Architecture Abstractions for Scheduling. A prior work has leveraged architecture

abstractions for scheduling on spatial architectures by modeling them as directed graphs [89].
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This work is focused solely on scheduling methodology and does not deal with code

generation, whereas Covenant comes with a complete compilation stack that leverages

Codelets to facilitate use of scheduling techniques for code generation.

Architecture Abstractions for Hardware Generation. A number of prior works have

used DSLs to incorporate architecture features into algorithm specification for the purposes

of hardware generation [87, 68, 63]. LLHD [105] uses MLIR [70] to simplify hardware design

and generation by defining an architecture description language. Covenant fundamentally

differs from these prior works because it aims to leverage architecture abstractions to

compile to various existing hardware as opposed to generating new hardware.

Low-level IRs for DNN Scheduling. Halide [98] and it’s extensions [118] introduced

the idea of distinguishing between computation and schedule to compile image processing

pipelines, and include schedule transformations for common optimizations. TVM [19]

takes inspiration from Halide and uses tensor expressions combined with additional

scheduling operations such as tensorization to optimize code generation. Schedules for

tensor expressions in TVM’s IR support arbitrary transformations regardless of the target

backend, but can be constrained with manual construction of a valid schedule templates for

each tensor expression to constrain code generation [20]. Tensor Comprehensions [115] and

PlaidML [121] automate the scheduling process using tensor-based IRs, yet lack flexibility

for scheduling to new hardware. These works do not propose or integrate an architecture

abstraction into the compiler. Moreover, in contrast to these IRs, the Covenant compiler

performs scheduling by integrating architectural details into Codelets, enabling scheduling

algorithms be reused across DNN operations and different targets.

Schedulers for DNN Operations. Another body of works have focused solely on

scheduling for different architectures. FlexTensor [123] and Ansor [122] automate the

scheduling process by extending TVM’s code generation backend. However, they cannot

perform scheduling for the accelerators without a pre-existing compiler and runtime
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environment. Fireiron [42] is a scheduling language for targeting to only GPUs that explicitly

incorporates data movement into schedule definitions. CoSA [54] is a scheduling framework

that incorporates hardware features into a mixed-integer programming algorithm to form

constraints on schedules, without support for code generation. In contrast, Covenant

compiler leverages the combination of ACGs and Codelets to provide a uniform and

automated compilation framework with code generation backend for targeting to various

DNN accelerators.

3.7 Conclusion

DNN accelerators are introducing a new age of compiler design requiring alternative

constructs and abstractions. This paper defines two such building blocks, ACG and Codelets.

The ACG is an architecture abstraction which makes various components of the accelerator

and their connectivity accessible to the compiler. The ACG is integrated into the Covenant

compiler through the Codelet construct which represents mutable operations on DNNs,

and is progressively transformed into execution mappings and schedules on the ACG.

The encouraging empirical results show this work is an effective step towards developing

compilers, targeting different accelerators.
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Chapter 4

VeriGOOD-ML

4.1 Introduction

Recent advances in machine learning (ML) algorithms have seen a proliferation of new ML

algorithms and architectures, as well as new work on ML accelerators. However, the design

of these accelerators requires intense manual designer effort and is time-consuming. There

is considerable recent interest in real-time machine learning (RTML), where data is sent

to an ML accelerator chiplet through fast interfaces [60] and processed on the chiplet in

real time, with applications ranging from ML tasks in autonomous vehicles (e.g., obstacle

detection, collision avoidance, path planning) to next-generation wireless networks (e.g.,

resource sharing in virtualized radio access networks, channel estimation, channel decoding,

RF fingerprinting). These applications are best supported by building an ability for rapid

translation from an ML algorithm to a hardware implementation.

VeriGOOD-ML is an open-source project [4] that automatically compiles a high-

level description of an ML algorithm (in a standard ML format such as ONNX) to a

register-transfer level (RTL) Verilog implementation with no human in the loop. The

RTL is then taken through synplace-and-route, resulting in a silicon implementation.
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The entire design flow, from architecture design to physical implementation, is guided by

models for performance, power, and area (PPA), working in conjunction with architectural

simulation. This enables the designer to perform cross-layer optimizations to build high-

performance design implementations that can be optimized for various objectives: size,

power, performance, or solution quality (using bitwidth quantization).

