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for my fiancé who faithfully supported me during the final stage of this Ph.D. Thank you.

ix



CURRICULUM VITAE

Wei Wang

EDUCATION

Doctor of Philosophy in Mathematics 2019
The University of California, Irvine Irvine, CA

Master of Science in Mathematics 2015
The University of California, Irvine Irvine, CA

Master of Science in Mathematics 2013
The University of Science and Technology of China Hefei, China

Bachelor of Science in Mathematics 2011
The University of Science and Technology of China Hefei, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2015–2019
The University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2019
The University of California, Irvine Irvine, California

x



ABSTRACT OF THE DISSERTATION

Mathematical and Computational Models of Fluctuating Vesicles in Time-Varying Flows

By

Wei Wang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Professor John Lowengrub, Chair

Modeling vesicle dynamics involves a complicated moving boundary problem while the shapes

of vesicles are determined dynamically from a balance between interfacial forces and fluid

stresses. In this thesis, we investigate the dynamics of a two-dimensional fluctuating vesicle

in a viscous fluid.

Firstly we develop a two-dimensional stochastic immersed boundary method (SIBM) and

analyze thermal fluctuations by matching the numerical results with a theoretical solution

[46]. Then we apply the SIBM with fitted thermal fluctuations to study the long term

dynamics of an impermeable vesicle in a periodically time-reversed flow. The wrinkling

process contains three stages. In the first stage, high-order modes are excited by the negative

surface tension and wrinkles appear. In the second stage, low Fourier modes increase, the

high-order wrinkles decay, and the shapes of vesicles keep relatively stable. In the last stage,

the second Fourier mode grows and dominates. The shapes of the vesicle are ellipse-like

with inclination angle θ ≈ 45◦. Then by performing an asymptotic linear analysis of a

quasi-circular vesicle, we derive and solve the deterministic and stochastic equations for the

motion of membrane interface numerically. The linear theory also indicates this three stage

process.

Finally, we investigate the nonlinear wrinkling dynamics of a permeable vesicle using an

xi



extension of the SIBM. We observe the vesicle shrinkage and the wrinkles on the membrane

caused by a large osmosis pressure. We extend the linear theory to account for permeability

and find a good agreement between linear and fully nonlinear vesicle dynamics.

xii



Chapter 1

Introduction

1.1 Background

1.1.1 Biomembranes and Red Blood Cell

Biomembranes are enclosing or separating membranes that act as selectively permeable bar-

riers within living beings [11, 2]. For example, a cell is bounded by a plasma membrane

which separates the interior of the cell from the outside environment. The plasma mem-

brane is primarily composed of bilayer amphiphilic molecules, in which proteins are usually

embedded. This enables the membrane to protect intracellular components from the extra-

cellular environment, transport nutrients and toxic substances between the cell, and adjust

its shape according to the environment. Figure 1.1 illustrates the components for which a

biomembrane is made.

Many important physiological processes occur on the cell membrane or are adjusted by the

cell membrane, like immune response, signal transduction, and transmission of substances

[11]. Because of the complicated internal structures of a normal cell, the role of the cell
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Figure 1.1: Cartoon of a cell membrane.

membrane is still not known precisely. As a simple model, biologists have focused on the red

blood cell (RBC) which lacks a cell nucleus and most organelles, to accommodate maximum

space for hemoglobin [20]. A typical RBC only contains hemoglobin that is used to carry

oxygen and saline solution.

1.1.2 Vesicles

Although the structure of RBC is relatively simple, there are still two components: the

phospholipid membrane and the cytoskeleton. Since there is no protein or cytoskeleton,

vesicles serve most often as models to study red blood cell dynamics and membrane bio-

physics [36, 37, 17, 1]. For example, a giant unilamellar vesicle is used to mimic essential

characteristics of the red blood cell, such as its equilibrium biconcave shape.

A giant unilamellar lipid vesicle (see Figure 1.2), is a small structure within a cell. It consists

of fluid enclosed by a lipid bilayer. Besides, vesicles play a critical role in the processes of

secretion (exocytosis), uptake (phagocytosis and endocytosis) and transport of materials

within the cytoplasm [4]. Vesicles also function as containers for biochemical reactions

2



[45, 28], and vectors for targeted drug and gene delivery [3, 22].

Figure 1.2: Cartoon of a vesicle and the molecular structure of its membrane.

Scientists concentrate on synthesizing vesicles by a variety of molecules. Whereas theoretical

researchers are focused more on the shape of the vesicle, dynamics, phase separations, etc.

Recently, a transient wrinkling dynamics of a vesicle in external elongation flow has been

observed by Kantsler [27]. It was found that high-order deformation modes can be excited

transiently by the negative surface tension if the direction of the applied flow is suddenly

reversed [57]. However, the wrinkles are not stationary and are excited only for a limited

amount of time. They are smoothed out once the surface tension becomes positive again

and the vesicle aligns with the new extensional flow direction. So we want to see whether we

can modify the shapes of the vesicle by reversing the direction of the flow periodically. In

this thesis, we study the wrinkling dynamics of vesicles, subjected to time-varying applied

flows.

3



1.2 Related Work

Due to the importance of vesicles and their applications in biomedicine, the dynamics of

vesicles in a viscous fluid has become an important research topic. Scientists have tried to

explain the shapes and dynamics of the vesicles using analytical and numerical approaches.

The analytic work started from an investigation of the biconcave shape of a red blood cell.

Helfrich improved Canham’s model of the local free energy of the RBC membranes to [12, 25]

Eκ =
1

2

∫ (
κ(H − C0)2 + κGK

)
dA, (1.1)

where κ is the bending rigidity, κG is the Gaussian bending rigidity, H is the mean curvature,

and K is the Gaussian curvature. Because the Gaussian curvature depends only on the genus

number of the surface (Gauss-Bonnet formula), Gaussian curvature can be neglected when

the topological structure of the membrane remains unchanged or the Gaussian bending

rigidity is uniform.

In 1987, Helfrich and Ou-Yang added the volume and area constraints into the model [64],

Eκ =
1

2

∫ (
κ(H − C0)2 + κGK + σ

)
dA+ ∆PV, (1.2)

where σ is the surface tension, ∆P is the osmotic pressure jump between the inner and

outer fluid, and V is the volume enclosed by the membrane. By taking the variational

derivative of the free energy [64] and solving the corresponding Euler-Lagrange equation for

the equilibrium shapes [43], they got a biconcave shape similar to RBCs.

Afterward, following Helfrich free energy model, more continuum models have been devel-

oped. Many previous studies focus on a quasi-spherical vesicle and describe the shape of
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the vesicles as an expression of spherical harmonics, e.g., [52, 33, 57]. For two dimensional

models, the Fourier series is used to describe the quasi-circular shape of a vesicle [19, 39]. Al-

though the asymptotic linear theory is developed for quasi-spherical vesicles, the theory accu-

rately describes for elongated vesicles and matches with experimental results [33, 27, 16, 39].

More recently thermal, fluctuations have been included in the analysis [19, 35].

Because the Helfrich-type models are highly nonlinear and involve high-order equations,

numerical methods are needed to describe the fully nonlinear dynamics. These methods

mainly differ in their representation of the interface, e.g., the boundary integral method

[60, 59], the phase-field method [10], the level set methods [26, 13, 63, 14, 40], grid-based

particle methods[34], etc.

The immersed boundary method (IBM) was first developed by Peskin in 2002[49]. Then

lots of variants of IBM have been developed [58, 23]. Later thermal fluctuations were

incorporated[31]. Moreover, Atzberger extended IBM to stochastic immersed boundary

methods(SIBM) and simulate the interactions between fluids structures and thermal fluctu-

ations [5, 8, 6]. This method has been further utilized to study the dynamics of a vesicle in

external flows [18, 38].

By coupling the Euler and Lagrange coordinates, IBM overcomes two major problems for

moving boundary problems- the difficulty to fit simple orthogonal grids to a moving bound-

ary, and the complicated grid generation and corresponding high computational time. And

the thermal fluctuations can be incorporated straightforwardly.

1.3 Major Achievements

In this thesis, we study the dynamics of a 2D vesicle in a viscous fluid.
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• We investigate and analyze thermal fluctuations in two dimensions. Because the scal-

ing of 2D and 3D thermal fluctuations are different, to achieve a proper 2D thermal

fluctuation, we define a spatial scale Ld and choose it by matching the nonlinear results

of a fluctuating filament with a theoretical formula [46].

• We identify a nonlinear relationship between the spatial scale and the computational

domain size numerically and theoretically.

• We observe a three-stage process of the long-term wrinkling dynamics of an imperme-

able vesicle in a periodically time-varying flow, and achieve a good agreement with the

linear analysis. We examine the effects of different parameters.

• We develop a stochastic immersed boundary method to study the wrinkling dynamics

of a permeable vesicle. We observe the vesicle shrinkage and wrinkles on the membrane.

• We perform a linear theory on the dynamics of a quasi-circular permeable vesicle.

We derive and solve the equation system of motion for the shape perturbation terms

numerically.

1.4 Overview of this Thesis

This thesis is organized as follows.

In Chapter 2, we develop a 2D stochastic immersed boundary method (SIBM) to simulate

the wrinkling dynamics of a fluctuating vesicle in a viscous fluid by appropriately defining

a spatial scale Ld for a two-dimensional thermal force. We compute the spatial scale Ld by

matching numerical results with a theoretical solution [46] for a fluctuating filament. We

investigate how Ld depends on the computational domain size and formulate a theory to

explain the results.

6



In Chapter 3, we apply the stochastic immersed boundary method with the suitable spatial

scale Ld to compute the wrinkling dynamics of a fluctuating vesicle in a viscous fluid with

a time-varying flow. Then we apply a linear approach to analyze the wrinkling dynamics

induced by reversing the direction of extensional flow of a quasi-circular vesicle. We solve

the equation system for the shape perturbations numerically and compare the solution with

the nonlinear results.

In Chapter 4, we investigate the dependence of the wrinkling dynamics with the extensional

flow strength S and the threshold Ch.

In Chapter 5, we focus on the dynamics of vesicles with a semi-permeable membrane. We

simulate the osmotic pressure relevant to the vesicles and extend the Stochastic Immersed

Boundary Methods (SIBM) to study the wrinkling dynamics of a vesicle with a permeable

membrane. Then we present a linear theory for quasi-circular vesicles, and the analysis

achieves good agreement with the nonlinear simulation.

In Chapter 6, we review the entire thesis and results. In the end, we present future work.
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Chapter 2

Immersed Boundary Method and A

Spatial Scale Ld

In this chapter, we formulate a stochastic immersed boundary method (SIBM) to simulate

the wrinkling dynamics of a fluctuating 2D vesicle in a time-varying flow. The wrinkles

are induced by instantaneous changing the direction of an applied extensional flow [27].

We define a spatial scale Ld to consistently develop a model of thermal fluctuations in 2D.

To choose Ld, we match the average equilibrium length of a fluctuating filament obtained

from the stochastic immersed boundary method with the theoretical length of a fluctuating

filament calculated by Odijk [46]. We determine how Ld depends on the computational

domain size and develop an analytical theory to explain the result.

2.1 Stochastic Immersed Boundary Methods (SIBM)

The main idea of the Immersed Boundary Method (IBM) is to use a Dirac delta function to

couple the fluid and structure and reduce the complexity of the nonlinear moving boundary
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problem. As such, the IBM provides a convenient method for simulating fluid-structure

interactions. Because thermal fluctuations in the aqueous environment become significant

at the small length scale of vesicles, which is on the order of micrometers, the IBM has been

extended to account for thermal fluctuations [5, 8, 6]. Because the length scale is small,

Reynolds number is very small. We can neglect the nonlinear advection term in the fluid

equation. As the dynamical time scales arising from Brownian motion, in general, are fast,

we will not drop the time derivative term of the velocity [8].

The time-dependent Stokes equations for an incompressible viscous fluid are [5, 8, 6, 30]

ρ
∂u

∂t
= η∇2u−∇p+ ftotal, (2.1)

∇ · u = 0. (2.2)

Where u is the velocity of the fluid, ρ is the uniform fluid density, p is the pressure, η is the

viscosity and ftotal is the total force density acting on the fluid.

The force density ftotal arises from two sources. The first one is the force applied to the fluid

by the immersed structure (the membrane). This component of the force density results

from the elastic deformations of immersed structure (the membrane), denoted as fmem. The

second one is the force that arises from thermal fluctuations, denoted by fthm. That is

ftotal = fmem + fthm. (2.3)

Let X be the configuration of the structure (the membrane), FX be the elastic force density

on the membrane, then

fmem = Λ(FX), (2.4)

dX

dt
= Υ(u), (2.5)
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where Λ and Υ are linear structure-fluid coupling operators,

Λ (FX) =

∫
S(t)

FX(t)δa(x−X(s, t))ds, (2.6)

Υ(u) =

∫
D

u(x, t)δa(x−X(s, t))dx. (2.7)

See [6] for a complete derivation.

