
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Leveraging Depth for 3D Scene Perception

Permalink
https://escholarship.org/uc/item/02s5v6dn

Author
Zhao, Yunhan

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02s5v6dn
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Leveraging Depth for 3D Scene Perception

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Yunhan Zhao

Dissertation Committee:
Professor Charless Fowlkes, Chair

Professor Alexander Berg
Professor Erik Sudderth

2024

© 2024 Yunhan Zhao

DEDICATION

To the family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES xii

ACKNOWLEDGMENTS xvi

VITA xvii

ABSTRACT OF THE DISSERTATION xix

1 Introduction 1
1.1 3D Scene Perception Applications . 2

1.1.1 Classic Vision Tasks . 2
1.1.2 Emerging Tasks . 3

1.2 Depth Estimation . 4
1.2.1 Sensing Techniques . 4
1.2.2 Learning-based Depth Estimators . 5

1.3 Contributions . 7
1.4 Thesis Organization . 8

2 Bridging high-level domain gaps in monocular depth predictions 11
2.1 Background . 12
2.2 Related Work . 15
2.3 Attend, Remove, Complete (ARC) . 17

2.3.1 Attention Module A . 18
2.3.2 Inpainting Module I . 19
2.3.3 Style Translator Module T . 21
2.3.4 Depth Predictor D . 22
2.3.5 Training by Modular Coordinate Descent 22

2.4 Experiments . 23
2.4.1 Implementation Details . 24
2.4.2 Indoor Scene Depth with NYUv2 & PBRS 25
2.4.3 Outdoor Scene Depth with Kitti & vKitti 26
2.4.4 Ablation Study and Qualitative Visualization 28

2.5 Conclusion and Future Work . 33

iii

3 Mitigating camera pose distribution shift in depth predictions 36
3.1 Background . 37
3.2 Related Work . 39
3.3 Perspective-aware Data Augmentation . 41
3.4 Depth Prediction with Camera Pose Prior 43
3.5 Experiments . 46

3.5.1 Within & Cross-Distribution Evaluation 50
3.5.2 Out-of-Distribution Evaluation . 51
3.5.3 Applicability to Other Predictor Networks 51
3.5.4 Synthetic-to-Real Generalization . 53
3.5.5 Further Discussion and Ablation Study 54

3.6 Conclusion . 61

4 Reference-based image inpainting leveraging depth maps 66
4.1 Background . 67
4.2 Related Work . 69
4.3 Method . 71

4.3.1 Initialization Stage . 72
4.3.2 Joint Optimization Stage . 73
4.3.3 Rendering and Postprocessing Stage 76

4.4 Experiments . 78
4.4.1 Quantitative Results . 81
4.4.2 Qualitative Results . 82
4.4.3 Ablation Study . 82

4.5 Discussion, Limitations, and Conclusion . 92

5 Instance tracking in 3D scenes with RGBD egocentric videos 97
5.1 Background . 98
5.2 Related Work . 101
5.3 IT3DEgo: Protocol and Dataset . 102

5.3.1 Benchmarking Protocol . 103
5.3.2 Dataset . 105

5.4 Methodology . 108
5.4.1 Baseline: Re-purposed SOT Trackers 108
5.4.2 Improved Baseline . 109

5.5 Experiments . 111
5.5.1 Benchmark Results . 113
5.5.2 Further Analysis and Ablation Study 114

5.6 Discussion . 119
5.7 Conclusion . 120

6 Concluding Remarks 122
6.1 Summary of Contributions . 122
6.2 Future Directions . 124

iv

Bibliography 126

Appendix A Chapter 2 Supplemental Material 150

Appendix B Chapter 3 Supplemental Material 152

Appendix C Chapter 4 Supplemental Material 155

Appendix D Chapter 5 Supplemental Material 157

v

LIST OF FIGURES

Page

2.1 (a) The presence of novel objects and clutter can drastically degrade the output of a
well-trained depth predictor. (b) Standard domain adaptation (e.g ., a style translator
trained with CycleGAN) only changes low-level image statistics and fails to solve the
problem (even trained with depth data from both synthetic and real domains), while
removing the clutter entirely (c) yields a remarkably better prediction. Similarly,
the insertion of a poster in (d,e) negatively affects the depth estimate and low-level
domain adaptation (f) only serves to hurt overall performance. 12

2.2 Flowchart of our whole ARC model in predicting the depth given a real-world image.
The ARC framework performs real-to-synthetic translation of an input image to
account for low-level domain shift and simultaneously detects the “hard” out-of-
domain regions using a trained attention module A. These regions are removed by
multiplicative gating with the binary mask from A and the masked regions inpainted
by module I. The translated result is fed to final depth predictor module D which
is trained to estimate depth from a mix of synthetic and (translated) real data. . 16

2.3 Ablation study of the sparsity factor ρ of the ARC model on NYUv2 dataset. We use
“Abs-Rel” and “δ1” to measure the performance (see Table 2.1 for their definition).
Note that the sparsity level ρ cannot be exact 1.0 due to KL loss during training, so
we present an approximate value with ρ = 0.99999. 28

2.4 Sorted per-sample error reduction of ARC over the mix training baseline on NYUv2
dataset w.r.t. the RMS-log metric. The error reduction is computed as RMS-log(ARC)
− RMS-log(mix training). The blue vertical line represents the index separating
negative and positive error reduction. 29

2.5 Qualitative results list some images over which our ARC model improves the depth
prediction remarkably, as well as failure cases. (Best viewed in color and zoomed in.) 30

2.6 Study of the sparsity factor ρ of the ARC model on Kitti dataset. 30
2.7 Per-sample improvement of ARC and the mix training baseline on NYUv2 testing

set w.r.t RMS-log. 31
2.8 Qualitative visualizations of our ARC on Kitti dataset including improvements as

well as failure cases. White arrows in the last column are used to highlight the
regions over which the model improves or degrades visibly w.r.t depth prediction.
We use the same color bar for the visualizing depth in each row. (Best view in color
and zoomed in.) . 33

2.9 Additional qualitative visualizations of our ARC on NYUv2 dataset. (Best viewed
in color and zoomed in.) . 35

vi

3.1 Contemporary monocular depth predictors, e.g ., DORN [71], rely on large-scale
training data which is naturally biased w.r.t. the distribution of camera poses (e.g .,
pitch angle distribution shown in gray). As a result, DORN makes unreliable predic-
tions on test images captured with uncommon poses (red bars), e.g ., pitch angles
>120◦. To address this issue, we propose two novel techniques that drastically reduce
prediction errors (cf . black bars) by leveraging perspective-aware data augmentation
during training and known camera pose at test time. Qualitative examples with
more extreme camera pitch angles (top) show that incorporating our techniques
leads to notable improvements. 37