The ML algorithm is specified using the Open Neural Network Exchange (ONNX)

format, which is widely supported, thus maximizing interoperability across various program-

ming environments. ONNX represents ML algorithms as a standardized graph to facilitate

interoperability across various development environments, including Google Tensorflow,

Microsoft CNTK, and Facebook PyTorch. The starting point for VeriGOOD-ML is the

PolyMath compiler [62], which translates a high-level ML algorithm description (e.g.,

ONNX) into our intermediate representation (IR). The IR is a hierarchical representation

that we refer to as a simultaneous recursive dataflow graph (sr-DFG) that allows a

hierarchical view into the structure of a design.

VeriGOOD-ML targets ML engines for both training and inference. It uses three core

engines to synthesize hardware from the IR. Two of these are platform-based: TABLA [77],

for general non-DNN ML algorithms (e.g., linear regression, logistic regression, SVM), and

GeneSys for general DNN algorithms. TABLA uses a dataflow architecture; the core

computation engines in GeneSys are a systolic array (for operations such as convolution) and

a SIMD array (for operations such as ReLU and pooling). The platforms are parameterizable,

and it is possible to automatically generate hardware with different numbers of processing

elements, bitwidths, and on-chip memory configurations. A third approach, Axiline, is a

hard-coded engine tailored to specific small ML algorithms: it trades off the flexibility of a

platform, which can run multiple ML algorithms, for a power-efficient implementation that

is tailored to a single algorithm. For TABLA and GeneSys, the platform-based architectures,

PolyMath translates the sr-DFG into “Codelet” templates that implement the ML algorithm
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on an instruction set that is specific to the platform. The Axiline implementation is

synthesized by translating the sr-DFG into dedicated hardware. Our silicon implementation

efforts characterize the PPA of core building blocks and develop methodologies that provide

PPA tradeoffs that generate Verilog with physical implementation considerations.

Throughout the flow, VeriGOOD-ML optimizes the design for performance, pro-

ducing a set of designs with Pareto-optimal performance/power/area (PPA) tradeoffs,

and connecting these with system-level performance metrics that optimize the power and

execution time for implementing an ML algorithm. In particular, a design planner, which

performs floorplanning and power grid generation for the macro-intensive layout, is vital in

ensuring that the back-end implementation delivers high performance. The flow includes

cycle-accurate simulators for each engine, and is coupled with silicon PPA predictors that

can be used to perform design-space exploration, yielding optimized ML hardware engines.

4.2 Compiling ONNX to Platform-Specific Instructions

In this section, we describe how the ONNX description of an ML algorithm is converted to

an intermediate representation (IR), and together with information about the hardware, is

used to perform end-to-end compilation using the PolyMath framework [62] for execution

on TABLA, GeneSys, and Axiline.

Figure 4.1: Translation of a “norm” ONNX node to the equivalent sr-DFG node that
contains all the fine-grained operations that constitute a “norm” operation.
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Figure 4.2: ONNX-to-hardware mapping flow through the sr-DFG and HAG represen-
tations.

Intermediate representation using an sr-DFG: To encapsulate operations at multiple

levels of hierarchy, we devise a simultaneous recursive dataflow graph (sr-DFG), an IR that

is recursively defined with the sr-DFG nodes. The representation facilitates optimization

in several ways: (1) utilizing optimizations that are predeveloped for certain complex

operations (e.g., building a binary tree for the L2 norm or optimizing the flow of data

for convolution) and (2) simultaneously preserving the capability to perform fine-grained

scheduling and mapping optimization.

To translate an ONNX description into an sr-DFG, we traverse the ONNX graph,

whose nodes represent coarse-grained ML operations on multi-dimensional arrays of input

data. During traversal, sr-DFG nodes and edges are generated using the attributes of

each ONNX operation and its inputs/outputs. The operations that comprise each coarse-

grained operation (e.g., multiply-adds that constitute a norm operation, as shown in

Fig. 4.1) are added to each sr-DFG node using instantiations of predefined templates.