2.1.1 Free Energy and Elastic Force Density FX

The free energy of a two-dimensional vesicle [25] is

E = Eb + Eσ, (2.8)

where Eb is the bending energy, given by

Eb =
1

2

∫
S(t)

κH2ds, (2.9)

where κ is the bending rigidity, and H is the mean curvature. Eσ is the elastic energy used

to ensure the arc length constraint, given by

Eσ =

∫
S(t)

σds, (2.10)

where σ is the elastic tension, which can be considered as a Lagrange multiplier to ensure

the membrane is inextensible (local and global length do not change). Note that Eb and Eσ

have the same form as in 3D but are surface integrals in 3D.
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The elastic force density FX is the variational derivative of the elastic energy E [48],

FX = − δE
δX

=

(
κ
∂2H

∂s2
+
κ

2
H3 −Hσ

)
n +

∂σ

∂s
t, (2.11)

where n is the outward normal vector and t is the tangent vector. A detailed derivation is

given in Appendix A.1 and reference [48].

2.1.2 Thermal Fluctuations

The influence of thermal fluctuations on a mechanical system is typically represented by the

addition of a thermal forcing term fthm, which decorrelates rapidly in time. The stochastic

forcing fthm can be represented by an approximation of the ’white-noise’ process. Here we

assume that the (impermeable) membrane moves with the fluid, so there is an energy bal-

ance between the thermal force and dissipation of the system. A corresponding fluctuation-

dissipation theorem for the system is satisfied [32].

In three dimensions, to ensure mass and momentum conservation, fthm is proportional to the

divergence of a stochastic flux W[5, 8, 9, 51, 15].

fthm =
√
ηkBT∇ ·W, (2.12)

where W denotes a stochastic flux that is modeled as a white-noise Gaussian random tensor

with uncorrelated components

〈Wij(x, t)Wkl (y, τ)〉 = 2δikδjlδx(x− y)δt(t− τ), (2.13)

here 〈·〉 denotes the expectation, δik, δjl are Kronecker delta functions, δx is the spatial delta

function, and δt is the one-dimensional temporal delta function.
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Note that, it’s unclear how to generate a 2D version because the scalings of the thermal

fluctuations in 2D and 3D are different. In three dimensions, scaling of the white-noise

Gaussian random tensor is W3D ∼ (L3τ)
−1/2

where L is a characteristic length and τ is a

characteristic time. However, the scaling in two dimensions is W2D ∼ (L2τ)
−1/2

. Here we

introduce a 2D spatial scale Ld, and the 2D stochastic force is taken to be,

fthm,2D =
√
ηkBT/Ld∇ ·W2D (2.14)

Effectively this means that the strength of the 2D thermal fluctuations is modulated by the

unknown scale Ld. We next develop a theory for choosing Ld, following [38].

2.2 The Parameter Ld And Odijk Model

2.2.1 Odijk Model

To choose the spatial scale Ld, we consider Ld as a fitting parameter to match the average

equilibrium length of a fluctuating filament, which was determined analytically by Odijk

[46].
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Figure 2.1: A schematic diagram of a fluctuating filament under tension.
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Assuming that a filament is immersed in an initially quiescent fluid with no applied flow

and constant forces Fp are applied at the two ends of the filament. A schematic diagram is

shown in Figure 2.1. The filament is expressed by Ns (here Ns = 20) nodes (blue circle in

Figure 2.1) that are connected by springs with spring constant λL. A theoretical filament

length is calculated by Odijk [46] (see Eq. (2.15) below). The mean equilibrium length of

the filament is [46]

〈L〉 = L0(1− kBT/(2
√
κFp)) + FpNs/λL, (2.15)

where L0 is the length of the filament in the absence of tension and fluctuations, and Fp is

the tension applied at the ends of the filament. Note that the equation is valid only when

L0kBT/
√
κFp � FpNs/λL. See [46] for a derivation of Eq. (2.15).

2.2.2 Numerical Method

To choose Ld, we solve a discretized version of the SIBM in a square domain D with side

length LC and match the average equilibrium length of a fluctuating filament from our

numerical solution with the theoretical filament length calculated by Eq. (2.15).

We use a finite difference scheme to discretize the fluid equations Eq. (2.1) and (2.2). The

filament is discretized using Ns springs, each with elastic spring constant λL, to connect the

discretization nodes. The velocity u = up + u∞, where up is the velocity induced by the

membrane and u∞ is the applied extensional flow velocity. The discretized system is given
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by,

ρ
un+1
p − unp

∆t
= ηLun+1

p −∇p̃+ ΛD
a (FX) + fn+1

thm , (2.16)

D · un+1
p = 0, (2.17)

Xn+1
[i] −Xn

[i]

∆t
= ΥD

a (up)i + un∞,i, (2.18)

where p̃ = p− (∇XΛ)kBT is a modified pressure, and the discrete versions of the structure-

fluid coupling operators is given by ΛD
a and ΥD

a :

[ΛD
a (FXn)]m =

∑
i

FXn
[i]

(t)δa(xm −Xn
[i])∆si, (2.19)

ΥD
a (u)i =

∑
m

un+1(xm)δa(xm −Xn
[i])∆x

2, (2.20)

where a smoothed function δa is used to replace the two dimensional Dirac delta function

with

δa(x, y) =
1

a2
ϕ

(
|x|
a

)
ϕ

(
|y|
a

)
, (2.21)

where

ϕ(r) =



1

8
(3− 2r +

√
1 + 4r − 4r2, 0 ≤ r ≤ 1

1

8
(5− 2r −

√
−7 + 12r − 4r2, 1 < r ≤ 2

0, 2 < r.

(2.22)

Here we choose a = ∆x. Note that the nodes are connected by springs, instead of discretiza-

tion of the inextensibility equation, we use a sufficiently large spring constant λL to maintain

local inextensibility within 1%.

Initially, the filament is a straight line segment with length L, equally divided into Ns sub-
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segments, with each sub-segment has a length of ∆L = L/N . The discrete bending energy

is

E =
Ns∑
i=1

1

2
κH2

[i]∆L[i] (2.23)

where ∆L[i] is the arclength associated with ith node, H[i] = π − ψ[i]/∆L[i] is the curvature at

node i, and ψ[i] is the angle formed by X[i−1]X[i] and X[i+1], for i = 2, 3, ..., Ns. Set H[1] and

H[Ns+1] to be zero. The boundary condition for the first node is F1 = −κ(H[2]−H[1])/∆L1,2.

In the filament simulations, we consider a filament with initial length L = 8 × 10−6m, and

Ns = 20. So ∆L = L/Ns = 4× 10−7m. We set the bending stiffness κ = 10−26J , the spring

constant λL = 10−4N/m and ∆t = 10−6s. The force on the ends varies from 3 × 10−11N

to 15 × 10−11N . We run up to 105 steps for each sample, and compute the mean length of

the filament for steps > 103 as the mean equilibrium length of a fluctuating filament. We

plot the nonlinear part of Eq.(2.15), ∆L = 〈L〉 − LHook, where LHook = L0 + FpNs/λL. The

analytical solution of Eq.(2.15) is shown in Figure 2.2 in dot-dashed and numerical solutions

with different spatial scales Ld are in symbols. In Figure 2.2, the computational domain size

is LC = 4×10−4 m. A good agreement is achieved between the SIBM when the spatial scale

Ld = 4× 10−4 m (blue start) and the Odijk model (dot-dashed).

2.2.3 Analysis of Ld

We next study how Ld varies if we change the size of the computational domain. If the

filament is fixed, we want the numerical simulations with fitted Ld to be independent of the

size of the computational domain. Let LC be the side length of the computational domain.

Here we consider a filament immersed in an initially quiescent fluid (no applied flow). The

filament (red segment) is placed at the center of the domains, where Ω0 (blue dot-dash) is
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Figure 2.2: The equilibrium length of a fluctuating filament under tension. Agreement
between the discrete stochastic immersed boundary method (SIBM, symbols) and the an-
alytical solution from Eq.(2.15) (Odijk, dot-dashed) is achieved when the spatial scale
Ld = LC = 4 × 10−4 m. Here we plot the nonlinear part of Eq.(2.15), ∆L = 〈L〉 − LHook,
where LHook = L0 + FpNs/λL.

the square exactly contains the filament, i.e., the side length of Ω0 = L, where L is the

length of the filament, ΩSmall (green dot-dash) is a square that is slightly larger than Ω0 and

ΩLarge(black dot-dash) is a square that is much larger than Ω0. See Figure 2.3 as a schematic.
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F
p

F
p

0

Figure 2.3: A filament(red segment) is placed at the center of domains Ω0, ΩSmall and ΩLarge,
constant tension Fp are applied at the ends of the filament.

Assume that the fluid velocity field satisfies periodic boundary conditions. Because the fluid

is initially quiescent with no applied flow, the mean of the velocity of fluid u over the domain
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satisfies

〈ux〉 = 0, 〈uy〉 = 0, in Ω0, (2.24)

where uα is the fluid velocity alone α-direction, α ∈ {x, y}, 〈·〉 is the mean value over the

domain.
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Figure 2.4: The mean value of the fluid velocity uα over a small domain ΩSmall versus time
t.

We run a stochastic simulation in Ω with the side length LC = 1.28 × 10−5m. (Note the

length of the filament is L0 = 8× 10−6m), the spatial scale Ld = 4× 10−4m. Here we collect

the 〈ux〉 and 〈uy〉 at each time step, and show them in Figure 2.4. The magnitudes of 〈ux〉

and 〈uy〉 oscillate around 0 in the order of 10−20.

Then we change the size of the computational domain LC = 4 × 10−4m � L0, keep all

the other parameters fixed and run another stochastic simulation. The results are shown in

Figure 2.5. In this larger domain, The magnitudes of 〈ux〉 and 〈uy〉 are in the order of 10−19,

about an order of magnitude larger than the smaller domain.

Figure 2.6 shows a positive relationship between the standard deviation over time of 〈ux〉

and the domain size LC . Thus to keep thermal fluctuations stable for the same filament

structure in different domains, the spatial scale Ld needs to be increased when LC increases.
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Figure 2.5: The mean value of the fluid velocity uα over a large domain ΩLarge versus time t.
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Figure 2.6: The standard deviation over time of 〈ux〉 versus the domain size LC .

Numerical Computation for Ld

In this section, we match the numerical results with the Odijk model and find the fitted Ld

for different domains. The filament is considered as a straight line segment which is equally

divided into N sub-segments and fixes the filament at the center of a square domain D with

side length LC . Here we set N = 20,∆L = 4.0 × 10−6 m. To simplify the simulation, we

also set the zero modes of thermal noise to be zero because zero modes don’t change the

length of the filament. We double the side length LC each time and match the nonlinear

simulations with the Odijk theory for each LC .

In Figure 2.7, we plot the nonlinear part of Eq.(2.15), ∆L = 〈L〉 − LHook, where LHook =
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L0+FpNs/λL versus different forces Fp, where the analytical solution from Eq.(2.15) is shown

in dot-dashed, and three realizations of the discrete stochastic immersed boundary method

with different spatial scales Ld are shown in symbols. The side length of the domain LC

increases from 0.5 × 10−4 (see Figure 2.7 [a]) to 8 × 10−4 (see Figure 2.7 [e]). In each plot,

the realization with blue start achieves the best agreement with Odijk model (dot-dashed).
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Figure 2.7: The equilibrium length of a fluctuating filament under tension in domains with
different sizes.

In Figure 2.8, a linear fit is performed between L∗d
2 and LC , where L∗d is the length scale that
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matches Odijk model best for a given LC . As a result,

L∗d ∼
√
LC (2.25)
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Figure 2.8: A linear fit between L∗d
2 and LC .

Justification of the scaling relationship L∗d ∼
√
LC

As we see in Figure 2.7 and 2.8, by matching the nonlinear results of the stochastic immersed

boundary method with the Odijk model, we find a linear relationship between L∗d
2 and LC .

Here we justify this relationship by analyzing the stochastic Stokes Equations (2.1)-(2.2) via

a time scale.