3.2 Visual comparison of PDA and CDA. From the original example (left), conventional
data augmentation (CDA) synthesizes a new example (middle) by randomly cropping
a sub-region. It ignores camera pose information and will simply copy the depth
values w.r.t. the corresponding pixels. In contrast, perspective-aware augmentation
(PDA) simulates a rotation of the camera and synthesizes a new training example
with geometrically consistent depth values corresponding to the new camera pose
(right). 40

3.3 Left: We illustrate the proposed CPP which encodes camera pose (ω, θ, h) as a 2D
image. Intuitively, for a spatial coordinate q on the image plane (i.e., the encoding
map), we find its physical point pg on the ground plane, along the ray cast from the
camera. Then we compute the pseudo depth value as the length from the camera to
pz
g which is the projection of pg onto the depth direction z (red line) using Eqn. 3.7.

This results in an encoded CPP map for a given camera pose. Right: We visualize
some encoded CPP maps by varying the ω, θ and h independently. 41

3.4 Distribution of camera pitch and heights for three subsets of images from InteriorNet.
From the Natural subsect, we observe the dataset of InteriorNet does have a naturally
biased distribution (esp. pitch). Please refer to the text on how we construct the
three subsets. 48

3.5 Breakdown analysis of depth prediction w.r.t. pitch. The background shade denotes
the camera pose distribution w.r.t. pitch. Clearly, both PDA and CPP improve depth
prediction in underrepresented camera poses. Surprisingly, CPP remarkably boosts
depth prediction, while applying both CPP and PDA achieves the best performance
“everywhere”. 48

3.6 Qualitative comparison between Vanilla and our method (using both CPP and PDA)
on random testing images from InteriorNet (left) and ScanNet (right). Depth maps
for each example are shown with the same colorbar range. Notably, the images
are captured under some uncommon camera angles relative to the training pose
distribution (Fig. 3.5). The Vanilla model seems to make erroneous predictions w.r.t.
the overall scale of the depth. In contrast, by applying CPP and PDA, the new
model (“ours”) produces visually improved results. 50

vii

3.7 Left: We plot depth prediction error (Absr) w.r.t. different levels of noise in camera
height and pitch. We apply CPP to train/test a depth predictor (based on Vanilla)
on InteriorNet Natural train/test-set. For a given noise level δ, the trained model
makes depth predictions using a CPP map computed with a perturbed camera pose,
e.g ., the pitch is sampled from θgt+U[−δ, δ]. The black dot at the origin stands for
the (best) performance using the true camera pose (i.e., no noises are presented in
pitch and height). The dashed lines represent the average performance levels for
the Vanilla and CPP with predictive poses. Right: We visualize depth prediction
by CPP model when encoding perturbed camera pitch angles θgt±18◦ and heights
hgt±0.1(m). CPP model predicts shallower depth when both pitch and camera
height decrease (i.e., camera is tilted down or translated closer to the floor). This
qualitatively confirms that the camera pose prior induces a meaningful shift in the
estimator. The corresponding RGB image and ground-truth depth appear in Fig. 3.8. 54

3.8 Camera pose alone provides a strong depth prior even for “blind” depth prediction.
Specifically, over the InteriorNet Natural train-set, we train a depth predictor solely
on the CPP encoded maps M without RGB as input. For visual comparison, we
compute the average depth map (shown left). We visualize depth predictions on two
random examples. All the depth maps are visualized with the same colormap range.
Perhaps not surprisingly, M presents nearly the true depth in floor areas, suggesting
that camera pose alone does provide strong prior depth information for these scenes. 56

3.9 During training on InteriorNet Natural train-set, we randomly perturb camera
pose to generate new training examples. We specify the scale of the perturbation
s = {0, 2, 4, 8, 16}, meaning that, when s = 2, we randomly perturb pitch/roll/yaw
angles by adding a perturbation within [−s ∗ 5◦, s ∗ 5◦]. Left: Applying more larger
scale PDA “flattens” camera pose distribution of the whole training set. Right:
We test each of the trained models on the InteriorNet Uniform test-set. We find
applying more intense PDA consistently improves depth prediction until s = 16 (i.e.,
rotating at most 80◦), presumably when very large void regions are introduced in
the synthesized training examples (Fig. 3.2). 57

3.10 Visual comparisons of encoded maps of CPP and CPP-Clip with different pitch θ

and camera height h. We set the threshold τ=20 for CPP-Clip. Encoded maps
computed by CPP-Clip have the “red stripe” when the pitch is around 90◦ while
CPP encoded maps have more smooth transitions when capturing the horizon. . . 59

3.11 Uppeer: visualizations of CPP encoding with different hyper-parameter C (top);
bottom: depth prediction performance as a function of hyper-parameter C. We
train depth predictors on InteriorNet Natural train-set and test on its Natural test-set.
From visual inspection, changing the parameter C only affects the part of CPP
encoded maps where pixels are above the horizon. As shown by the performance
curve, our proposed CPP encoding is very robust w.r.t different values of C. . . . 60

viii

3.12 Illustration of how camera pose provides a strong depth prior through “blind depth
prediction”. Specifically, over the InteriorNet Natural train-set, we train a depth
predictor solely on the CPP encoded maps M without RGB as input. For visual
comparison, we compute an averaged depth map (shown left). We visualize depth
predictions on two random examples. All the depth maps are visualized with the
same colormap range. Perhaps not surprisingly, M presents nearly the true depth
in floor areas, suggesting that camera pose alone does provide strong prior depth
information for these scenes. 61

3.13 Upper row: visualizations of augmented examples using PDA with different scales.
Bottom row: performance curves of depth predictor trained with PDA with different
scales of pitch θ (left) and roll ω (right), respectively. Please refer to Fig. 3.9 for
detailed descriptions. All models are trained on InteriorNet Natural train-set and
evaluated on both Natural (dotted line) and Uniform (solid line) test-sets. As
we increase the augmentation scale in pitch, the performance of depth predictors
improves until scale s=16, when large void regions are introduced in the generated
examples. On the other hand, increasing augmentation scales in roll lead to steady
performance increments. In general, PDA consistently improves depth prediction
over a Vanilla model trained without PDA. 62