We have successfully created sr-DFG representations for a variety of benchmarks that

cover a variety of machine learning algorithms – both non-DNN (linear regression, logistic

regression, support vector machines, recommender systems, backpropagation) and DNN

ML algorithms.

Modeling hardware using a HAG: We model the structure of specific accelerator

platforms by introducing a reusable hardware abstraction called a hierarchical architecture
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graph (HAG), with a corresponding architecture description language embedded in Python

for targeting different types of accelerators with a unified interface. A series of compilation

passes use the HAG for a specific target accelerator for mapping, scheduling, and optimizing

programs on the accelerator. Each HAG is comprised of three types of nodes: for

computations, for on- and off-chip communication, and for storage. In interaction with the

sr-DFG, the HAG enables end-to-end compilation by the introduction of hardware-specific

attributes to the compilation pipeline.

An architecture description language (ADL) is used to represent the HAG. Such an

abstraction enables the compiler to expand its capability from optimizing for single piece

of hardware to a heterogeneous computing environment where there are multiple disparate

processors and accelerators. This ADL is built on top of Python to improve usability

and versatility, easily working in tandem with various machine learning frameworks. To

represent diverse types of accelerators, there are several primary attributes that must

be included in the abstraction: the ability to (a) model hierarchy (as fine-grained as a

single ALU, or as coarse-grained as an entire systolic array); (b) specify compute, storage,

and communication components; and (c) annotate each node with attributes/metadata

including, but not limited to, storage node capacity, communication bandwidth, input

and output ports, latency, and computation node capabilities that describe operations

supported by the architecture. Note that the architecture description is primarily intended

for compilation purposes, and captures design information at a high level, eschewing a

more detailed gate-level description.

Compilation to target accelerators: Having devised an abstract representation of

different types of accelerator architectures, a multi-stage compilation process can be reused

across different HAGs. The stages of compilation, illustrated in Fig. 4.2 consist of:

Operation mapping/scheduling: An sr-DFG is ordered to a sequence of operations, and each

operation will be mapped to a particular component in the HAG according to the sr-DFG
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node operation and the sequence of capabilities that produce the equivalent operation.

In addition, sequences of operations can be fused together according to user-supplied

parameters.

Compilation optimization: A search for optimal compilation parameters is performed

using specifications of the HAG, such as tiling sizes, loop unrolling factors, dataflow,

etc. During this process, data communication instructions/operations, including off-chip

communications for both read/store operations, are added according to these parameters.

Code generation for the target HAG: This step is based on the instantiated capabilities

from the two previous steps. The compiler combines code templates called Codelets with

the sr-DFG node attributes and HAG attributes. Codelets represent instruction templates

for target accelerators. The sr-DFG is converted to this abstraction for every type of

accelerator, with the only difference being the underlying instruction template used for

binary generation. There are four primary types of Codelets: (i) Compute Codelets that

represent instructions for performing computations on data; (ii) Memory Codelets for

instructions that move data from one memory location to another (e.g., load from/store to

off-chip or on-chip memory); (iii) Loop Codelets that repeat operations over a number of

loop levels; and (iv) Control Codelets for instructions that determine program flow. These

Codelets are combined to form operations that match the semantics of execution for a

given sr-DFG node.

The overall compilation flow is depicted in Fig. 4.3, which demonstrates the different

stages as well as the ability to apply architectural attributes to the compiler passes. In

combination with the code templates associated with Codelets, additional compiler passes

were implemented to optimize and transform the program, e.g., datatype transformations,

layout transformations, and padding tensors for GeneSys to map data onto the systolic

array and SIMD array.
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Figure 4.3: Compilation flow combining the HAG and Codelets to apply multiple
stages of transformation and optimization.

4.3 Target Hardware Substrates

In this section, we overview three target substrates for VeriGOOD-ML: TABLA for non-DNN

ML algorithms, GeneSys for DNNs, and Axiline for ultraefficient hardcoded implementations

of small ML algorithms.