Let R =
√
A/π be the effective vesicle radius (A is the total area of the vesicle), and L be

the total arclength. A nondimensional shape parameter is defined as ∆ = L
R
− 2π, which is
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known as the excess arclength. In addition, an important time-scale

τthm =
√
m0L2

C/kBT =
√
ρL5

C/kBT , (2.26)

gives the time duration for a fluid particle to move the distance LC when it has kinetic

energy kBT , where LC is the side length of the square domain D, ρ is the fluid density, µ is

the fluid dynamic viscosity, κ is the bending stiffness, kBT is the thermal energy, σ is the

surface tension.

We nondimensionalize time by t′ = t/τthm and space by x′ = x/R, X′ = X/R. Then the

nondimensional velocity is u′ = u/Ū =
(
τthm
a

)
u, and a modified nondimensional pressure is

p′ = τthm
µ

(p− Λ (kBT )) which incorporates the drift term. The nondimensional stochastic,

non-steady Stokes equations can be written as:

Re
∂u′

∂t′
= ∇′2u′ − R

a
∇′p′ + χ−1Λ′(F ′X′) + χ−

1
2KuBC

1
2∇′ ·W ′. (2.27)

where F ′X′ is the nondimensional force density, W ′ is the nondimensional white noise tensor,

Reynolds number Re = ρR2

τthmµ
, the nondimensional strain χ = R2LCµ

κτthm
, a bending Kubo number

KuB =
√
kBT/κ, which measures the strength of thermal fluctuations relative to bending

forces, and a confinement number C = R2

LCLd
. Note that the confinement number C doesn’t

appear in the three-dimensional formula and thus characterizes the fundamental difference

between the two- and three-dimensional models of fluctuations.

Consider the coefficient of ∇′ ·W ′ :

χ−
1
2KuBC

1
2 = KuB ·

(
R2LCµ

κτthm

)− 1
2
(

R2

LCLd

) 1
2

= KuB ·
(
κτthm
µL2

CLd

) 1
2

, (2.28)
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together with τthm =
√
ρL5

C/kBT ,

χ−
1
2KuBC

1
2 = KuB ·

(
κ
√
ρL5

C/kBT

µL2
CLd

) 1
2

= C0

(
LC
L2
d

) 1
4

(2.29)

where C0 = KuB ·
(

κ2ρ
µ2kBT

)
is a constant only depending on physical properties. Thus we have(

LC
L2
d

) 1
4

is a constant, i.e., LC ∼ L2
d, which in line with the numerical result (See Eq.(2.25)

and Figure 2.8).
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Chapter 3

Wrinkling Dynamics of Fluctuating

Vesicles With Impermeable

Membranes

In this chapter, we apply the stochastic immersed boundary method with the suitable spatial

scale Ld to compute the wrinkling dynamics of a fluctuating vesicle in a periodically reversed

flow. The whole point of periodically reversing the flow is to try to stabilize time-dependent

wrinkles. We observe a three stage process of the dynamics of vesicles and justify it via a

linear theory.

There are several necessary assumptions of the vesicle membrane in our analysis. First, we

assume that the vesicle size is much larger than the membrane thickness, which enables

one to treat the initial shape as an ellipse immersed in a two-dimensional fluid. Second,

we assume that the membrane is inextensible. Third, we assume that the membrane is

impermeable to the surrounding liquids on the time scale of the experiment.
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3.1 Nonlinear Dynamics of a Vesicle in the Quiescent

Fluid

We study the fully nonlinear dynamics of two-dimensional vesicles in a viscous fluid at finite

temperature in a time-dependent extensional flow by simulating the dynamics to equilibrium

of a vesicle in a quiescent fluid to validate our model. If the energy of a vesicle doesn’t reach

its minimum, the bending force makes the membrane move until the vesicle reaches its

equilibrium state. In our simulations, we initialize the vesicles as ellipses with aspect ratio

a/b. We utilize the stochastic immersed boundary method to solve the equation system

(2.1)-(2.2) in a square domain. The detailed numerical scheme is given in Section 2.2.2,

Appendix A.2, and [38].

The results of the simulations with different initial shapes are shown in Figure 3.1. The

initial shape is an ellipse with major axis a = 5 × 10−5m, and different excess arclength

∆. We set the bending rigidity is κ = 10−19J in the simulations. Dynamics of the vesicles

with excess arclength ∆ = 3.1128 are shown in Figure 3.1[a] and the equilibrium shapes for

different ∆ are shown in Figure 3.1[b] (top: deterministic, bottom: stochastic). Here ∆ is

the excess arclength defined by

∆ =
L

R
− 2π (3.1)

where L is the total arclength of the vesicle, R =
√
A/2π is the effective radius, A is the

area of the vesicle.

It can be shown that for an excess arclength of 0, the shape minimizing the Helfrich energy is

a circle (see Figure 3.1[b]). Then increasing ∆ leads to a biconcave equilibrium shape, which

is also a characteristic of red blood cells (Figure 3.1[b]). The deterministic equilibrium shapes

are shown in the top row, which are symmetric with respect to both x-axis and y-axis, while
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Figure 3.1: [a]Dynamics to equilibrium of a vesicle with excess arclength ∆ = 3.1128.
[b]Equilibrium shapes for vesicles with different excess arclength ∆, as labeled. Deterministic
results are shown in the top row, and stochastic results are shown in the bottom row.

the equilibrium shapes in stochastic realizations are still biconcave but not aligned on x-axis

anymore. The inexact symmetric shapes are due to thermal fluctuations. More dynamics of

vesicles with different excess arclength are shown in Appendix A.3.

3.2 Wrinkling Dynamics in a Time-Dependent Exten-

sional Flow: A Single Reversal of Flow Direction

Here we investigate the wrinkling dynamics of a vesicle that occurs at sufficiently high

strain rates in steady linear flows observed in experiments[27, 35] (see Figure 3.2). In the

experiments, a vesicle is immersed in a viscous fluid with an applied extensional flow. After

the vesicle relaxes into an equilibrium shape, the direction of the flow is suddenly reversed.

Compressive forces on the vesicle membrane activates small-scale interface perturbations,

referred to wrinkles, which eventually decay away as the vesicle reaches a new equilibrium.
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Here we simulate this transient instability numerically using stochastic immersed boundary

method, following [38].

Figure 3.2: Wrinkling instability. Snapshots of vesicle dynamics in time-dependent elon-
gation flow at [a]χ = 8.1, [b]χ = 81 and [c]χ = 323.5, where the dimensionless strain
χ = SηoutR

3/κ.

3.2.1 Nonlinear Dynamics of a Quasi-Circle Vesicle

We first investigate the wrinkling dynamics of a nearly circular vesicle. The initial shape of

the vesicle is an ellipse with aspect ratio a : b = 0.8, with small excess arclength ∆ = L
R
−2π =

0.0587, where the area A = 1.0053×10−9m2, and the arclength L = 1.1345×10−4m. We set

the extensional flow strength S = 4, the bending stiffness κ = 10−19J . Because water is the

primary component of the inner and outer fluids[27], we use the viscosity η = 10−3kg/(sm)

and density ρ = 103kg/m3 of water at room temperature T = 293K. The results are

presented in Figure 3.3.

Following the experiments, the flow is reversed at the nondimensional time t′ = 1.0, de-

fined as t′ = St. Figure 3.3[a] and [b] show the vesicle morphologies for the deterministic

and stochastic immersed boundary computations at the labeled time, respectively. The de-

terministic vesicles (see Figure 3.3[a]) are highly symmetric and contain only even modes,

because the initial shape is symmetric. In contrast, the wrinkling morphologies in stochastic
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Figure 3.3: Nonlinear wrinkling dynamics of a quasi-qircular vesicle. [a] Deterministic dy-
namics. [b] Stochastic dynamics. [c] Vesicle morphologies at the time t′ with the correspond-
ing dominant mode m∗ (left: deterministic; right: stochastic). The numbers in [a][b] are the
nondimensional times t′ at which the vesicle morphologies are shown.

simulations (see Figure 3.3[b]) are asymmetrical and capture the high-order odd modes. The

most dominant mode m∗ is defined as an average of the instantaneous Fourier spectra of the

vesicle shape, computed by [52]

m∗ =

(
N0∑
m=2

m|pm|(t′)2

)
/

(
N0∑
m=2

|pm|(t′)2

)
, (3.2)

where {pm} is the Fourier expansion of the membrane (see detail in Section 3.2.2), N0 is

the largest nontrivial mode with |pN0 | > 10−5, t′∗ is the (nondimensional) time at which |p2|

reaches its minimum. The vesicle morphologies at the t′ are shown in Figure 3.3[c]. Note

that the wrinkling processes are faster in stochastic case t′∗,sto < t′∗,det.
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3.2.2 Quasi-circular Approximation

In this section, we present a theoretical analysis of a nearly circular vesicle, and apply

the perturbation theory to analyze the wrinkling dynamics of a two-dimensional in a time-

dependent flow e.g., [19, 52, 35, 39, 38].

Model of a 2D Vesicle

Consider a two-dimensional vesicle membrane separating two viscous fluids. We define the

dimensionless viscosity ratio as

λ =
η1

η2

, (3.3)

where η1 and η2 are the viscosities of the fluids inside and outside the vesicle, respectively.

Because of conservation of the total number of the lipids and the impermeability of the

membrane, the membrane is inextensible and the area of the vesicles is conserved. Actually,

this is not completely true, but is nearly true and often is a good approxmation [19, 52].

The shape of a two-dimensional vesicle is characterized by the enclosed area A and the total

arclength L. The excess arclength, is a shape parameter, defined in Eq.(3.1).

By Eq.(2.8) - (2.10), the free energy of the system is

E =

∫
S(t)

[
1

2
κH2 + σ

]
ds (3.4)

where S(t) be the interface, κ is the bending rigidity of the membrane, H is the local

curvature, and σ is the vesicle surface tension, which is the Lagrange multiplier corresponding
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to the arclength conservation of the vesicle. The force density on the membrane is

F = − δE
δX

=
(
κHss +

κ

2
H3 −Hσ

)
n + σst (3.5)

where X(s, t) is the shape of the vesicle, t is the tangent vector and n is the outward normal

vector.

Compared to its diameter, vesicle is relatively thin. We assume the membrane has zero

thickness. Thus the velocity is continuous across the membrane

[u]S = (u|S,in − u|S,out) = 0, (3.6)

and the change of the tensor equals the interfacial force density induced by the membrane

configuration at S

[Tn]S = F, (3.7)

where the stress tensor T = −p̂I + 2D, p̂ is the pressure and D is the velocity gradient.

The total velocity filed u consists of two parts: an applied external velocity u∞ and an

induced velocity due to the membrane uind.

u = u∞ + uind. (3.8)

Thus the equation of motion for the interface is

∂tX = u∞(X, t) + uind(X, t). (3.9)
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Linear Theory

Let the vesicle membrane be parametrized by X(φ, t) : r = R(1 + p), where p is a small

perturbation function and expanded in Fourier harmonics[19, 39, 38]

p(φ, t) =
∞∑
−∞

pm(t) exp(imφ)√
2π

, (3.10)

where m is the perturbation mode and pm(t)� 1 is the perturbation amplitude of mode m.

In the following analysis, we neglect all higher order terms of pm and only reserve up to the

quadratic order terms.

The area of a vesicle can be calculated as,

A =

∫
dA =

∫ 2π

0

r2dφ =
R2

2

∫ 2π

0

(
1 +

∑
pm

exp(imφ)√
2π

)2

dφ,

= πR2

(
1 +

2p0√
2π

+
1

2π

∑
m6=0

|pm|2
) (3.11)

Area conservation thus applies,

p0√
2π

+
1

4π

∑
m6=0

|pm|2 = 0. (3.12)

The arclength of a vesicle can be calculated as,

L =

∫
dl =

∫ 2π

0

√
r2 + r2

φdφ,

= 2πR

(
1 +

p0√
2π

+
1

4π

∑
m6=0

m2|pm|2
)

+O(|pm|3).

(3.13)

Using Eq.(3.12), we have

L = 2πR

(
1 +

1

4π

∑
m 6=0

(m2 − 1)|pm|2
)

+O(|pm|3). (3.14)
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So the excess arclength is given by

∆ =
1

4π

∑
m 6=0

(m2 − 1)|pm|2, (3.15)

which is a constant.

Substituting the Fourier expansion into the curvature formula gives

H =
r2 + 2r′2 + rr′′

(r2 + r′2)3/2
=

1

R
(1− p− p′′)

=
1

R

(
1− p0√

2π
+
∑
m6=0

(m2 − 1)pm
exp(imφ)√

2π

)
.