3.14 Top: CPP encoding with ground-truth camera height and fixed pitch. Bottom:
CPP encoding with ground-truth pitch and fixed camera height. All models are
trained/evaluated on InteriorNet Natural train/test-set. Comparing two blue or red
curves across two plots, we find that encoding ground-truth height achieves better
performance, suggesting height is “more important” than pitch. Moreover, encoding
either ground-truth height or pitch outperforms Vanilla model. 63

3.15 Depth predictions of Vanilla and our model (jointly applied CPP and PDA) on
InteriorNet test-set. From these images captured under various camera poses, our
model predicts better depth than Vanilla model in terms of the overall scale. . . . 64

3.16 Depth predictions of Vanilla and our model (jointly applied CPP and PDA) on
ScanNet test-set. From these images captured under various camera poses, our model
predicts better depth than Vanilla model in terms of the overall scale. 65

4.1 Given a reference image and a target image with hole, GeoFill utilizes predicted
correspondence matching and depth maps to estimate a 3D mesh and relative camera
pose and intrinsics. Compared to TransFill, the previous state-of-the-art approach,
GeoFill handles complex scenes better by iteratively refining predicted depth maps
and relative pose. 67

4.2 Overview of our system pipeline. We are given a target image with a hole and a
source image. We aim at warping the single-source image to the target to fill the
hole. We first estimate the relative pose as well as predict the monocular depth of
the source, and then adjust the scale and offset of the depth map. After that, to
mitigate the potential errors caused by deep models, we jointly optimize camera
relative pose and depth map scale and offset to make the depth map and image
contents well-align near the hole region. Finally, we render the reprojected source
and refine it using post-processing. 68

ix

4.3 Qualitative comparison of GeoFill against other baselines on user-provided images
(top 2 rows), RealEstate10K (mid 2 rows), and MannequinChallenge dataset (last
two rows). 78

4.4 Performance gain of our method compared to TransFill w.r.t the average hole size.
GeoFill has a greater advantage when the hole is larger. 86

4.5 Qualitative comparisons of our approach against TransFill with different hole sizes.
Please zoom in to see that ours looks good but there are broken structures, ghosting,
and distortion artifacts in TransFill. 87

4.6 Visual comparisons of GeoFill and TransFill without the CST module. 89
4.7 Visual plots showing the performance of GeoFill with different focal lengths. PSNR

diff is computed by using GeoFill with new focal length subtract GeoFill with focal
length equals to 750. 90

4.8 Qualitative results of GeoFill handling some common appearance changes such as in
white balance and exposure due to camera movement. 91

4.9 Per-sample performance gain of ours compared to TransFill. The blue vertical line
separates positive and negative PSNR gain. 92

4.10 Visual examples of failure cases of GeoFill. 94
4.11 Qualitatively comparison of GeoFill against other baselines on user-provided images

(top 3 rows), RealEstate10K (mid 3 rows), and MannequinChallenge dataset (last 3
rows). 95

4.12 Visual illustration of inpaiting performance of GeoFill on user-provided images,
RealEstate10K, and MannequinChallenge dataset. 96

5.1 Motivation for the proposed IT3DEgo benchmark task. We envision the
real-world application of an assistive agent that continuously tracks enrolled object
instances in 3D and can provide navigation guidance to users to retrieve object
instances at any time. Tracked objects are either enrolled online (first row in
the library) where objects of interest are identified automatically based on user
interactions or pre-enrolled (bottom four rows in the library), where task-relevant
objects are modeled from a collection of photos taken from different views. The
former setup comes with additional in-context sensor information, such as camera
pose and depth while the latter features richer visual information. 98

5.2 Illustration of input and output of our benchmark task. Given a raw RGB-D
video sequence with camera poses and object instances of interest, i.e., either by
online enrollment (SVOE) or pre-enrollment (MVPE), the goal of our benchmark
task is to output the object instance 3D centers in a predefined world coordinate at
each timestamp. Please check Section 5.3.1 for more details. 103

5.3 Illustration of our benchmark dataset. It is collected with HoloLens2 which
captures RGB, depth, and four grayscale side views at 30 fps. Additionally, the
device also captures per-frame camera poses allowing coarse reconstruction of the
surroundings. 106

5.4 Visualization of raw and preprocessed multi-view images. Raw images
represent the images directly output from the capture device, i.e., iPhone 13 Pro.
We process raw images with segmentation and cropping before feeding them into the
models. 107

x

5.5 Illustration of our multi-view capture setup. The left panel shows our camera
positions when taking 25 images to support the pre-enrollment study. Specifically,
we take 12 object-centric photos evenly from 360◦ while keeping the camera 30◦

elevation. Another 12 images are taken in a similar fashion while keeping the camera
60◦ elevation. Lastly, we take one top-down view. An example of the top-down view
with the QR code is shown on the right. 108

5.6 Qualitative visualizations of tracking with SVOE in both 3D space (left)
and projected 2D view (right). We visualize three top-performing trackers from
different categories, i.e., EgoSTARK, VITKT_M, and SAM+DINOv2. For projected
2D visualization, we compare the projected 3D points of each model w.r.t to the
ground-truth annotated 2D bounding boxes. In the 3D view, we show 3 concentric
circles at each ground-truth position representing 0.25, 0.5 and 0.75 meter thresholds.
In both 2D and 3D visualizations, we find SAM+DINOv2 outperforms others as the
predictions are closer to the center of object instances. 110

5.7 Performance comparisons of SAM+DINOv2 with different cosine thresh-
olds. By increasing the threshold, we find the model performance first improves
and then gradually decreases. Intuitively, increasing the threshold will initially filter
noisy predictions but when the threshold is too large the model will miss correct
object 3D location updates. 115

5.8 Performance w.r.t number views in MVPE. We run SAM+DINOv2 with
different numbers of views while keeping everything else the same for a fair comparison.
We find the performance saturates after using 5 views. This suggests that simply
encode and average features benefit from a higher number of views (i.e., number of
views from 1 to 5) but still cannot fully exploit the visual information from different
views (i.e., after using 5 views). 116

5.9 Performance improvement by updating on visible only frames. We control
the memory update of SAM+DINOv2 by updating the memory only when the object
instance is visible. We find the performance is significantly improved, indicating one
of the major challenges of the baseline is to correctly update the memory with high
quality predictions. 117