4.3.1 The TABLA Platform for Non-DNN ML Algorithms

Overview of the TABLA architecture: The overall TABLA architecture [77] for training

and inference for non-DNN ML algorithms is shown in Figure 4.4 and consists of multiple

levels of hierarchy. An array of processing units (PUs) constitutes the first level. The

PUs are connected through two different busing mechanisms – the “neighbor bus” and the

“global bus.” All PUs are connected to the global bus, and the communication between all

the PUs imposes a high pressure on the global bus. The neighbor bus aims to minimize this

pressure by enabling the adjacent PUs to send their data through it. Moreover, connecting

all PUs to the global bus can result in a race between the PUs. To ensure proper data
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Figure 4.4: An overview of the template-based architecture for the non-DNN accelerator.

transfer between PUs, a bus arbitration module is implemented.

At the next level of hierarchy, each PU comprises of a set of processing engines

(PEs). Similar to buses for inter-PU communication, there are two buses for inter-PE

communication. The bus arbiter consists of a single leader controller per PU and one

follower controller for each PE. The leader controller determines which PE has control of

the bus in a given cycle, and the follower controller has a write buffer and a set of read

buffers (one for each PE/PU), organized as FIFOs. In each cycle, data is popped from the

write buffer of the source PE and written to the read buffer of the destination PE.

Cycle-accurate software simulator: To facilitate testing and verification of the architec-

ture, we have designed and developed a cycle-accurate simulator in software that emulates

the architectural behaviors of the proposed system. The simulator allows the user to provide
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the input program as an sr-DFG file and a configuration file that sets the parameters of

the template architecture described in the above sections such as number of PEs per PU.

Taking the configuration file as an input allows users to further test the behavior of the

architecture with varying degrees of parameterization, e.g., to analyze the performance

impact of changing the number of PEs per PU. Based on cycle-by-cycle analysis, the

simulator can emulate the execution of a given program and output performance metrics

such as total number of cycles, PE and PU utilization, and scratchpad utilization.

4.3.2 The GeneSys Platform for DNN Algorithms

Overview of the GeneSys architecture: The overall system view of the GeneSys DNN

accelerator is shown in Fig. 4.5. The accelerator consists of two core components: a systolic

array and a SIMD array. Data is supplied to the engine through the input buffer (IBUFF),

output buffer (OBUFF), instruction memory (IMEM), weight buffer (WBUFF), and bias

buffer (BBUFF). These interfaces harbor programmable address generator modules and

controller FSMs that together generate the addresses and requests to load or store a tile of

data from/to off-chip memory. The address generators perform strided address pattern

generation and generate addresses in the off-chip memory and read/write the corresponding

data from/to on-chip buffers and populate the on-chip memory. These interfaces also

include tag logic that is in charge of handling double-buffered data transfer to hide the

latencies of Load/Store operations and also facilitate prefetching. Among these interfaces,

the interface for OBUFF and SIMD array handles both load and store operations, while

the other interfaces handle only load operations. These interfaces are fully programmable

through the instruction set architecture (ISA) of the GeneSys accelerator.

The systolic array, which performs convolution and matrix multiplication operations for

the convolution and fully-connected layers, is a 2D array of M×N processing engines (PEs),

equipped with dedicated on-chip weight buffers, as in [106, 107]. To boost the operating
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Figure 4.5: A block diagram of the overall system view of GeneSys, the VeriGOOD-ML
DNN accelerator.
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Figure 4.6: Execution flow of the GeneSys systolic array accelerator.

frequency, we pipeline the inputs and weights across the columns of the array and the

partial sums across the rows of the array. In systolic execution, the inputs (activations) flow

horizontally, are multiplied by the weights in each PE and are then accumulated vertically

along the columns of the systolic array. This systolic execution also facilitates mapping the

matrix-multiplications and convolutions to the array and simplifies the control logic. The

IBUFF is multibanked and each bank feeds a row of the systolic array. The output buffers

are also multibanked, each bank for each column of the systolic array, storing the partial

sums and output activations.