(3.16)

Using this in Eq.(3.5), we expand the normal and tangential forces F = {Fr, Fφ} as

Fr =
κ

R3

(∑
m 6=0

(
(m2 − 1)(m2 − 3

2
+ σ0)pm + σm

)
exp(imφ)√

2π

)
, (3.17)

Fφ =
κ

R3

∑
m6=0

mσm
exp(imφ)

2π
. (3.18)

In polar coordinates, the interior and exterior pressure and velocity fields in Stokes flow
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[19, 57] are

p̂1 =
∞∑
m=1

ξ1
m (r/R)m cosmφ, (3.19)

p̂r =
∞∑
m=1

ξ2
m (r/R)−m cosmφ, (3.20)

v1
r =

R

η1

∞∑
m=1

[
ξ1
m

m

4(1 +m)
(r/R)m+1 + ξ1

m (r/R)m−1

]
cosmφ, (3.21)

v2
r =

R

η2

∞∑
m=1

[
−ξ2

m

m

4(1−m)
(r/R)−m+1 − ξ2

m (r/R)−m−1

]
cosmφ, (3.22)

v1
φ =

R

η1

∞∑
m=1

[
−ξ1

m

2 +m

4(1 +m)
(r/R)m+1 − ξ1

m (r/R)m−1

]
sinmφ, (3.23)

v2
φ =

R

η2

∞∑
m=1

[
−ξ1

m

2−m
4(1−m)

(r/R)−m+1 − ξ2
m (r/R)−m−1

]
sinmφ. (3.24)

The coefficients {ξ1
m, ξ

2
m, ζ

1
m, ζ

2
m} are determined by the boundary conditions Eq.(3.6) and

(3.7). The velocity is continuous across the membrane and the change of the tensor equals

the interfacial force density induced by the membrane configuration at S:

u1 − u2 = 0,

[T1 −T2] · n = F,

where the stress tensor T = −p̂I + 2D, p̂ is the pressure and the symmetric part of the

velocity gradient D is

D =

 ∂vir
∂r

1
2

(
r ∂
∂r

(
viφ
r

)
+ 1

r
∂vir
∂φ

)
1
2

(
r ∂
∂r

(
viφ
r

)
+ 1

r
∂vir
∂φ

)
1
r

∂viφ
∂φ

+ vir
r

 , i = 1, 2. (3.25)

Solving above equations with boundary conditions Eq.(3.6) and Eq.(3.7), we find the induced
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velocity at the vesicle membrane along the normal direction is

vindm = − κ

R3η2

|m|(m2 − 3
2

+ σ0)

2(1 + λ)
pm, (3.26)

where vindm is the m-th Fourier mode of the velocity induced velocity uind.

By plugging in the expansion into Eq.(3.9), we have

τ ṗm = S(t)(δm,2 + δm,−2)− (Amσ0 + Γm)pm, (3.27)

where S(t) = Ssign(t) indicates that the direction of the flow is reversed at t = 0, and S is the

strength of the applied elongational flow, τ = R3η2
κ

is a characteristic time scale associated

with the bending properties of the membrane, δi,j is the Kronecker delta, Am = |m|
2(1+λ)

,

Γm =
|m|(m2− 3

2
)

2(1+λ)
.

Taking the time derivation of Eq.(3.15) and combining the result with Eq.(3.27), we obtain

σ =
6S(t)Re(p2)− Γ̄

Ā
, (3.28)

where Γ̄ =
∑

m 6=0(m2 − 1)Γm|pm|2, and Ā =
∑

m6=0(m2 − 1)Am|pm|2.

Stochastic Noise

Let ξm(t) denote for the m-th Fourier mode of the stochastic force density on the membrane.

Then the equation of motion Eq.(3.27) becomes a system of stochastic differential equations

ṗm = S(t)(δm,2 + δm,−2)− κ

η2R3
βmEmpm + ξm(t), for m 6= 0 (3.29)
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where the elastic coefficient Em = (m2 − 1)(m2 − 3
2

+ σ) and the mobility coefficient βm =

|m|
2(m2−1)(1+λ)

.

We assume the stochastic fluctuation ξm(t) is a scaled complex valued white noise, i.e.

ξ±m(t) =
1√
2

Ξm

(
dBm,1(t)

dt
± idBm,2(t)

dt

)
, for m = 1, 2, 3, ... (3.30)

where Bm,1(t), Bm,2(t) are independent standard Brownian motions, and Ξm =
√

2βmkbT
η2R2 are

coefficients depending on m.

Taking the time derivative of Equation Eq. (3.15), and using Eq. (3.29) gives

σ =
6S(t)Re(p2)− Γ̄ + ξ̄

Ā
(3.31)

where

ξ̄ =
∑
m6=0

(m2 − 1)
p∗mΞm√

2

dBm(t)

dt
. (3.32)

Numerical Results

First, we test the performance of our algorithm. We set the initial shape of the vesicle to

be an ellipse with aspect ratio a : b = 1 : 0.8, the applied flow rate S = 4 and the bending

stiffness κ = 10−19J . We run the algorithms with time step ∆t = 10−5s, ∆t/2, ∆t/4 and

∆t/8 and check the convergence of time using the change in excess arclength ∆ according

to

rC =
log (|Err(∆t)|/|Err(∆t/2)|)

log 2
(3.33)
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where the error defined as Err(∆t) = (max(∆∆t) − min(∆∆t))/max(∆∆t). The results in

Table 3.1 show that our algorithm converges.

Time Step
Deterministic Euler Deterministic RK2 Stochastic RK2
Err rC Err rC Err rC

h 6.145e-4 ∼ 1.532e-8 ∼ 4.249e-7 ∼
h/2 3.073e-4 0.9999 3.83e-9 1.9999 1.0561e-07 2.0058
h/4 1.537e-4 0.9998 9.6e-10 2.000 2.6318e-08 2.0032
h/8 7.68e-5 0.9996 2.4e-10 1.9999 6.5677e-09 2.0018

Table 3.1: Test of Convergence in Time.

Now we solve the SDEs (3.29) for pm numerically and compare the solution with pm com-

puted from SIBM. Here we set the parameters to be the same as in the nonlinear simulations.

The surface tensions are shown in Figure 3.4[a], which indicate three stages of the wrinkling

process: initiation, development, and decay. In the initiation stage, because of the nega-

tive surface tension, the interface perturbations start to form. In the development stage,

the surface tension is increasing but still negative. In the decay stage, the surface tension

is non-negative and wrinkles are smoothed out. The deterministic result is in blue, and

the stochastic result is in red. They behave similarly but with variability from thermal

fluctuations in the stochastic case.

Figure 3.4[b] presents the evolution of the second mode p2 and the most dominant mode

m∗ = 22 during the wrinkling dynamics (left: linear, right: nonlinear). Basically linear

theory captures the decay of |p2| (blue line) and at the same time the growth of |p22| (red

line), while because of nonlinear interactions, the times that |p2| (and |p22|) reach their

minimum (maximum) in the linear and nonlinear simulations are not exactly the same.
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Figure 3.4: Dynamics of a quasi-circular vesicle subjected to an one reversal of an applied
extensional flow at time t′ = 1. [a] Magnitudes of |p2| and |p22| in linear (left) and nonlinear
(right) simulations. [b] Surface tension computed from linear theory.

3.2.3 Nonlinear Dynamics of an Elongated Vesicle

Now we investigate the transient wrinkling numerically and compare the results with those

from the experiments. In the experiments, a giant vesicle is released in an extensional flow.

After it relaxes into an equilibrium shape, the direction of the flow is suddenly reversed. A

transient wrinkling dynamics is observed on the membrane. The wrinkles are smoothed out

when the vesicle reaches another equilibrium state. We match the long-axis of an elliptical fit

to the 2D cross-section of the experimental vesicle. The initial vesicle is an ellipse with major

and minor axes a = 2× 10−5m, b = 0.8× 10−5m, i.e. aspect ratio a : b = 1 : 0.4 and excess

arclength ∆ = 0.994. As in the experiments, the flow is reversed at the nondimensional time

t′ = 1.0.
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Figure 3.5: Wrinkling dynamics of an elongated vesicle. [a] Deterministic dynamics. [b]
Stochastic dynamics. [c] Experimental results. [d] Surface tension for the deterministic
(blue), stochastic (red) as a function of time. [e] Vesicle morphologies at the time t′ (as
labeled) and the corresponding dominant mode m∗ (left: deterministic, right: stochastic).

Figures 3.5[a] and [b] show the vesicle morphologies for the deterministic and stochastic

immersed boundary computations, respectively. In the deterministic wrinkling process, the

shape of the vesicle is symmetric with respect to both the x-axis and y-axis (even mode),

while in the fluctuating wrinkling process, the shape of the vesicle is no longer symmetric, and

high-order odd modes are excited. Figure 3.5[c] shows the corresponding experimental results

[27]. As the flow reversed, the surface tension suddenly becomes negative and generates the

wrinkling. In Figure 3.5[e], there are three stages in the wrinkling dynamics, which was seen

earlier in the perturbation theory (see Figure 3.4[a]). The first stage occurs immediately after

the flow is suddenly reversed and the surface tension becomes negative as the wrinkles start

to form. In the second stage, the surface tension remains negative and slowly increases while
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the amplitudes of wrinkles grow. In the third stage, the surface tension is non-negative and

all wrinkles are smoothed out as the vesicle aligns with the new extensional flow direction.

The dominant mode m∗ (defined in Eq.(3.2)) and corresponding vesicle morphologies are

shown in Figure 3.5[d]. In the deterministic dynamics, t′∗ ≈ 1.73, the dominant mode is

m∗ ≈ 10.14. In the stochastic case, t′∗ ≈ 1.53 is smaller and m∗ ≈ 9.64.

3.3 Wrinkling Dynamics in a Time-Dependent Exten-

sional Flow: Periodical Reversals of Flow Direction

3.3.1 Nonlinear Wrinkling Dynamics of a Quasi-Circle Vesicle

From previous analyses[57, 38, 39] and those shown in the previous section, we know that

the wrinkling of the vesicle is caused by the suddenly changed negative surface tension and

is transient. When the vesicle aligns with the new extensional flow direction, the wrinkles

are smoothed out. We next ask whether we can prevent the decay of the wrinkles on the

vesicle membrane by periodically reversing the extensional flow.

Firstly, we set the rule to reverse the direction of the flow. Because at the stationary state,

most of the excess arclength is stored in the second Fourier mode p2 [57], to excite wrinkles,

we want p2 to be small. Therefore, we use |p2| to set up a threshold to reverse the flow:

When |p2| is greater than some constant Ch, the direction of the flow is reversed.

Secondly, we study the wrinkling dynamics of a nearly circular vesicle. The initial shape of

the vesicle is an ellipse with aspect ratio a : b = 0.8 and the excess arclength ∆ = 0.0587. In

the simulations, we set the extensional flow strength S = 4, the bending stiffness κ = 10−19J

and the threshold Ch = 100.
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We begin by allowing the vesicle to reach its equilibrium configuration before we reverse

the flow field. Once this occurs, we reverse the flow direction. The surface tension becomes

negative and |p2| begins to decline. After a short time, the negative surface tension activates

the wrinkles. When |p2| reaches its minimum and starts to increase, the wrinkles begin to

be smoothed out. We keep track of |p2| and reverse the direction of the flow as |p2| reaches

the threshold Ch. We then repeat reversing the flow and investigate the entirety dynamics of

the vesicles. As expected, the vesicles undergo a series of complex morphological transitions

where the complexity of the shapes depend on the strength of the applied flow. We investigate

both deterministic and stochastic dynamics. A three-stage process of the vesicle dynamics

is observed in our numerical simulations.

Deterministic Dynamics

In the first few time units (seconds), because of the sudden change of flow direction, the

surface tension becomes negative immediately and excites high-order Fourier modes. Once

|p2| meets its minimum and starts to increase, the high-order modes start to decrease. Before

the wrinkles disappear, |p2| reaches the threshold Ch and the flow is reversed again, which

re-generates the wrinkles. Figure 3.6 shows the vesicle morphologies of the first stage of

the dynamics using the deterministic model. Figures 3.6[b] and [c] show the evolution of

low Fourier modes and the surface tension σ versus time, respectively. Here σ is the average

value of the local surface tension along with the vesicle. Induced by flow reversals, the surface

tension and Fourier modes are oscillating. Note that only even modes are nontrivial in the

deterministic case. The magnitude of the 4th mode |p4| is small in this stage and starts to

grow at the end of the stage. The corresponding morphologies of the vesicle are shown in

Figure 3.6[a](red stars: shapes in the top row; green triangles: shapes in the bottom row).

The morphologies at the same column are chosen at two consecutive reverses.