5.10 Performance comparisons of different encoders at various cosine thresholds.
From the results, we find: (1) Stronger encoder improve the performance. The best
performance of SAM+DINOv2 is stronger than SAM+DINO where both models have
the peak performance when the cosine threshold equals 0.6. (2) Similar performance
trend w.r.t cosine similarity changes. The performance of both models first improves
and then gradually decreases when increasing the cosine threshold from 0.3 to 0.8. 118

5.11 2D visualizations of frames from raw video sequences (upper panel) and
3D visualizations of the capture environments (lower panel). The benchmark
videos record camera wearers perform naturalistic tasks in real-world scenarios, such
as cooking and repairing. Please refer to Figure 5.3 for the layout of each sensor on
the HoloLens2. 121

xi

LIST OF TABLES

Page

2.1 A list of metrics used for evaluation in experiments, with their calculations, denoting
by y and y∗ the predicted and ground-truth depth in the validation set. 23

2.2 Quantitative comparison over NYUv2 testing set [214]. We train the state-of-
the-art domain adaptation methods with the small amount of annotated real data
in addition to the large-scale synthetic data. We design three baselines that only
train a single depth predictor directly over synthetic or real images. Besides report
full ARC model, we ablate each module or their combinations. We set ρ=0.85 in
the attention module A if any, with more ablation study in Fig. 2.3. Finally, as
reference, we also list a few top-performing methods that have been trained over
several orders more annotated real-world frames. 26

2.3 Quantitative comparison over Kitti testing set [79]. The methods we compare are
the same as described in Table 2.2, including three baselines, our ARC model and
ablation studies, the state-of-the-art domain adaptation methods trained on both
synthetic and real-world annotated data, as well as some top-performing methods on
this dataset, which have been trained over three orders more annotated real-world
frames from kitti videos. 27

2.4 Quantitative comparison between ARC and mix training baseline inside and
outside of the mask region on NYUv2 testing set [214], where ∆ represents the
performance gain of ARC over mix training baseline under each metric. 29

3.1 Within & cross-distribution evaluation. In each dataset, we train depth
predictors on their Natural train-sets and evaluate on both Natural and Uniform
test-sets. We apply different methods to a Vanilla model. All models use the
same network architecture. Vanilla performs poorly in cross-distribution evaluation
(cf .Natural-test vs. Uniform-test), demonstrating that the biased camera pose
distribution affects the training of depth predictors. As expected, RS hurts depth
prediction compared to Vanilla. In contrast, CPP and PDA show better performance;
jointly applying them performs the best (i.e., “Both”). Finally, comparing alternative
methods to our CPP (vs. Native) and PDA (vs. RS and CDA) shows the merits of
our methods. 49

xii

3.2 Out-of-distribution evaluation. We train depth predictors on the Restricted
train-sets and test on both Restricted and Natural test-sets of each datasets. Vanilla
model performs poorly on Natural test-sets, clearly showing the challenge of depth
prediction on images captured under novel/never-before-seen camera poses. CPP
slightly improves performance, but PDA helps more. CDA also improves performance
presumably because it synthesizes more training examples, but underperforms PDA.
As expected, jointly applying both CPP and PDA achieves the best performance on
both Restricted and Natural test-sets. 52

3.3 Applicability to other predictor architectures. In each dataset, we train
state-of-the-art depth predictors (DORN [71] and VNL [267]) by optionally applying
our CPP and PDA approaches. All models are trained/tested on the Natural
train/test-sets per dataset. Clearly, both CPP and PDA boost their performance. 53

3.4 Mitigating distribution bias of camera poses improves synthetic-to-real
domain adaptation. We train depth predictors synthetically on InteriorNet (Natu-
ral train-set) and test them on real-world images from ScanNet Natural and Uniform
test-sets. This is a typical setup for synthetic-to-real domain adaptation in the
context of depth prediction. Interestingly, we find that CDA hurts the performance,
presumably because the generated training examples by CDA do not obey the re-
lations among camera model, scene geometry and camera pose, and hence do not
necessarily help training a generalizable depth predictor. In contrast, our PDA helps
synthetic-to-real generalization and applying CPP improves further. Importantly,
applying CPP with predictive poses (CPPpred) achieves a remarkable performance
boost, whereas using the true camera pose in CPP performs the best. 55

3.5 Comparisons of different encoding methods evaluated on InteriorNet test-sets. CPP
applies an inverse tangent transform tan−1 in encoding the camera poses. In contrast,
CPP-Clip replaces the tan−1 function with a clipping operation while keeping every
other step the same as CPP encoding. Both CPP and CPP-Clip perform better
than Vanilla model, demonstrating the effectiveness of our CPP method. Clearly,
using the inverse tangent operator is better than clipping. 58

3.6 Comparison between using the average depth map (Avg) computed on the InteriorNet
Natural train-set and the “blind predictor”, which estimates depth solely from per-
image CPP encoded maps without RGB images. We report results on InteriorNet
Natural test-set. We find that “blind predictor” performs better than “avg depth
map”, implying the benefit of exploiting camera poses. We also report on two specific
images on which “blind predictor” performs well compared to the average performance
of Avg or Blind, as shown in Fig. 3.12. This further confirms that camera poses
contain useful prior knowledge about scene depth. 58

3.7 CPP Encoding with Predicted Poses. We train depth predictors with CPP
using true poses on Natural train-sets of the two datasets. We test models on Natural
and Uniform test-sets, respectively. Note that in testing we encode predicted poses
given by a pose predictor. Clearly, CPP with predicted poses still outperforms
Vanilla model; when jointly trained with PDA, CPP with predicted poses performs
even better. Nevertheless, encoding predicted poses underperforms encoding true
poses. 62

xiii

4.1 Quantitative comparisons of GeoFill against other baselines on the RealEstate10K
dataset. 80

4.2 Quantitative comparisons of GeoFill against other baselines on the MannequinChal-
lenge dataset. 81

4.3 Ablations on the objective functions in the joint optimization stage of GeoFill. . . 83
4.4 Ablations on the pixel importance weight map W. 83
4.5 Quantitative comparison of our method with initially estimated parameters and

optimized parameters. 85
4.6 Relative camera pose evaluation of initial guess and our optimized results, where R

and t represent the rotation and translation, respectively. 85
4.7 Depth evaluation of our initial guess and optimized results. The evaluation metrics

include absolute relative difference (Absr), squared relative difference (Sqr), root
mean squared log error (RMS-log), and accuracy with a relative error threshold of
δk < 1.25k, k = 1, 2. 86