Figure 4.6 depicts a more detailed diagram of the implementation of the systolic

array. Each processing engine consists of (1) a weight scratchpad that stores the weight

values on-chip and (2) a multiply-accumulate unit that performs a multiplication between

the inputs and weights and an accumulation of the partial results to perform the matrix-

multiplication or convolution operation with the systolic array. Each PE is equipped with

four registers that aim to support the pipelined execution: a register for the output results,

a register for the received input that will be forwarded to the adjacent PE in the systolic

array, and two registers for handling the read accesses from the weight scratchpad (one
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register for the read request and one for the read address; the read request and read

addresses for the weight scratchpads are shared across the 2-D array of PEs). Each PE

is a template design and the size of the weight scratchpad, precision of the input, weight,

partial sum and also the bitwidth of the multiply-accumulate logic in addition to the

registers are parameterizable during architectural synthesis, according to the demands of

the application.

For address generation, we design a memory walker module that can automatically

generate the addresses for executing convolution/matrix-multiplication operations on the

systolic array, leveraging the insight that the data layout and memory patterns of DNNs

are generally regular, without branch/jump instructions. This module is configured with a

set of parameters such as the number of loop iterations and the base address in the memory,

and can then generate addresses automatically as:

address = base_address + loop_iterator × stride

The SIMD Vector Unit is a 1×N array that performs computations for DNN layers

other than convolution and fully-connected layers, such as pooling, activation, and other

element-wise operations. The pipeline stages of this SIMD processor are generally similar

to a MIPS processor with a major difference: since memory access patterns in DNNs

are regular, the register file is eliminated to save Load/Store instructions. With this

design, we directly read from the on-chip scratchpads that store the data, execute the

operations, and then write it back to the destination scratchpad. We have designed a

custom ISA to program this architecture. There are two classes of instructions in this ISA:

execution instructions (ALU, CALCULUS, COMPARISON, DATATYPE CAST), and

setup instructions (DATATYPE CONFIG, ITERATOR CONFIG, LOOP).

A training-capable GeneSys implementation consists of additional layers and opera-

tions beyond the inference engine for performing gradient computations and parameter

updates. Training operations must support computations of loss gradient with respect to
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input and weight: for a convolution layer, these are mapped to a convolution operation,

and for a fully connected layer, they are implemented as a GEMM operation. For training,

GeneSys supports a softmax layer, a common generic model for multiple operations (e.g.,

parameter updates for 1D, 2D, and 4D tensors; loss gradient computation for the ReLU layer

and for element-wise addition of two tensors; reduction of a tensor along its dimensions),

and estimated models for the batch normalization layer, including operations during the

forward and backward pass.

GeneSys performance simulator: Our simulator for DNN execution on GeneSys takes

the following two files as inputs: (1) a specification of the hardware configuration, in the

form of a .json file, and (2) the compiler output, as a .json file containing a high-level

description of each DNN layer, e.g., the dimensions of the input/output tensors, order of

execution of the loops, tile sizes for the tensors and datatypes.

The simulation framework is attuned to the fully parameterizable nature of GeneSys

by accepting the specific hardware attributes:

• the dimensions of the 2D PE array, the sizes of each of the on-chip buffers, namely,

WBUFF, IBUFF, OBUFF, and BBUFF for the systolic array, and vectory memory,

immediate memory, and instruction memory buffers for the SIMD array.

• bit-widths of all types of data (filter, input, bias, psum, output for the systolic array;

input, psum, output for the SIMD array).

• the number of cycles required by various arithmetic operations.

• off-chip bandwidth of each memory interface.

For each layer of a DNN, either executed on the systolic array or SIMD array, the simulator

outputs the following performance statistics: the number of accesses for each of the on-

chip buffers for each datatype, the number of accesses for the off-chip DRAM for each
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datatype, the number of accesses for the pipeline registers, the number of various arithmetic

operations, the number of on-chip compute cycles, the number of stall cycles while the

Systolic array or SIMD array remain idle waiting for data to be fetched from the off-chip

DRAM, and the total number of execution cycles.