During the next stage of the dynamics, shown in Figure 3.7, the 4th mode further increases
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Figure 3.6: Deterministic wrinkling dynamics of a quasi-circular vesicle. Stage 1: [a]Shapes
of the vesicle at the labeled time. [b] Fourier spectra. [c] Surface tension.

and eventually saturates in a dominant 4-fold symmetric vesicle shape, which oscillates with

the long axis changing from being horizontal to vertically aligned depending on the direction

of the flow. Later, the 4th Fourier mode increases and becomes dominant. The values of

the peaks and dips of |p4| keep nearly stable. The dynamics of the vesicle at selected times

at which the direction of the flow is reversed are shown in Figure 3.7[a]. We compare the

morphologies of the vesicle at the beginning (t ≈ 13, blue) and the end (t ≈ 29, red) in this

stage (see Figure 3.7[d]). These shapes are nearly overlapped, which means the vesicle shape

is controlled quite well during the stage of the dynamics, which lasts about 20s.

During the next stage of the dynamics, shown in Figure 3.8, the magnitude of 2-mode |p2|

starts to increase. As p2 starts to increase, the dynamics transitions to the third stage (see

Figure 3.8). The diagonal of the vesicle at t ≈ 73 is slightly rotated compared with it at

t ≈ 34. This is induced by the growth of p2 (Figure 3.8[d]). As this process continues, the

other modes decrease and the p2 dominates the shape of the vesicle (Figure 3.9). The final

shape is ellipse-like with an inclination angle around 45◦.
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Figure 3.7: Deterministic wrinkling dynamics of a quasi-circular vesicle. Stage 2: [a]Shapes
of the vesicle at the labeled time, [b]Fourier spectra. [c]Surface tension. [d] Comparison of
shapes.

We summarize the deterministic dynamics in Figure 3.10, which shows the evolution of the

low Fourier modes p2, p3, p4 and the surface tension σ versus time, respectively. The behavior

of the Fourier modes |pm| indicates this three-stage process. In the first stage, high-order

wrinkles are activated by the changed surface tension. In the second stage, the vesicle is

dominated by p4. In the last stage, p2 increases and the wrinkles are smoothed out.

41



[a]

30 35 40 45 50 55 60 65 70 75

t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2nd

3rd

4th
S  = 4

[b] [c]

[d]

Figure 3.8: Deterministic wrinkling dynamics of a quasi-circular vesicle. Stage 3: [a] Shapes
of the vesicle at the labeled time. [b] Fourier spectra. [c] Surface tension. [d] Comparison of
shapes.

A Stochastic Dynamics

Next, we incorporate thermal fluctuations and observe an analogous 3 stage dynamical pro-

cess (Figures 3.11 - 3.13). In contrast to the deterministic simulation, thermal fluctuations

create both odd and even modes, which break the vesicle symmetry.

During the first few time units, high-odd modes are excited (see Figure 3.11[b]), but then

decay away and the vesicle shape becomes more dominated by the low modes. For example,

at t = 1.2059s, the dominant mode is m∗ = 7.7953, and it decreases to m∗ = 2.9284 at

t = 40.2050s.

As seen in Figure 3.12[a] and quantified in 3.12[b], the high-order wrinkling disappears and

the shapes of the vesicle become dominated by the third mode (see Figure 3.12). Although
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Figure 3.9: Deterministic wrinkling dynamics of a quasi-circular vesicle. Stage 3 (continue):
[a] Shapes of the vesicle at the labeled time. [b] Fourier spectra. [c] Surface tension.

the 4th mode also grows at early times, this mode decays after reaching a maximum at t = 5

s. This is a contrast to the deterministic case where the 4th mode dominates at the early

times.

During the next stage of the evolution, the shapes of the vesicle become relatively stable

over about 45s (from t = 40 s to t = 86 s). Here we compare the shapes at t ≈ 41 and t ≈ 86

in Figure 3.12[d]. The shapes are almost overlaid and the corresponding Fourier spectra pm

are nearly equal for m with |pm| > 5× 10−4.

In the third stage of the dynamics, all the other modes start to decay and p2 becomes

dominant again (Figure 3.13). In Figure 3.13[d] left, the vesicle shape at t = 117 is slightly

rotated comparing with the shape at t = 86. The final vesicle is elliptical and oriented at

approximate 45◦.
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[a] [b]

Figure 3.10: Deterministic wrinkling dynamics of a quasi-circular vesicle. [a]Fourier spectra.
[b] Surface tension.

The evolution of the low Fourier modes and surface tension versus time are summarized in

Figure 3.14. As in the deterministic case, shown in Figure 3.10, there are 3 stages to the

vesicle kinetics. However, in the stochastic one, the 3rd mode dominates the stage of the

evolution and this stage lasts longer than the 2nd stage in the deterministic case, where the

4th mode dominates. Comparing with Figure 3.10, p3 acts an important role during the

entire process. It dominates the shapes of the vesicle in the second stage.

3.3.2 Linear Theory

To understand the dynamical process and mode selection mechanisms, we simulate the linear

(perturbation) system and compare the results with the fully nonlinear simulations. We

continue using the setting in Section 3.2.2 and Equation system (3.27). The amplitudes of

the Fourier modes |p2|, |p3|, |p4| are shown in Figure 3.15 (Left: linear, Right: nonlinear). The

evolution of these modes indicates the three stages of the deterministic wrinkling dynamics.

In the first stage, the 4th mode increases dramatically. In the second stage, the 4th mode

is oscillating in a stable range. And in the third stage, the 2nd mode increases and all the

other modes decay.
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Figure 3.11: Stochastic wrinkling dynamics of a quasi-circular vesicle. Stage 1: [a] Shapes
of the vesicle at the labeled time.[b]Fourier spectra. [c]Surface tension.

3.3.3 Nonlinear Dynamics of An Elongated Vesicle

Deterministic Dynamics

Next, we study the nonlinear dynamics of an elongated vesicle in a periodically reversed

applied extensional flow. The initial shape of the vesicle is an ellipse with aspect ratio

a : b = 1 : 0.4, i.e. the shape parameter ∆ = 0.994. In the simulations, we set the extensional

flow strength S = 4, the bending stiffness κ = 10−19J and threshold Ch = 100. Similar to

the quasi-circular vesicles, we observe a three-stage dynamical process of the vesicle.

Figures 3.16 - 3.18 illustrate the dynamics using the deterministic model. In the first stage,

high-order wrinkles (small scale) are excited by the negative surface tension induced by the

flow reversal (see Figure 3.16). Compare with Figure 3.6[a], the morphologies of the vesicle

in Figure 3.16[a] are corresponding to the time labeled in Figure 3.16[b] (top row: red stars,

bottom row: green triangle).
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Because ∆ is larger, the wrinkles are more obvious than those on quasi-circular vesicles.

Similar to the quasi-circular case, only even modes are present in the deterministic dynamics.

After a few flow reversals, high-order wrinkles decay and p4 increases quickly and stabilizes,

as seen in Figure 3.17, which shows that the vesicle oscillates between 2 four-fold symmetric

shapes as the flow periodically reverses. In the third stage of the dynamics, the magnitude

of the 2nd mode |p2| increases while other modes decay. This is shown in Figure 3.18 and

the vesicle tends to an ellipse-like shape oriented at 45◦.

The full dynamics of low Fourier modes |pm|, with m ≤ 4 and the evolution of σ versus time

are summarized in Figure 3.19.
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A Stochastic Realization

We now consider the influence of thermal fluctuations. A stochastic realization is shown

in Figures 3.20 - 3.22. The wrinkles are activated in the first few flow reversals (see the

morphologies in Figure 3.20[a]). As p3 and p4 rise, the shapes turn to be controlled by the

4th mode which are shown in Figure 3.20[a] and [b] at t > 3. Next, p4 begins to decline, p3

grows and the vesicle acquires a roughly 3-fold symmetric shape, as shown in Figure 3.21. At

the end of this stage, the 3rd mode dominates the shapes of the vesicle. We can recognize the

reduction of the 4th mode and the addition of the 3rd mode in Figure 3.20[a]. At t = 5.061s,

we notice four clear angles while the left top angle smoothes out at t = 8.9325s. During the

last stage of the dynamics, The magnitude of the 2nd mode |p2| increases rapidly and leads to

a biconcave shape. The dynamics of the vesicle morphologies, mode magnitudes, and surface

tension are shown in Figure 3.22. The vesicle morphologies on Fourier spectra at t ≈ 42s

and t ≈ 47s are compared in Figure 3.22[d]. Because the shapes are nearly overlaid and the

Fourier spectra are quite comparable, we believe that these are the final stable shapes.

Here the evolution of magnitudes of the low modes |pm| and surface tension for the entire

process are presented in Figure 3.23. Compared to the deterministic case (and the quasi-

steady case), the 2nd stage is much shorter.

We also plot the evolution of m∗ versus time in Figure 3.24. The morphologies of the vesicle

on the plot correspond to the labeled points (red squares). We observe a rapid decay in the

first 3 s, the dominate mode m∗ drops from 5.5 (t = 0.3850 s) to 3.6 (t = 3.3835 s). Then

the shapes keep relatively stable for a few seconds around m∗ ≈ 3.5. Then m∗ decays to 2.1

and stabilizes as the vesicle reaches a final biconcave shape, oriented at −45◦.
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Inclination Angle

From the above sections, we find out that in the last stage of the dynamics, p2 dominates

the shape of the vesicle and the orientation the vesicle changes. The shape and orientation

of the vesicles can be quantified by a shape parameter and inclination angle based on the

gyration tensor G of the vesicle membrane[41]:

G =
1

N

 ∑N
i=1 (xi − xcm)2 ∑N

i=1 (xi − xcm) (yi − ycm)∑N
i=1 (xi − xcm) (yi − ycm)

∑N
i=1 (yi − ycm)2.

 (3.34)

Let Λmax and Λmin be the two eigenvalues of G, and êmax be êmin are the corresponding

eigenvectors. The inclination angle is defined by

θ = ](x̂, êmax) (3.35)

where x̂ is the unit vector in the positive x-direction.

We utilize the inclination angle to characterize the final shapes of the vesicles. When t > 60

s, p2 dominates the shape of the vesicle and θ ≈ 45◦ as seen in Figure 3.25[a] and [b].

The final shapes are oscillating between 38◦ and 51◦. In Figure 3.25[c], we contrast the

shapes and corresponding Fourier modes of the vesicle shapes at t = 108.3s and t = 144.5s,

which almost overlap. By performing realizations of the stochastic model, we estimate the

distribution of the angle θ. This is shown in 3.25[d], and it follows a normal distribution

with θ̄ = 44.99◦. Finial shapes and corresponding Fourier modes in different stochastic

realizations are compared in Figure 3.25[e]. All the morphologies are nearly overlapped,

thus we can conclude that this finial shape is robust.

Summarizing, in this chapter, we investigated the dynamics of vesicles in quiescent and

time-varying flow. When periodical reversals of extensional flows are performed, the vesicle
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dynamics are turned to follow a 3-stage dynamical process. In the first stage, high-order

wrinkles are activated by the negative surface tension and decay rapidly. Next, the periodic

reversals create non-trivial vesicle shapes whereas in the 2nd stage, the shapes are 4-fold

symmetric using deterministic model, and 3-fold using stochastic model. This is due to

mode interaction and denominated by the perturbation theory. So, we can ’control’ shapes

to a certain extent. Next, we study the dependence of the wrinkling dynamics and shape

control as a function of the extensional flow rate S and the threshold Ch.
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Figure 3.12: Stochastic wrinkling dynamics of a quasi-circular vesicle. Stage 2: [a] Shapes
of the vesicle at the labeled time. [b] Fourier spectra. [c] Surface tension. [d] Comparison of
shapes.
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Figure 3.13: Stochastic wrinkling dynamics of a quasi-circular vesicle. Stage 3: [a] Shapes
of the vesicle at the labeled time. [b]Fourier spectra. [c]Surface tension. [d]Comparison of
shapes.
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Figure 3.14: Stochastic wrinkling dynamics of a quasi-circular vesicle. [a]Fourier spectra. [b]
Surface tension.
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Figure 3.15: Comparison of Fourier spectra. [a] Linear Theory. [b] Nonlinear Simulation.
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Figure 3.16: Deterministic wrinkling dynamics of an elongated vesicle. Stage 1 [a]Dynamics
of the vesicles versus time t. [b] Fourier spectra. [c]Surface tension.
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Figure 3.17: Deterministic wrinkling dynamics of an elongated vesicle. Stage 2 [a] Dynamics
of the vesicles versus time t. [b] Fourier spectra. [c]Surface tension.
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Figure 3.18: Deterministic wrinkling dynamics of an elongated vesicle. Stage 3 [a] Dynamics
of the vesicles versus time t. [b] Fourier spectra. [c]Surface tension.
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Figure 3.19: Deterministic wrinkling dynamics of an elongated vesicle. [a]Fourier spectra.
[b]Surface tension
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Figure 3.20: Stochastic wrinkling dynamics of an elongated vesicle. Stage 1 [a] Dynamics of
the vesicles versus time t. [b] Fourier spectra. [c]Surface tension.
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Figure 3.21: Stochastic wrinkling dynamics of an elongated vesicle. Stage 2 [a] Dynamics of
the vesicles versus time t. [b] Fourier spectra. [c]Surface tension.
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Figure 3.22: Stochastic Wrinkling dynamics of an elongated vesicle. Stage 3 [a] Dynamics
of the vesicles versus time t. [b] Fourier spectra. [c]Surface tension. [d] Comparison of finial
shapes.
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Figure 3.23: Stochastic wrinkling dynamics of an elongated vesicle. [a]Fourier spectra.
[b]Surface tension

Figure 3.24: The evolution of dominant mode m∗ versus time, with vesicle morphologies at
labeled time.
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Figure 3.25: Analysis of the inclination angle. [a] Time evolution of Fourier modes and
inclination angle. [b] Vesicle shapes at labeled time. [c] Comparison of the final shapes. [d]
Inclination angle distribution. [e] Finial shapes in 4 realizations.
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Chapter 4

Parameter Study for Elongated

Vesicles

In this chapter, we investigate the dependence of the wrinkling dynamics on the extensional

flow rate S and threshold Ch. Here we focus on the dynamics of elongated vesicles in

periodically reversed extensional flows. In all cases discussed here, the initial shape of a

vesicle is an ellipse with major axis a = 2 × 10−5 m and minor axis b = 0.8 × 10−5 m, i.e.,

aspect ratio a : b = 1 : 0.4 and excess arc length ∆ = 0.994.