4.8 Ablations on Initial alignment comparisons of our method compared to TransFill
without the CST Module. 88

4.9 Initial alignment comparisons of our method compared to TransFill without the CST
Module on MannequinChallenge dataset (FD=10). 88

4.10 User study results of GeoFill against ProFill, OPN, and TransFill. 90

5.1 Comparisons of egocentric datasets that explore tracking-related problem.
Existing egocentric datasets only explore the tracking problem in 2D or predicting
discrete 3D locations. Some mention the tracking problem in 3D but only consider
limited sensor data (RGB) or synthetic environments. Our benchmark dataset
supports the study of instance tracking in 3D real-world scenarios (RWS in the table)
from egocentric videos. 101

5.2 Benchmark results of tracking with SVOE. From the results, we draw three
salient conclusions: (1) The ability of re-identifying object instances after they
disappear is important, as long-term and egocentric specific trackers outperform
short-term trackers, i.e., RGB-ST and RGB-D. (2) Currently, encoding depth maps
as auxiliary information cannot improve performance since depth maps are sparse
and not always perfectly aligned with RGB frames due to distortions. (3) The
Kalman filter smoothing yields marginal improvements over the simple memory
heuristic. The method with KF subscript indicates it applies the Kalman filter. . 112

5.3 Benchmark results of tracking with MVPE. We evaluate top-performing
trackers in each category in Table 5.2 for MVPE setup. From the results, we
have the following summaries: (1) SOT trackers cannot fully exploit pre-enrollment
information. Detection-initialized versions perform less well compared to SVOE
due to the inaccurate estimated initial bounding boxes. VITKT_M, which uses
many modules that rely heavily on the initialization, degrades more significantly.
(2) Encoding rich visual information generally helps. SAM+DINOv2 shows an even
larger performance boost because it is more robust to the inaccurate initialization.
The D and T superscripts indicate the detection- and template-based initializations,
respectively. 114

xiv

5.4 Quantitative comparisons of 2D tracking results w/ and w/o 3D guidance.
With 3D guidance means the 2D results are computed by finding the bounding box
proposal with the smallest L2 distance from projected 3D trajectories. Without
3D guidance means proposals are selected purely based on the visual feature cosine
similarity. Please refer to Section 5.5.2 for more details. From the results, we find
the tracking results are significantly improved with the 3D guidance, indicating that
tracking in 3D in egocentric videos is much easier than in 2D by leveraging camera
pose and depth sensors. 115

5.5 Quantitative comparisons of different proposal generators. We compare the
performance of SAM+DINOv2 and YOLOv7+DINOv2. To keep the comparison
fair, the only differences between these models are the proposal generators. From
the results, we find adopting YOLOv7 makes the performance slightly worse. The
proposal quality from YOLOv7 is lower but runs faster. 118

xv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my parents for their unconditional support. I would
not have the opportunity and determination to complete this degree without them. I am
forever grateful from the bottom of my heart.

Next, I would like to thank my Ph.D. advisor Charless Fowlkes. His thorough guidance and
genuine support are invaluable to me. It is my great honor and pleasure to learn alongside
him, and gradually become an independent researcher. I also want to special thank Shu
Kong. His research philosophy and suggestions have benefited me significantly during my
entire Ph.D. study.

I would like to express my sincere gratitude to all the senior fellows who helped me in the
past, including my committee members for the advancement and final defense exams: Erik
Sudderth, Alexander Berg, Xiaohui Xie, Shuang Zhao, and Zyg Pizlo; my mentors and
external collaborators through multiple internships: Deva Ramanan, Connelly Barnes, Yuqian
Zhou, Eli Shechtman, Sohrab Amirghodsi, Taesung Park, Neil Goeckner-Wald, Harshit Gupta,
and Cengiz Oztireli.

I would also like to acknowledge my dear lab mates: Daeyun Shin, Samia Shafique, Zhe Wang,
Minhaeng Lee, and Xinxuan Lu. Thank you for the insightful discussions and generous help.
Additionally, I also want to thank all my beloved friends who accompanied me through this
long and challenging journey. Together, we have built countless precious and unforgettable
memories.

Lastly, I would like to acknowledge the funding and resources that supported me during my
Ph.D. degree, including NSF grants IIS-1813785, IIS-1618806, DARPA Perceptually enabled
Task Guidance (PTG) Program under contract number HR00112220005, a research gift from
Qualcomm, and a hardware donation from NVIDIA.

xvi

VITA

Yunhan Zhao

EDUCATION

Doctor of Philosophy in Computer Science Jun 2024
University of California, Irvine Irvine, CA

Master of Science in Applied Mathematics and Statistics May 2019
Johns Hopkins University Baltimore, MD

Master of Science in Robotics May 2018
Johns Hopkins University Baltimore, MD

Bachelor of Science in Mechanical Engineering May 2016
Binghamton University, State University of New York Binghamton, NY

RESEARCH EXPERIENCE

Graduate Research Assistant 2019–2024
University of California, Irvine Irvine, CA

Software Engineering Intern Jun 2023–Sep 2023
Google LLC Mountain View, CA

Research Intern Jun 2022–Sep 2022
Adobe Inc. San Jose, CA

Research Intern Jun 2021–Dec 2021
Adobe Inc. San Jose, CA

Research Assistant Jun 2020–Sep 2020
Carnegie Mellon University, The Robotics Institute Pittsburgh, PA

Research Assistant Feb 2018–May 2019
Johns Hopkins University Baltimore, MD

Research Assistant Jun 2018–Sep 2018
Massachusetts Institute of Technology Cambridge, MA

TEACHING EXPERIENCE

Teaching Assistant – University of California, Irvine Irvine, CA
Machine Learning and Data Mining (CompSci 178) Fall 2019
Computational Photography and Vision (CompSci 116) Winter 2020
Image Understanding (CompSci 216) Spring 2020

xvii

REFEREED CONFERENCE PUBLICATIONS

Y. Zhao, H. Ma, S. Kong, C. Fowlkes, “Instance Tracking in 3D Scenes from Egocentric
Videos”. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024

Q. Shen∗, Y. Zhao∗, N. Kwon, J. Kim, Y. Li, and S. Kong. “A high-resolution dataset for
instance detection with multi-view instance capture”. Thirty-seventh Conference on Neural
Information Processing Systems, Datasets and Benchmarks Track, 2023