4.3.3 The Axiline Approach for Hard-Coded ML Hardware

The Axiline generator develops dedicated, hard-coded implementations of small algorithms,

for both ML training and inference, to achieve high performance and low power. For

TABLA and GeneSys, the parameters for the platform can be selected according to target

applications, but may be used to run other applications. In contrast, Axiline is intended

to be very specific to the ML algorithm that it implements, and it trades off adaptability

for performance. By building a hardcoded implementation, we can achieve maximum

performance and efficiency, at the expense of flexibility.

The Axiline generator outputs RTL by creating a mapping from an sr-DFG input

to unit constructs such as inner products, adders, and multipliers. The simplest version

of Axiline begins with an sr-DFG without loops and translates it to a combinational

implementation. However, the cost of implementing a larger sr-DFG, or one with loops,

may become prohibitive due to the large volume of data to be processed. For such scenarios,

we develop an iterative architecture that serially processes parts of the input data over

multiple cycles.

The generator works in three steps: first, it generates the lowered data flow graph

for an Axiline ML algorithm; next, it calculates the bitwidth for each node, based on the

given bitwidth of activation, weight and bias, and finally, it generates Verilog code for each

node/block and combines them with the template. A representative multicycle pipelined

architecture that can be used for several non-DNN benchmarks (e.g., SVM, logistical

regression, and linear regression) is shown in Fig. 4.7. The architecture maps the sr-DFG
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Figure 4.7: Pipeline implementation for Axiline benchmarks.

into three pipeline stages: Stage 1 performs an inner product computation, and is followed

by Stage 2, which implements a combinational function, where the precise function depends

on the benchmark. For example, for linear regression, the combinational logic in block

2 would be a multiplier, and for logistic regression benchmark, it should be a sigmoid

function and a multiplier. Block 3 is for stochastic gradient descent, consisting of two

multipliers and one adder. The inner product size in Stage 1 is parameterized. Therefore,

the input bandwidth can be parameterized for different FPGAs. The computation proceeds

iteratively by processing data through this pipeline.

4.4 Synthesizing Hardware

The VeriGOOD-ML compiler takes an ML algorithm from an ONNX-level description to

Verilog RTL. The next step in synthesis is to go from Verilog to GDSII. A critical first

step in back-end implementation of machine learning algorithms to advanced-node silicon,
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Figure 4.8: An overview of the SPR flow from RTL to GDSII.

(a) (b) (c)

Figure 4.9: Back-end synthesis of a GeneSys engine showing (a) signal flow on primary
interconnects, (b) the generated floorplan, (c) the final result of SPR.

particularly with automatically generated RTL, is design planning. ML accelerators are

inherently very structured, and optimal silicon implementation requires a design flow to

leverage that structure to create a high-quality floorplan. This is a critical first step that

is essential both for physical synthesis and place-and-route. A suboptimal floorplan can

result in poor PPA and increased turnaround time for design closure.

Historically, design planning has initially been performed by the front-end designer

who understands the RTL design hierarchy and connectivity and further refined by the

back-end engineer, who understands the floorplan effects and utilizes constraints from

the SoC regarding block outline and pin positions. As design complexity increases, this
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becomes practically impossible; moreover, for auto-generated RTL, there is no front-end

designer who understands the design. Hence there is a critical need for an automated

design planning tool that is compatible with commercial EDA tools.

VeriGOOD-ML uses a design planning flow and key engines that have been im-

plemented in the open-source OpenROAD tools [11, 3] so as to bridge generated RTL

Verilog to successful physical implementation outcomes. In our flow, we pass the result

of design planning to a place-and-route flow using commercial tools; in future, a fully

OpenROAD-based flow will be targeted. The overall synthesis, place and route (SPR) flow

is shown in Fig. 4.8.

Our in-house design planner is designed to mimic the way expert chip designers

perform floorplanning. A significant challenge is related to the fact that these designs

are dominated by macros that correspond to memory modules that implement various

on-chip buffers. This adds complexity to the tasks of floorplanning, which must leverage

design regularity, and power delivery network (PDN) generation, which must handle PDN

blockages in several metal layers at the macro locations.