4.1 Dependence of Wrinkling on the Extensional Flow

Rate

We first investigate the dependence of the wrinkling dynamics of different extensional flow

rate S. Here we set the spatial scale Ld = Lodj and the threshold Ch = 100. Figures 4.1

- 4.4 show the dynamics of vesicles in viscous fluid with a flow whose direction is reversed

when |p2| reaches the threshold Ch with flow rate S from 4 to 32. In each plot, we display
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deterministic simulations in Figures [a][b] and stochastic realizations in Figures [c][d]. In

Figure 4.1, the extensional flow rate S = 4. The entire dynamics are shown earlier (Figure

3.16 - 3.22). The shapes of the vesicle are shown at the time just before the flow reversal

(labeled points in Figure 4.1[a] left column). At the very beginning, high-order wrinkles are

excited and quickly dominated by the 4th modes (see Figure 4.1[b] right). In the stochastic

case, odd modes are activated and the shapes of the vesicle are no longer symmetric. Figure

4.1[d] (right) shows part of the stochastic dynamics when the morphological evolution of the

vesicle is stable. Finger-like protrusions on stochastic vesicles are more pronounced, while,

in the deterministic case, the vesicle looks a bit more square-like.

As the flow rate is increased to S = 8, even higher-order modes are excited (see Figure 4.2[a]

and [c]), which is consistent with the results from [38]. However, as the direction of the flow

continues to be reversed, higher-order wrinkles disappear and the 4th mode dominates the

shapes of the vesicle, which is similar to the simulation with S = 4. Besides the 4th mode,

we also observe a small 6th mode on the morphologies in Figure 4.2[b], which is not shown

in Figure 4.1[b] for S = 4. And there are six obvious protuberances on the membrane in the

stochastic simulation (see Figure 4.2[d]).

As we double the flow rate S again (see Figure 4.3), even higher-order wrinkles are excited

by the large flow strength. In the deterministic dynamics (Figure 4.3[b]), the 4th mode

dominates the shapes of the vesicle with a clear 6th mode. While the shapes in the stochastic

realization (see Figure 4.3[d]) are 4-fold asymmetric.

For a larger flow rate S = 32, the morphological evolution of the vesicle is stable and

controlled by the 4th mode in the deterministic dynamics, while it’s controlled by higher-

order modes in the stochastic cases.

Here we measure the characterized frequency of the shape of the vesicle at time t′ when the

p2 mode reaches its minimum during the last period in Figure 4.5. The dominant modes
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m∗ in the deterministic simulations (dot-dashed) are quite stable as the flow rate increases,

while the variation is much larger in the stochastic cases. The wrinkles on the vesicle are

mostly characterized by the 4th mode. As the flow strength S increases, the dominant mode

m∗ grows slightly.

4.2 Dependence of Wrinkling on the Threshold

Next, we investigate the dependence of the wrinkling dynamics of different thresholds Ch.

We set the aspect ratio a : b = 1 : 0.4, the flow strength S = 4 and Ld = Lodj in the

stochastic model. The threshold Ch varies from 20 to 200.

The dynamics of the vesicle with the threshold Ch = 20 in deterministic and stochastic

simulations are shown in Figure 4.6. In Figure 4.6[b], we observe that the morphological

evolution of the vesicle is stable and mostly dominated by 4th mode in the deterministic

simulation with ∆t′ = 0.272, where ∆t′ is the period defined as the time period between two

peaks of surface tension (yellow interval in Figure 4.6[b]). For the stochastic realization, the

shapes of the vesicle are mostly dominated by the 5th mode as seen in Figure 4.6[d], and the

corresponding period is slightly small ∆t′ = 0.256. This is because when thermal fluctuations

are included, the odd modes break the symmetry of the vesicle, enable the change on surface

tension to occur more rapidly and reduce the time for p2 to reach the threshold.

As Ch is increasing to 50 (see Figure 4.7), the shapes of the vesicle are controlled by 4th

mode in both deterministic and stochastic cases. The period ∆t′ = 0.448 in the deterministic

simulation is significantly larger than it in the stochastic simulation (∆t′ = 0.272).

In Figure 4.8, As Ch grows to 100, ∆t′ increases to 0.64 in deterministic dynamics and 0.496

in stochastic dynamics. If we continue to increase Ch = 200 (Figure 4.9), the morphologies

of the vesicle are dominated by 4th mode in both deterministic, and the deterministic period
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(∆t′ = 0.928) is still slightly longer than the stochastic one (∆t′ = 0.912).

To summarize, Figures 4.10 [a] - [d] show the changes of ∆t′ versus time for different threshold

Ch. In the deterministic cases (blue line), the period converges in time t′. However, in the

stochastic realizations, the convergence of ∆t′ is not clear. The red boxes show the means

of 5 simulations with error bars that indicate the maximum and minimum values for the

different realizations. Variability increases over time. Figure 4.10 [e] shows the periods ∆t′

with different Ch. Because the thermal fluctuations accelerate the growth and decay of the

surface tension, the stochastic periods are always shorter than the deterministic periods.

Finally, we compare the final shape (as time is large enough) with different Ch using stochas-

tic model in Figure 4.11. The final shapes are all biconcave and nearly overlapped.

In this chapter, we analyzed the effects of the extensional flow strength S and the threshold

Ch on the dynamics of an elongated vesicle in a periodical reversal flow. As S increases,

the dominant modes m∗ are stable around 4 in the deterministic simulations, in contrast,

the variation for the stochastic realizations are much larger. As Ch increases, the period

∆t′ increases and the deterministic period is always longer than the stochastic period due

to thermal fluctuations. By now, we focus on the impermeable vesicles. In the next chapter,

we concentrate on some permeable vesicles.
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Figure 4.1: S = 4. [a] deterministic dynamics, [b] part of the deterministic dynamics where
the morphological evolution of the vesicle is stable. [c] stochastic dynamics, [d] part of the
stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.2: S = 8. [a] deterministic dynamics, [b] part of the deterministic dynamics where
the morphological evolution of the vesicle is stable [c] stochastic dynamics, [d] part of the
stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.3: S = 16 [a] deterministic dynamics, [b] part of the deterministic dynamics where
the morphological evolution of the vesicle is stable. [c] stochastic dynamics, [d] part of the
stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.4: S = 32. [a] deterministic dynamics, [b] part of the deterministic dynamics where
the morphological evolution of the vesicle is stable [c] stochastic dynamics, [d] part of the
stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.5: The dominant modes m∗ of the vesicle versus the flow strength.
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Figure 4.6: Ch = 20. [a] deterministic dynamics, [b] part of the deterministic dynamics
where the morphological evolution of the vesicle is stable [c] stochastic dynamics, [d] part of
the stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.7: Ch = 50. [a] deterministic dynamics, [b] part of the deterministic dynamics
where the morphological evolution of the vesicle is stable [c] stochastic dynamics, [d] part of
the stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.8: Ch = 100. [a] deterministic dynamics, [b] part of the deterministic dynamics
where the morphological evolution of the vesicle is stable [c] stochastic dynamics, [d] part of
the stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.9: Ch = 200. [a] deterministic dynamics, [b] part of the deterministic dynamics
where the morphological evolution of the vesicle is stable [c] stochastic dynamics, [d] part of
the stochastic dynamics where the morphological evolution of the vesicle is stable.
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Figure 4.10: [a]-[d]Periods vs time in both deterministic and stochastic models. [e]Periods
under different Ch in both deterministic and stochastic models. [f] Periods as a function of
Ch with different S.
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Figure 4.11: [a]The final shapes with different threshold. [b]Comparison at the same plot.
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Chapter 5

Wrinkling Dynamics of Fluctuating

Vesicles With Permeable Membrane

In this chapter, we focus on the microscopic vesicles with a permeable membrane, which is

permeable to small particles in a fluid. We simulate the osmotic phenomenon relevant to

the vesicles and extend the Stochastic Immersed Boundary Methods (SIBM) such that it is

able to handle the permeability. We observe the vesicle shrinkage of a permeable vesicle in

a viscous fluid with a high concentration difference.

5.1 Extension of Stochastic Immersed Boundary Meth-

ods (SIBM)

Consider a two-dimensional vesicle with a permeable membrane. The vesicle contains one

viscous fluid inside and surrounded by another viscous fluid outside. Here we assume that

the concentration of inside fluid is larger than the concentration of the outside fluid, i.e.,

cin < cout. This concentration difference causes an osmosis pressure and vesicle shrinking.
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Because of the permeability of the membrane, the enclosed area of vesicles A = A(t) is

decreasing. We assume that the arclength of the vesicle is conserved.

In this section, we extend our method introduced in Chapter 2 such that it is able to capture

the dynamics of mechanical structures that are permeable to the fluid [62]. Similar to

Eq.(2.1), the stochastic time-dependent, incompressible Stokes equations are given by

ρ
∂u

∂t
(x, t) +∇p(x, t) = µ∆u(x, t) + ftotal (x, t),

∇ · u(x, t) = 0,

(5.1)

where ftotal(x, t) is the total force density acting on the fluid arising from the immersed

membrane and thermal fluctuations,

ftotal (x, t) = Λ(Fmem) + (∇x · Λ)kBT + fthm, (5.2)

where (∇x ·Λ)kBT is a drift term coming from fluctuations of the immersed structure, which

can be incorporated into the pressure, as it is a gradient.The force density Fmem is the

variational derivative of the elastic energy function Φ[X],

Fmem = −δΦ[X]

δX
. (5.3)

The equation of motion for the membrane is described as

∂X

∂t
= Γu(x, t) + ψ (Fmem + Fthm) , (5.4)

where the second term is pressure-driven difference term due to the permeability [50, 21,

29, 62, 42], and ψ denotes the permeability coefficient. Here we assume that the velocity

difference has a linear relationship with the force density. The experimental estimate of ψ is

in the order 10−7 − 10−5m3/(N · s)[29, 42].
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The free energy of the membrane is

Φ[X] = Φbend[X] + Φtension[X] + Φosmosis[X], (5.5)

where Φbend[X] is the bending energy, Φtension[X] is elastic the energy defined in Eq. 2.9 and

2.10, and Φosmosis[X] is the potential energy induced by the osmosis pressure.

Osmosis phenomenon is driven by a concentration difference of fluids inside and outside the

membrane. It occurs in many biological systems and plays an important role [56, 44, 55, 7,

1, 61]. When diffusing particles are confined to a vesicle by a boundary which is permeable

to fluid but less permeable to particles, a pressure difference develops between the inside and

the outside of the vesicles. This pressure difference is called osmosis pressure.

van’t Hoff describes the osmotic pressure difference Π between two domains separated by a

semi-permeable membrane as

Π = kBT∆c, (5.6)

where kB is the Boltzmann constant, ∆c = cout− cin is the concentration difference between

domains separated by the semi-permeable barrier, and T is the absolute temperature in

degrees Kelvin.