Y. Zhao, C. Barnes, Y. Zhou, E. Shechtman, S. Amirghodsi, and C. Fowlkes. “Geofill:
Reference-based image inpainting with better geometric understanding”. The IEEE Winter
Conference on Applications of Computer Vision, 2023

Y. Zhao, S. Kong, and C. Fowlkes. “Camera pose matters: Improving depth prediction by
mitigating pose distribution bias”. The IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15759–15768, 2021

Y. Zhao, S. Kong, D. Shin, and C. Fowlkes. “Domain decluttering: Simplifying images
to mitigate synthetic-real domain shift and improve depth estimation”. The IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3330–3340, 2020

Y. Zhao, Y. Tian, C. Fowlkes, W. Shen, and A. Yuille. “Resisting large data variations
via introspective transformation network”. The IEEE Winter Conference on Applications of
Computer Vision, pages 3080–3089, 2020

PATENT

Y. Zhao, C. Barnes, Y. Zhou, S. Amirghodsi and E. Shechtman. “Image reprojection and
multi-image inpainting based on geometric depth parameters”. US20230145498A1

xviii

ABSTRACT OF THE DISSERTATION

Leveraging Depth for 3D Scene Perception

By

Yunhan Zhao

Doctor of Philosophy in Computer Science

University of California, Irvine, 2024

Professor Charless Fowlkes, Chair

3D scene perception aims to understand the geometric and semantic information of the

surrounding environment. It is crucial in many downstream applications, such as autonomous

driving, robotics, AR/VR, and human-computer interaction. Despite its significance, under-

standing the 3D scene has been a challenging task, due to the complex interactions between

objects, heavy occlusions, cluttered indoor environments, major appearance, viewpoint and

scale changes, etc. The study of 3D scene perception has been significantly reshaped by the

powerful deep learning models. These models are capable of leveraging large-scale training

data to achieve outstanding performance. Learning-based models unlock new challenges and

opportunities in the field.

In this dissertation, we first present learning-based approaches to estimate depth maps,

one of the crucial information in many 3D scene perception models. We describe two

overlooked challenges in learning monocular depth estimators and present our proposed

solutions. Specifically, we address the high-level domain gap between real and synthetic

training data and the shift in camera pose distribution between training and testing data.

Following that we present two application-driven works that leverage depth maps to achieve

better 3D scene perception. We explore in detail the tasks of reference-based image inpainting

and 3D object instance tracking in scenes from egocentric videos.

xix

Chapter 1

Introduction

3D scene perception aims to comprehend the layout and geometric information of each object

instance and the surrounding environment. Furthermore, it is also required to comprehend

both the apparent and hidden relationships present between scene elements. These capabilities

are fundamental to the way humans perceive and interpret images, thus imparting these

astounding abilities in machines has been a long-standing goal in the computer vision

discipline. It has wide applications in many areas, such as autonomous driving, robotics,

and human-computer interaction [80, 28, 65]. 3D scene understanding is also remarkably

challenging due to the complex interactions between objects, heavy occlusions, cluttered

indoor environments, major appearance, viewpoint and scale changes across different scenes

and inherent ambiguity, such as inferring the object size from a monocular camera.

Recent developments in large-scale data-driven deep learning [125, 98, 238, 54] have sparked a

renewed interest in addressing these challenges. These models are capable of leveraging large-

scale training data and extracting highly informative features from sensor data. Numerous

learning-based methods have been proposed to tackle 3D scene perception problems and

they significantly outperform traditional approaches [22, 63, 219, 218]. At the same time, the

1

learning-based approach also opens new opportunities and challenges for better addressing

the 3D scene perception problem.

In the remaining part of this chapter, we will first introduce some widely studied applications

of 3D scene perception to highlight its importance. Following that we will present the

literature of estimating depth maps, an important type of representation in understanding

the 3D scene geometry. Lastly, we will discuss our contributions in the area and outline the

following chapters.

1.1 3D Scene Perception Applications

Effective 3D perception of an observed scene greatly enriches the knowledge about the

surrounding environment and is crucial to effectively develop high-level applications for

various purposes.

1.1.1 Classic Vision Tasks

3D object detection focuses on locating and recognizing objects of the surrounding

environment, which is important in the area of autonomous driving [136, 272]. The detection

model generally takes multi-modal data (e.g ., images from cameras, point clouds from LiDAR

scanners, high definition maps etc.) as input, and predicts the geometric (e.g ., locations, sizes,

orientations) and semantic information (e.g ., pedestrians, cyclists, and vehicles) of critical

elements on a road. State-of-the-art 3D detection algorithms are built on top of the LiDAR

data, i.e., either LiDAR only [165, 36] or fusion LiDAR and camera information [10, 153].

Motion planning is well-studied in the area of robotics. Given a task in the unstructured

real-world environment, the robot needs to actively sense its surroundings, make decisions,

2

and execute them [25, 131]. In a daily scenario of carrying an object to another room, the

robot is required to precisely predict the 3D pose of the object, grasp it and plan the path to

the target position. A thorough understanding of the surrounding 3D scene enables robots to

execute the task accurately and smoothly.

1.1.2 Emerging Tasks

Recently, novel benchmark tasks emerged as the development of the societal need and the

promising performance brought by the deep learning models. Additionally, many works begin

exploring enhancing traditional pixel-level tasks with 3D geometric information.

Egocentric-related tasks. In the literature, egocentric tasks focus on activity recogni-

tion [199, 187, 113, 186], hand-object interaction [46, 150, 151]. Compared to the third-person

perspective, egocentric data is captured by mounting sensors on people or robots. More

egocentric-related tasks have been proposed recently due to the increased interest in AR/VR

applications, such as privacy protection, activity forecasting, and social interaction predic-

tions [88, 229, 68, 139, 173]. Many egocentric tasks are beneficial from geometric information

of the surrounding environment, commonly from depth maps or SLAM models.

Image and video generation focus on generating plausible textures of one single image or a

sequence of images. In the literature, learning-based models commonly leverage the large-scale

training data and hallucinate realistic textures [270, 256, 271]. However, the generated texture

is not guaranteed to be geometrically consistent, especially from different views. Recently, an

increasing amount of models have explored the 3D representation to add geometric constraints

on generated textures, such as depth or implicit 3D representations [216, 176, 172].

3

1.2 Depth Estimation

Pivotal to 3D scene perception is the acquisition/estimation of reliable depth information—a

task for which several technologies exist, ranging from active sensors to passive methods.