The design planner first creates an efficient abstraction model of the netlist by

analyzing attributes such as the logical hierarchy, data flow, the connection between macros

and input-output pins, and timing-critical paths. The planner then uses the abstraction

model to guide the generation of the floorplan. This model helps back-end engineers to

gain better insights into the design and therefore reduces the number of iterations required

to make the design flow converge. Four engines that are invoked sequentially:

(1) The auto-clustering engine converts the gate-level netlist representation of the design

into a clustered netlist, in which nodes are clusters and nets are bundled connections

between clusters. To generate this clustered netlist, we first create clusters based on logical

hierarchy and then group small clusters based on connection signatures. To handle macro

regularity, we group macros with different sizes into different hard macro clusters. We
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then add virtual connections between hard macro clusters and input/output IOs based on

dataflow and latency.

(2) The shape engine determines possible aspect ratios and area for each macro based on

core size of floorplan and target utilization. For each hard macro cluster, we enumerate all

possible minimum-area packings.

(3) The macro placement engine places all the clusters and finalizes the shape of each

cluster. In this phase, we use a sequence-pair representation of clusters in the netlist,

and simulated annealing to optimize the cost function. The cost function includes area,

wirelength, and several penalty function terms, e.g., for overflowing the given layout region

(fixed-outline constraint), or for notches or blocked pin accesses in the macro placement.

(4) Finally, the pin alignment engine determines the location and orientation of each

individual macro. In this phase, we pack macros within each hard macro cluster, again

using simulated annealing of a sequence-pair representation.

(a) (b)

Figure 4.10: The PDN on (a) layers M1–M7 (b) layers M1–M13.

We implement our designs based on the GF12LP technology using 13 metal layers.

An Arm memory compiler is used to build dual-port register files. For each logical memory

size (address and bit width), the configuration that yields the smallest area is chosen.

Fig. 4.9 shows the data flow, the floorplan from our design planner, and the final place-
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and-route on a commercial back-end for the GeneSys SIMD example. The automatically

generated PDN is illustrated in Fig. 4.10.

Using this back-end implementation flow, we are currently in the process of taping

out a chip that implements a GeneSys engine. Aside from core GeneSys components, the

design includes an on-chip global buffer that interacts with the external off-chip memory,

as well as mixed-signal circuits such as VCOs, synthesized using ALIGN [66].

4.5 Results

We have applied the VeriGOOD-ML flow to perform training and inference on

a variety of ML algorithms, exploring the space of design configurations to optimize

application-level performance metrics. For a variety of design configurations of a specific

platform (TABLA or GeneSys), we generate the Pareto-optimal PPA curves for the

hardware engine using our back-end implementation methodology. This yields the power

and frequency characteristics of the platform. Using the cycle-accurate simulator, we

track the performance of the ML algorithm on the platform, e.g., the number of cycles

required to perform the computation and the memory access patterns that dictate stalls

and power dissipation. Based on this, we determine the power and execution time of

the ML algorithm on the platform. For example, for DNN execution on GeneSys, we

combine the performance statistics provided by the simulator with the power-performance

characteristics (i.e., energy per operation, clock frequency, dynamic and leakage power

of various hardware components) of Pareto-optimal PPA design points provided by our

backend Synthesis Place-and-Route flow to compute the energy consumption, power (both

on-chip and off-chip), and runtime. For Axiline, the mapping is performed directly to

report the power and execution time. In this section, we provide a snapshot of a set of

results obtained from exercising VeriGOOD-ML. A variety of design implementations have
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been built, up to post-SPR; a sample set is shown in Fig. 4.11. These implementations

create a Pareto-optimal set of designs that form the basis for the results shown below.

(a)

Figure 4.11: Configurations at multiple PPA points for TABLA, GeneSys, and Axiline
with post-SPR layout (on-chip power only reported).