Thus the osmosis force density is

Fosmosis = kBT∆c (5.7)

An analytic estimation of the volume of the vesicle V (t) is given in [24],

V (t) = V0 ·
cin,0
cout
·
{

1 + L

[
c∆

cin,0
· exp

(
c∆

cin,0
− A · ψ · Vw · c2

out

V0 · cin,0
· t
)]}

, (5.8)
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where Vw, V0, A, cin,0 and cout are the molar volume of water, initial vesicle volume, the

constant surface area of the vesicle, the initial concentration inside the vesicles, and concen-

tration in the external solution at time zero, respectively.

Applying Eq. 5.8[47], we have

∆c ∼ d(V (t))

dt
∼ exp(−kt), (5.9)

where k is constant which linearly depends on the permeability coefficient ψ. So we estimate

Fosmosis as a normal vector with the magnitude as an exponential decay function

Fosmosis(t) = F0 exp(−k · t), (5.10)

where F0 = kBT∆c(0), k = k0 ·ψ is a constant depending on permeability coefficient ψ, and

k0 is the decay rate.

5.2 Wrinkling Dynamics in the Quiescent Fluid

Firstly we study the dynamics when a quasi-circular vesicle is immersed in a quiescent fluid

with higher outside fluid concentration. The wrinkling dynamics of the vesicle in deter-

ministic and stochastic simulations are displayed in Figure 5.1[a] and [b], respectively. The

initial shape of the vesicle is an ellipse with excess arc length ∆ = 0.058. The permeability

coefficient is ψ = 5×10−6m3/(N · s). Due to the high osmosis pressure and the permeability

of the membrane, the enclosed area A(t) decreases exponentially to constants (see Figure

5.1[d]) and the vesicle shrinks. High-order Fourier modes are excited. As the concentra-

tion difference decreases to 0, the osmosis pressure Fosmosis decays to 0 and the wrinkles are

smoothed out and the vesicle releases to its equilibrium shape.
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Figure 5.1: Dynamics of a quasi-circular vesicle in quiescent fluid. [a] Deterministic dynam-
ics. [b] Dtochastic dynamics. [c]Magnitude of osmosis force Fosmosis. [d]Evolution of area
versus time.

5.3 Nonlinear Dynamics in Time-dependent Viscous

Flow

Secondly, we consider a vesicle is immersed in a viscous fluid with the extensional flow. At

t′ = 1, the direction of flow is suddenly reversed. The initial shape of the vesicle is an ellipse

with aspect ratio a : b = 1 : 0.8. Here we set permeable coefficient ψ = 1× 10−6m3/(pN · s),

the extensional flow rate S = 4, the bending stiffness κ = 10−19J .
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5.3.1 Wrinkling Dynamics

Wrinkling dynamics of the vesicles in deterministic and stochastic realizations are shown

in Figure 5.2[a][b], respectively (upper: impermeable vesicle, bottom: permeable vesicle).

Due to the osmosis pressure and permeability, the vesicle with a permeable membrane is

shrinking, and more clear wrinkles are excited. At the same time, they postpone the dis-

appearance of the wrinkles and extend the process. At t′ = 1.38s, the impermeable vesicles

are in their equilibrium shapes, while there still are some wrinkles on the permeable vesicles.

Figure 5.2 [c] presents a shape comparison between impermeable and permeable vesicles

(left: deterministic, right: stochastic). The permeability and nonzero Fosmosis, caused by the

concentration difference, lead to the vesicle shrinkage. The areas of permeable vesicles are

smaller than the ones for impermeable vesicles, and the wrinkles on the permeable vesicles

are much easier to observe.

5.3.2 Dependence of Wrinkling on the Permeability Coefficient ψ

Next, we investigate the dependence of the wrinkling characteristics as a function of the

permeability coefficient ψ for a range of flow strength S. The results are presented in Figure.

5.3.

In both deterministic (Figure 5.3a(left)) and stochastic (Figure 5.3a(right)), the dominant

mode m∗ increases as the flow strength increases. As ψ increases, the variability in m∗ tends

to decrease. This indicates that the interactions between flow strength and permeability can

attenuate the variability of wrinkling dynamics. As S and ψ increase, the dominant modes

in the deterministic and stochastic cases converge to 4th mode.

Figure 5.3[b] and [c] show the corresponding vesicle morphologies (top: deterministic, bot-

tom: stochastic) at the nondimensional times t′∗ using ψ = 10−8m2/(N · s) in Figure 5.3[b]
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Figure 5.2: Wrinkling dynamics of a quasi-circular vesicle. [a] Deterministic dynamics of the
impermeable and permeable vesicles. [b] Stochastic dynamics of the permeable and imper-
meable vesicles. (upper : impermeable vesicle, bottom : permeable vesicle) [c] Morphologies
comparison (blue : impermeable, right : permeable).

and ψ = 5× 10−6m2/(N · s) in Figure 5.3[c].

5.3.3 Dependence of Wrinkling on the Initial Osmosis Pressure Fp

Here we study the dependence of the wrinkling characteristics as a function of the initial

osmosis pressure Fp and flow strength S. Figure 5.4[a], (deterministic (left) and stochastic

(right)), shows that as Fp increases, the dominate mode m∗ converge. For a fixed small

osmosis force (e.g., Fp = 2), the dominate mode increases as the flow strength S increases,

which is consistent with the results for impermeable vesicles [38]. However, when the osmosis

force is strong enough, it dominates the wrinkles, and the corresponding morphologies are
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controlled by 4th mode.

5.3.4 Quasi-circular Approximation

The vesicle membrane is parametrized by X(t, φ) : r = R(t)(1+p), where R(t) is the effective

radius defined as R(t) =
√

A(t)
π

, and a small perturbation function p is expanded in Fourier

harmonics :

p(t, φ) =
+∞∑
−∞

pm
exp(imφ)√

2π
, (5.11)

here m is the perturbation mode, and pm(t)� 1 is the perturbation amplitude of mode m.

We only keep up to the quadratic order terms, and neglect all higher order terms of pm in

the following analysis.

The enclose area A(t) is

A(t) = πR2

(
1 +

2p0√
2π

+
1

2π

∑
m 6=0

|pm|2
)
. (5.12)

The arclength is

L = 2πR

(
1 +

1

4π

∑
m 6=0

(m2 − 1) |pm|2
)

+O
(
p3
)
, (5.13)

where R = R(t). The force density acting on the membrane is given by

F =
(
κHss +

κ

2
H3 −Hσ + Fp

)
n + σst (5.14)

where Fp is the magnitude of the osmosis pressure applied on the membrane. The magnitude
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of F in the normal and tangent direction in Fourier harmonics are given by,

Fn =
κ

R3

[(
1

2
+ Fp + σ0

)
−
∑
m6=0

[
(m2 − 1)(m2 − 3

2
+ σ0)pm + σm

]
exp(imφ)√

2π

]
,

(5.15)

Ft =
κ

R3

∑
m6=0

imσm
exp(imφ)√

2π
. (5.16)

By solving the Stokes equation with boundary conditions, we have the induced velocity along

the normal direction

vm = − κ

2R2
βmEmpm (5.17)

where vm is the m-th Fourier mode of the induced velocity, Em = (m2 − 1)
(
m2 − 3

2
+ σ0

)
is

elasticity coefficient and βm = |m|
2(1+λ)(m2−1)

is the mobility coefficient.

The external applied velocity field is

u∞r (r, φ) =
S(t)r cos 2φ√

2π
, u∞φ (r, φ) =

S(t)r sin 2φ√
2π

(5.18)

where S(t) = −S sign(t− t0) indicates that the direction of the flow is reversed at t = t0, S̄

is the strength of the applied elongational flow.

Plugging (5.15) - (5.17) to the equation of motion for the membrane (5.4), we have the

equation of motion for the amplitude of mode m

dpm
dt

= S̄(t) (δm,2 + δm,−2)−
(
R′

R
+

κ

η2R3
βmEm +

κψ

R3
Em

)
pm, for |m| > 0, t ≥ 0 (5.19)
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dpm
dt

= S̄(t) (δm,2 + δm,−2)−
(
R′

R
+ Amσ0 +Bm

)
pm, for |m| > 0, t ≥ 0 (5.20)

where Am = am+ b(m2 − 1), Bm = Am(m2 − 3
2
), and a = κ

2R3η(1+λ)
, b = κψ

R3 .

For m = 0

R′ =
κψ

R2
+ ψFp +

κψ

R2
σ0. (5.21)

Together with the arc length conservation (5.13)

dtL = dt

(
2πR

(
1 +

1

4π

∑
m 6=0

(m2 − 1)|pm|2
))

= 0 (5.22)

Note that R = R(t) is a function of time t. We have

σ =
6S(t)Re(p2)− Γ̄

Ā
(5.23)

where Ā =
∑

m 6=0m
2(Am − b)|pm|2, Γ̄ =

∑
m6=0Bm|pm|2

As we focus on the contribution of the thermal fluctuation, a stochastic force needs to be

added to the force equation. Let ξm(t) be the m-th mode of the stochastic force, then the

equation of motion (5.24) becomes

dpm
dt

= S̄(t) (δm,2 + δm,−2)︸ ︷︷ ︸
External flow

−
(
R′

R
+ Amσ0 +Bm

)
pm︸ ︷︷ ︸

Elastic force

+ ξm︸︷︷︸
Thermal noise

, (5.24)

where Am = am+ b(m2 − 1), Bm = Am(m2 − 3
2
), and a = κ

2R3η(1+λ)
, b = κψ

R3 .
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Numerical Results

We solve the equation system of the motion and the surface tension constraint numerically.

We set parameters κ = 10−19J, η2 = 10−3Pa · s which is the viscosity of water at temperature

293K, λ = 1, R0 = 2 × 10−5m, the elongation rate S = 4, and the permeable coefficient

ψ = 1× 10−6m3/(N · s), the time step ∆t = 10−6s.

Figure 5.5 compares the magnitudes of the 2nd Fourier mode |p2| and dominant mode |p12| in

linear and nonlinear simulations. The linear results capture the fact that |p2| keeps growing

and exceed its initial value for the permeable vesicle (see Figure 3.4 for a comparison with

impermeable vesicles). However, |p12| in the linear results doesn’t increases again after it

reaches its minimum, which is the dynamics of |p12| in the nonlinear simulation.

In this chapter, we applied an extended version of SIBM to investigate the wrinkling dynamics

of a permeable vesicle in a quiescent fluid and in the fluid with time-varying flow. Due to

the concentration difference, an osmotic pressure is applied on the membrane and generates

wrinkles. Then we studied the effects of the permeability coefficient ψ and initial osmotic

pressure Fp. As ψ increases, the vesicle shrinks faster and clearer wrinkles are shown on the

membrane. The dominant mode m∗ converges to 4th mode for large Fp.
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[a]

[b] ψ = 10−8

[c] ψ = 5× 10−6

Figure 5.3: Wrinkling characteristics as a function of the membrane permeability coefficient ψ
and flow strength S. [a]The relation between the most dominant mode m∗ and the membrane
permeability coefficient ψ at a fixed flow strength S as labeled.[b-c] The vesicle shapes from
the deterministic (upper) and stochastic (lower) immersed boundary methods for different
flow strength S and membrane permeability coefficients ψ, as labeled.
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Figure 5.4: Wrinkling characteristics as a function of the initial osmosis pressure Fp and
flow strength S. [a]The relation between the most dominant mode m* and the initial osmosis
pressure Fp at a fixed flow strength S as labeled. (left: deterministic, right : stochastic) [b-c]
The vesicle shapes from the deterministic (upper) and stochastic (lower) immersed boundary
methods for different flow strength S and initial osmosis pressure Fp, as labeled.
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Chapter 6

Summary And Future Work

6.1 Summary

We explored the two-dimensional fully nonlinear dynamics of vesicles in a viscous fluid at

finite temperature. Numerically we applied a stochastic immersed boundary method with

a biophysically motivated choice of thermal fluctuations. Analytically we developed a two-

dimensional linear theory for the wrinkling dynamics of a quasi-circular vesicle. The numeri-

cal results and analytical approach in this thesis are expected to lead a better understanding

of related problems in biology.

We first developed a two-dimensional stochastic immersed boundary method and chose the

2D thermal fluctuations by matching the numerical results with a theoretical solution for

a fluctuating filament. We discovered a quadratic relationship between the side length of

the computational domain and the spatial scale, and explained the relationship analytically.