Additionally, recent advances in deep learning have been rapidly established and are gaining

momentum.

1.2.1 Sensing Techniques

Current depth sensors are categorized into two classes: active and passive methods. Active

methods, such as structured light or time of flight sensors [93, 207], emit a controlled energy

signal and then receive and process the reflected energy to compute the depth information.

Active methods have higher accuracy but also have the disadvantages of complicated technical

implementation and higher costs. Passive methods only require the RGB images from cameras

to extract the depth information. Compared with the active methods, the passive methods

are more convenient and flexible, with lower software and hardware requirements, but lower

measurement accuracy.

Structured light. A sequence of known patterns is sequentially projected onto an object,

which gets deformed by the geometric shape of the object. The object is then observed from

a camera in a different direction. By analyzing the distortion of the observed pattern, i.e.„

the disparity from the original projected pattern, depth information can be extracted [83, 93].

The method is independent of the color and texture of the objects and has high accuracy,

especially close to the object. However, it also has its shortcomings, such as being difficult

to use in strong light environments, short measurement distances, and being susceptible to

reflections from smooth flat surfaces.

4

Time of flight (ToF). ToF by transmitting a pulsed or modulated optical signal, and then

measuring the time difference of the return wavefront, since the frequency and wavelength of

the optical signal are known, the depth information can be inferred [41, 129]. This process

is largely independent of the scene texture and can be used for real-time depth estimation.

Since the principle of ToF method is similar to the structured light method above, it is usually

regarded as the twin brother of the structured light method. Compared to the structured light

method, TOF is usually faster in response speed, more robust to the environment lighting

conditions, and has better sensing distance.

Stereo vision. A system of stereo vision system consists of a stereo camera, i.e., two cameras

placed horizontally. The two images captured simultaneously by these cameras are then

processed for the recovery of visual depth information. Traditionally, stereo-based depth

estimation methods relied typically on matching pixels across multiple images captured using

accurately calibrated cameras [204, 228]. However, it is not suitable when dealing with

occlusions, featureless regions, or highly textured regions with repetitive patterns.

1.2.2 Learning-based Depth Estimators

Contemporary depth estimators commonly adopt deep learning models as feature extractors

and substantially outperform conventional models mentioned above. Depending on the avail-

ability of the ground-truth labels, the learning-based depth estimator is roughly categorized

into two categories: supervised approaches and unsupervised approaches.

Supervised approaches. This class of approaches leverages the ground-truth depth maps

as the supervision signal. Assuming the availability of a large training set of RGB-D pair

images, learning a depth predictor is treated as a pixel-level continuous regression problem.

Commonly, L1 or L2 loss function is adopted to compute pixel-wise differences between the

prediction and the ground-truth depth maps.

5

Numerous efforts have been made to collect RGB-D data to advance the study of supervised

depth estimators. Due to the expensive data collecting process, the scale of the RGB-D dataset

is generally smaller compared to other vision tasks, such as image recognition. NYUv2 [214]

has 1449 densely labeled pairs of aligned RGB and depth images, collected in 464 scenes

from 3 different cities. KITTI [80] contains 23,488 images from 32 scenes for training and

697 images from 29 scenes for testing in the eigen split. Make3D [203] contains 534 outdoor

images, 400 for training and 134 for testing. The resolution of RGB images is 2272 × 1704

while the ground truth depth map resolutions are 55×305.

Many supervised approaches have been developed and evaluated on previously mentioned

datasets. Eigen et al . [63] first propose to learn the depth estimator with multi-scale features

from a deep CNN. Li et al . [138] enhance the performance of the depth estimators by applying

conditional random fields (CRFs). Laina et al . [128] adopts residual blocks into the depth

estimation of monocular images to achieve state-of-the-art performance. Fu et al . [71] treat

the problem as an ordinal regression task instead of continuous depth map prediction.

Unsupervised approaches. Acquiring ground truth for supervised learning is expensive

since the depth maps are collected with sensors instead of human annotations. Additionally,

it is also hard to get diverse data. The expensive collection procedure limits the geographical

diversity in the dataset.

Motivated by the issue of data scarcity, many approaches explore learning with unlabeled real

data and labeled synthetic data. However, the biggest drawback of learning with synthetic

data is the domain gap [75, 233]. Specifically, models learned with synthetic data suffer

from drastic performance degradation when evaluated on the real testing data. Inspired

by the domain adaptation works, researchers have proposed various methods to bridge the

real-synthetic domain gap. These works can be roughly divided into two categories: aligning

the feature space of synthetic [291, 126, 8] and real images and translating synthetic images

to realistic-looking ones [291, 8, 284]. Common synthetic datasets in the field of monocular

6

depth estimation include SUNCG [219] and vKITTI [73].

Alternatively, another line of approach explores the relationships between images to train

depth estimators. The most common relations explored in the literature are to reproject

pixels to adjacent frames with predicted depth maps and compute the pixel-wise photometric

loss. However, dynamic objects and low-texture regions are still a challenge for these methods.

Zhou et al . [296] proposed an unsupervised learning framework for monocular depth estimation

and camera motion estimation from unlabeled video sequences. Godard et al . [84] proposed

Monodepth2 with an auto-masking scheme to filter out invalid pixels from moving objects

and introduced a minimum reprojection loss to address occlusions.

1.3 Contributions

We briefly summarize the main contributions, which will be elaborated in the next section

that outlines the thesis.

We first reveal two overlooked challenges in learning monocular depth estimators. Specifically,

(1) we find that learning depth estimators have difficulty predicting the “cluttered” scenes or

novel objects when learning with synthetic data. (2) we find state-of-the-art depth predictors

have significant performance degradation when predicting images with underrepresented

camera poses, i.e., uncommon camera poses in the training data. For both challenges, we

propose novel algorithms and learning strategies, which will be elaborated in detail in the

following chapters.

We also explore downstream tasks that leverage depth maps to better understand 3D scene

geometry and achieve state-of-the-art performance. Specifically, we explore the task of

reference-based image inpainting, which inpaints the hole region in the source image by

leveraging the texture from the target image. We also introduce a new benchmark task,

7

instance tracking in 3D scenes from egocentric videos. This task is motivated by the increasing

interest in building assistive agents running on AR/VR devices. In both tasks, we showcase

leveraging the 3D geometric information from depth maps drastically improves the model

performance. Additionally, when exploring the latter task, we also introduce and open-source

a new benchmark dataset to support the study of the new problem.