Classification and localization problem using SVM on TABLA: We exercise an

SVM on the WLAN Indoor Localization benchmark [1] dataset. Data preparation consists

of the following steps. We first import the WiFi RSSI dataset, the smartphone geomagnetic

dataset, the timestamp datafile, and the PointsMapping dataset that contains the placeID-to-

XY coordinate mapping. Next, we merge the RSSI dataset with PointsMapping dataset by

PlaceID, so that we have XY coordinate and placeID data for RSSI measurements. Finally,

we merge the RSSI dataset and Smartphone Geomagnetic dataset together according to

the timestamp datafile. The final preprocessed dataset after these operations consists of a

table with 11,498 rows and 143 columns that contains all the relevant feature data.

Next, we implement both training and inference for the SVM algorithm in the Poly-

Math domain-specific language and compile it to the sr-DFG representation, followed by a

TABLA-backend translation pass, which produces the binary executable as well as necessary

configuration and RTL files for TABLA. We consider multiple design implementations of

the TABLA platform, and report a set of Pareto-optimal points in Table 4.1.

ResNet50 on GeneSys: We implement ResNet50 on multiple instantiations of GeneSys,
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Table 4.1: Training and inference results for the SVM on various TABLA configurations.

#PUs #PEs/PU Frequency Area Power Training Runtime Inference Runtime
8 8 1GHz 2.96mm2 1.28W 30.6min 0.21ms
8 8 0.25GHz 2.96mm2 0.29W 122.3min 0.85ms
8 16 1GHz 5.65mm2 1.90W 26.3min 0.17ms
8 16 0.25GHz 5.65mm2 0.56W 105.1min 0.68ms

Table 4.2: Inference results for ResNet50 on GeneSys.

PE array size Bitwidth Frequency Area Power Execution Time*
16×16 4 1.09GHz 2.0mm2 0.44W 25.6s
16×16 4 0.27GHz 3.0mm2 0.10W 89.1s
32×32 8 1.04GHz 8.5mm2 1.04W 10.0s
64×64 4 0.97GHz 18.9mm2 1.31W 6.9s

(*reported for 1024 single-stream inference)

each with a different configuration, corresponding to a different size for the PE and SIMD

arrays, and different bitwidths. The results for these configurations for single-stream

inference, where a query is sent after a previous query is complete, are summarized in

Table 4.2. The designs correspond to different Pareto-optimal points, e.g., a design that is

optimized for area; a slower design at a low power point; a higher-bitwidth design optimized

for classification accuracy; and the largest design that is optimized for speed. The memory

interface is assumed to connect to an external HBM2 memory.

Axiline results: Table 4.3 shows the result of implementing Axiline for a training on a set

of non-DNN benchmarks. For the logistic regression and SVM benchmarks, two different

design points are shown. In all cases, the execution times (which exclude memory fetch

times) for Axiline, area, and on-chip power are smaller than those for a platform-based

method due to the custom-optimized nature of the engine. The total power is dominated

by the off-chip power:in this case, we also assume an HBM2 external memory interface.
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Table 4.3: Training results for non-DNN benchmarks on Axiline.

Benchmark # Features Frequency Area Execution On-chip Total
time power power

Logistic 54 495MHz 0.024mm2 4.70ms 24mW 0.47W
regression 500MHz 0.014mm2 6.98ms 13mW 0.31W

SVM 200 500MHz 0.042mm2 6.01ms 46mW 3.42W
497MHz 0.030mm2 10.05ms 27mW 2.04W

Linear 784 492MHz 0.091mm2 0.37ms 84mW 4.45W
regression

4.6 Conclusion

In this paper, we have presented the VeriGOOD-ML flow for automated ML hardware

synthesis. The ONNX representation of an ML algorithm is represented as an IR in the

form of a sr-DFG, which is then translated to one of the three VeriGOOD-ML engines.

Based on the HAG that represents the architecture configuration, the flow translates the

IR to an implementation on TABLA (for non-DNN algorithms) or GeneSys (for DNNs),

including code generation for the ISA for the corresponding platform. The translation to

Axiline is performed directly from the sr-DFG. The design then goes through back-end

synthesis. Results on a variety of ML algorithms illustrate the efficacy of the flow for a

range of ML algorithms, for multiple Pareto points.
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