Therefore, our studies can provide a bridge between two-dimensional and three-dimensional

thermal fluctuations.
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Secondly, we investigated the long-term dynamics of impermeable vesicles in a periodically

reversed flow numerically.Our numerical results show that there are three stages in the

dynamics. At the first stage, the negative surface tension generate high-order wrinkles

on the vesicle boundary. At the second stage, the high-order wrinkles disappear and some

low-frequency modes, like p3, p4 dominate the shape of the vesicle. As time increases, all the

wrinkles are smoothed out and the second mode p2 dominates again. Then we performed a

two-dimensional linear theory of a quasi-circular vesicle. We derived and solved the equation

system describing the motion of the membrane interface numerically. Our analytical results

also indicated these three stages. This agreement between nonlinear and linear simulations

can provide insight into the experiments.

Finally, we studied vesicles with permeable membranes. We extended the two-dimensional

stochastic immersed boundary method and asymptotic approach such that both work for

permeable membranes.We observed the vesicle shrinkage in a quiescent fluid where the inside

fluid has a lower concentration than the outside fluid. The osmosis pressure activates wrin-

kles. As the enclosed area decreases exponentially, the shapes of the vesicle finally evolve

to its equilibrium shape. Next, we compared the wrinkling dynamics of the permeable and

impermeable vesicles in one-reverse flow. We observed more clear wrinkles on permeable

membranes, and a slower disappearance of the wrinkles. The solutions of the linear theory

agree with the corresponding solutions from the nonlinear simulation. Thus, our nonlin-

ear results can bring us an expectation of the dynamics of the vesicle with a permeable

membrane.

6.2 Future Work

In this thesis, we apply a two-dimensional SIBM, and results in 3D could be different. We

plan to explore a three-dimensional SIBM to investigate the dynamics of the fluctuation
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vesicles. However, there are many challenges.

The major challenge is the high computational cost. In 2D, we use the parallel computing

techniques to optimize the models and reduce the computational time by 80%. While in 3D,

we don’t have an appropriate way to apply the parallel computing techniques. So it’s almost

impossible to investigate the long-term dynamics.

Another challenge is the complicated discretization of the membrane surface and calculation

of the force density. For example, in 2D model, two neighboring nodes on the membrane

connected by elastic springs and the tension between them is given by (See Appendix A.2

and [38] for details),

F[i] = λL (∆si,i+1 −∆L) v.

Here v is a unit vector acting on the i-th node pointing to the (i+1)-th node, λL is the spring

constant and (∆si,i+1 −∆L) is the distance changed between these two nodes. However, in

3D, the surface tension is much more complex. A simple 3D model and the corresponding

surface tensions at p1, p2, p3 are shown in Figure 6.1.

Figure 6.1: A schematic diagram of a surface tension model in 3D

Besides, the perturbation theory for a quasispherical vesicle is also more difficult than the

2D linear theory.
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Appendix A

Appendix Title

A.1 Variational Derivative of the Elastic Energy

The variational derivative of the elastic energy (Eqn. (2.8)) is given by the following part.

The bending energy Eb is

Eb =
1

2

∫
Σ

κH2ds

where Σ is the κ is the bending rigidity, H is the mean curvature.

We have the geometric relations [54] [53]

Ht = −
(
∂2
s +H2

)
V + THs (A.1)

sαt = (Ts +HV )sα (A.2)

where V is the outward normal velocity, T is the tangential velocity, α is a parameterization

of the membrane that bounds the vesicle (0 ≤ α ≤ 2π).
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Rewriting Eb as

Eκ =

∫
Σ

(
1

2
κH2

)
sαdα (A.3)

and taking time derivative of it, we have

Ėκ =

∫
Σ

(κHHt) sαdα +

∫
Σ

(
1

2
κH2

)
sαtdα

= κ

∫
Σ

H
(
−
(
∂2
s +H2

)
V + THs

)
sαdα +

1

2

∫
Σ

H2(Ts +HV )sαdα

= κ

∫
Σ

∂sV Hsds+ κ

∫
Σ

HHsTds−
1

2
κ

∫
Σ

Td(H2)− 1

2
κ

∫
Σ

H3V ds

= κ

∫
Σ

HsdV + κ

∫
Σ

HHsTds− κ
∫

Σ

HHsTds−
1

2
κ

∫
Σ

H3V ds

= −κ
∫

Σ

V Hssds−
1

2
κ

∫
Σ

H3V ds

=

∫
Σ

(
−κHss −

κ

2
H3
)
V ds

(A.4)

Here we use formula A.1 and A.2 in the second equality, and we apply the integration by

parts to get the third and forth equality.

Similarly, the elastic energy can be rewritten as Eσ =
∫

Σ
σds =

∫
Σ
σsαdα. Take the time

derivative, we have

Ėσ =

∫
Σ

σ̇ds+

∫
Σ

σ(Ts +HV )sαdα

=

∫
Σ

σ̇ds+

∫
Σ

σTsds+

∫
Σ

HσV ds

=

∫
Σ

σ̇ds+

∫
Σ

σdT +

∫
Σ

HσV ds

=

∫
Σ

σ̇ds−
∫

Σ

Tσsds+

∫
Σ

HσV ds

(A.5)

The force density F is the variational derivative of the free energy (Eqn. 2.8)[48], is given
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by

F = − δE
δX

=

(
κ
∂2H

∂s2
+
κ

2
H3 −Hσ

)
n +

∂σ

∂s
t (A.6)

where n is the outward normal vector and t is the tangent vector.

A.2 Numerical Discretization for a Vesicle

A.2.1 Numerical Discretization

The discretization of the fluid equations are the same as the for the filament (Section 2.2.2).

Here we calculate the free energy E and force FX for a vesicle[38].

Initially, a vesicle is considered as an ellipse with the nodes X[i], i = 1, 2, ..., N equally-

distributed along the membrane with spacing ∆L = L/N , where L is the total arclength

of the membrane. Nodes are connected by elastic springs with neighbors. X[N+1] = X[1]

because the vesicle is closed.

Let λL be the elastic constant, then the spring potential is

EL =
λL
2

∑N

i=1
(∆si,i+1 −∆L)2, (A.7)

where ∆si,i+1 is the arclength from X[i] to X[i+1]. The tension between two neighboring

nodes is

F[i],L = λL (∆si,i+1 −∆L)
X[i+1] −X[i]∣∣X[i+1] −X[i]

∣∣ , (A.8)

for i = 1, 2, · · · , N , acting on the i-th node and pointing to the (i+ 1)-th node.
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The discrete bending energy is written as

Eκ =
1

2

N∑
i=1

H2
[i]∆si,i+1 (A.9)

and the bending force density is given by

F[i],κ = − (δEκ/δX)[i] =
(
κ(H)ss,[i] + κH3

[i]/2
)

ni, for i = 1, 2, ..., N. (A.10)

where H[i] is the mean curvature and (H)ss,[i] is its second derivative

The total force acting on the i-th node is the sum of the elastic and bending forces:

FX[i]
(t) = F[i],L − F[i−1],L − F[i],κ, for i = 1, 2, ..., N. (A.11)

The average of the local surface tensions, σ(t) can be calculated as:

σ(t) = λL(Ls(t)− L)/N, (A.12)

where the Ls(t) =
∑N

i=1 ∆si,i+1 is the total arclength of the discrete membrane.

A.2.2 Convergence Test

Here we check the convergence for our numerical algorithm. We set the computational

domain Ω to be a square with side length LC = 4× 10−4m. The initial shape of the vesicle

is an ellipse with the aspect ratio a : b = 1 : 0.4. We choose the long axis a = 2× 10−5m and

short axis b = 0.8 × 10−5m to match the vesicle in the experiment [27], and use the same

values of the parameters in the experiment (extensional flow rate S = 4, the bending stiffness

is κ = 10−19J). We set λL = 4 × 104N/m to ensure the variation of local arclength is less

than 0.1% for deterministic simulations, and 0.3% for stochastic simulations. We assume
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that the fluid in the interior and exterior of the vesicle are water at the temperature 293K,

i.e. η = 10−3Pa s and ρ = 103kg/m3. We use N = 256 to discretize the vesicle interface,

and run the simulations up to T = 0.1s. We run the algorithms with time step h = 10−5s,

h/2, h/4, h/8 and h/16 and check the convergence in time by measuring the vesicle area and

calculating the rate of convergence rC by

rC = log
(
|A∆t − A∆t/2|/|A∆t/2 − A∆t/4|

)
/ log 2. (A.13)

The results for the deterministic and stochastic immersed boundary methods are summarized

in Table A.1 and demonstrate that our numerical schemes are second-order convergent in

time.

Table A.1: Convergence test in time for the vesicle area (∆A = |(As − As/2|/A)

Deterministic R-K 2 Stochastic R-K 2
Time Step ∆A rC ∆A rC

∆t - - -
∆t/2 2.43e-8 - 3.68e-7 -
∆t/4 6.08e-9 2.002 9.18e-8 2.004
∆t/8 1.51e-9 2.008 2.34e-8 2.007

A.3 Dynamics of Impermeable Vesicles in the Quies-

cent Fluid

The dynamics of impermeable vesicles in the quiescent fluid are shown in Figure A.1, and

their equilibrium shape are shown in Figure 3.1. The initial shapes are ellipse with major

axes a = 2× 10−5 m and the minor axes b decreasing from 2× 10−5 m to 0.6× 10−5 m.

The equilibrium shape for a circular vesicle is a circle (Figure A.1[a]), while as ∆ increases,
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the equilibrium shapes are more like biconcave.

0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 21.9201 23.999

0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 16.1606 19.9992

[a]∆ = 0
0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 24.0001 30.3035

0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 21.9201 23.999

[b]∆ = 0.3086
0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 24.0001 42.977

0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 24.0001 38.583

[c]∆ = 0.9932
0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 24.0001 35.9996

0 0.50024 1.0005 1.9999 3.0004 3.9998 5.9998 11.9995 24.0001 48.0002

[d]∆ = 1.7245

Figure A.1: Dynamics of impermeable vesicles in the quiescent fluid with different excess
arc length ∆ at labeled time [a] ∆ = 0, [b] ∆ = 0.3086, [c] ∆ = 0.9932, [d]∆ = 1.7245(top:
deterministic, bottom: stochastic).

A.4 Additional Realizations of Wrinkling Dynamics in

Time-varying Extensional Flow

In Section 3.3.3, we presented a single realization of the stochastic dynamics of a single vesicle

with excess area ∆ = 0.994 the extensional flow rate S = 4 and threshold Ch = 100. Here,

we present multiple realizations for these cases to demonstrate that the results presented in

Section 3.3.3 are characteristic.
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Figure A.2: Two Stochastic Realizations of Elongated Vesicles [a]Stage 1 [b] Stage 2 [c] Stage
3 [c] Fourier modes[d] Surface tension

103


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Biomembranes and Red Blood Cell
	Vesicles

	Related Work
	Major Achievements
	Overview of this Thesis

	Immersed Boundary Method and A Spatial Scale Ld
	Stochastic Immersed Boundary Methods (SIBM)
	Free Energy and Elastic Force Density FX
	Thermal Fluctuations

	The Parameter Ld And Odijk Model
	Odijk Model
	Numerical Method
	Analysis of Ld


	Wrinkling Dynamics of Fluctuating Vesicles With Impermeable Membranes
	Nonlinear Dynamics of a Vesicle in the Quiescent Fluid
	Wrinkling Dynamics in a Time-Dependent Extensional Flow: A Single Reversal of Flow Direction
	Nonlinear Dynamics of a Quasi-Circle Vesicle
	Quasi-circular Approximation
	Nonlinear Dynamics of an Elongated Vesicle

	Wrinkling Dynamics in a Time-Dependent Extensional Flow: Periodical Reversals of Flow Direction
	Nonlinear Wrinkling Dynamics of a Quasi-Circle Vesicle
	Linear Theory
	Nonlinear Dynamics of An Elongated Vesicle


	Parameter Study for Elongated Vesicles
	Dependence of Wrinkling on the Extensional Flow Rate
	Dependence of Wrinkling on the Threshold

	Wrinkling Dynamics of Fluctuating Vesicles With Permeable Membrane
	Extension of Stochastic Immersed Boundary Methods (SIBM) 
	Wrinkling Dynamics in the Quiescent Fluid
	Nonlinear Dynamics in Time-dependent Viscous Flow
	Wrinkling Dynamics
	Dependence of Wrinkling on the Permeability Coefficient 
	Dependence of Wrinkling on the Initial Osmosis Pressure Fp
	Quasi-circular Approximation


	Summary And Future Work
	Summary
	Future Work

	Bibliography
	Appendix Title
	Variational Derivative of the Elastic Energy
	Numerical Discretization for a Vesicle
	Numerical Discretization
	Convergence Test

	Dynamics of Impermeable Vesicles in the Quiescent Fluid
	Additional Realizations of Wrinkling Dynamics in Time-varying Extensional Flow