1.4 Thesis Organization

Before concluding Chapter 1 as an introduction and history survey, we now give an overview

of the thesis with the subsequent chapters. The introductory paragraphs of each chapter

provide more detailed outlines.

Chapter 2

We introduce our novel attend-remove-complete (ARC) model to address the unsupervised

domain adaptation problem in the monocular depth prediction task. Our proposed model

is based on the empirical observation that depth predictors make significant errors over the

challenging regions, “cluttered” scenes or novel objects to be specific. ARC learns to carry

out completion over these removed regions in order to simplify them and bring them closer

to the distribution of the synthetic domain. This real-to-synthetic translation ultimately

makes better use of synthetic data in producing an accurate depth estimate. We show our

model significantly boosts the performance of the depth predictor both quantitatively and

qualitatively. This chapter is based on our peer-reviewed conference paper [288].

Chapter 3

We present two novel approaches to mitigate the camera pose distribution shift between

training and testing data. This work is motivated by the observations that state-of-the-art

depth predictors show performance degradation when evaluated on images with unseen

8

camera poses. Specifically, we explore two approaches: (1) CPP – Encode camera pose

information and pass it as part of the input to learn pose-conditional depth predictors; (2)

PDA – Perspective-aware data augmentation that allows us to synthesize diverse training data

with different camera poses. Our experiments show both approaches boost the performance

of the depth predictor and combining them achieve even better performance. This chapter is

based on our peer-reviewed conference paper [287].

Chapter 4

We describe a novel reference-based image inpainting model named GeoFill. Given a target

image, a mask and a reference image, GeoFill inpaints the hole region by leveraging the

textures from the source images. Specifically, GeoFill first reconstructs the non-planar

geometry from predicted depth maps. A joint optimization module is adopted to refine

the depth maps and camera poses. Based on both quantitative and qualitative results,

GeoFill outperforms state-of-the-art approaches. This chapter is based on our peer-reviewed

conference paper [286].

Chapter 5

In this chapter, we present a novel benchmark – instance tracking in 3D scenes from

egocentric videos (IT3DEgo). Egocentric sensors such as AR/VR devices capture human-

object interactions and offer the potential to provide task-assistance by recalling 3D locations

of objects of interest in the surrounding environment. Motivated by this, we explore this

problem by first introducing a new benchmark dataset, consisting of RGB and depth videos,

per-frame camera pose, and instance-level annotations in both 2D camera and 3D world

coordinates. We also propose a novel algorithm that leverages the recent foundation models to

achieve state-of-the-art performance. This chapter is based on our peer-reviewed conference

paper [289].

Chapter 6

This is the last chapter of this thesis. We revisit our contributions and outline directions for

9

future research.

10

Chapter 2

Bridging high-level domain gaps in

monocular depth predictions

Leveraging synthetically rendered data offers great potential to improve monocular depth

estimation and other geometric estimation tasks, but closing the synthetic-real domain gap

is a non-trivial and important task. While much recent work has focused on unsupervised

domain adaptation, we consider a more realistic scenario where a large amount of synthetic

training data is supplemented by a small set of real images with ground-truth. In this setting,

we find that existing domain translation approaches are difficult to train and offer little

advantage over simple baselines that use a mix of real and synthetic data. A key failure mode

is that real-world images contain novel objects and clutter not present in synthetic training.

This high-level domain shift isn’t handled by existing image translation models.

Based on these observations, we develop an attention module that learns to identify and

remove difficult out-of-domain regions in real images in order to improve depth prediction for

a model trained primarily on synthetic data. We carry out extensive experiments to validate

our attend-remove-complete approach (ARC) and find that it significantly outperforms state-

11

- +

Original (NYUv2) Real-to-synthetic Style Transfer Object Removal Original (NYUv2) Object Insertion
In

pu
t I

m
ag

e
Pr

ed
ic

te
d

D
ep

th
L1

 E
rr

or
 M

ap
Real-to-synthetic Style Transfer

(a) (b) (c) (d) (e) (f)

Figure 2.1: (a) The presence of novel objects and clutter can drastically degrade the output of a
well-trained depth predictor. (b) Standard domain adaptation (e.g ., a style translator trained with
CycleGAN) only changes low-level image statistics and fails to solve the problem (even trained with
depth data from both synthetic and real domains), while removing the clutter entirely (c) yields
a remarkably better prediction. Similarly, the insertion of a poster in (d,e) negatively affects the
depth estimate and low-level domain adaptation (f) only serves to hurt overall performance.

of-the-art domain adaptation methods for depth prediction. Visualizing the removed regions

provides interpretable insights into the synthetic-real domain gap.

2.1 Background

With a graphics rendering engine one can, in theory, synthesize an unlimited number of scene

images of interest and their corresponding ground-truth annotations [273, 122, 280, 220]. Such

large-scale synthetic data increasingly serves as a source of training data for high-capacity

convolutional neural networks (CNN). Leveraging synthetic data is particularly important

for tasks such as semantic segmentation that require fine-grained labels at each pixel and

can be prohibitively expensive to manually annotate. Even more challenging are pixel-level

regression tasks where the output space is continuous. One such task, the focus of this

chapter, is monocular depth estimation, where the only available ground-truth for real-world

images comes from specialized sensors that typically provide noisy and incomplete estimates.

12

Due to the domain gap between synthetic and real-world imagery, it is non-trivial to leverage

synthetic data. Models naively trained over synthetic data often do not generalize well to

the real-world images [74, 154, 232]. Therefore domain adaptation problem has attracted

increasing attention from researchers aiming at closing the domain gap through unsupervised

generative models (e.g . using GAN [86] or CycleGAN [301]). These methods assume that

domain adaptation can be largely resolved by learning a domain-invariant feature space or

translating synthetic images into realistic-looking ones. Both approaches rely on an adversarial

discriminator to judge whether the features or translated images are similar across domains,

without specific consideration of the task in question. For example, CyCADA translates images

between synthetic and real-world domains with domain-wise cycle-constraints and adversarial

learning [104]. It shows successful domain adaptation for multiple vision tasks where only the

synthetic data have annotations while real ones do not. T2Net exploits adversarial learning to

penalize the domain-aware difference between both images and features [291], demonstrating

successful monocular depth learning where the synthetic data alone provides the annotation

for supervision.

Despite these successes, we observe two critical issues:

(1) Low-level vs. high-level domain adaptation. As noted in the literature [109, 302],

unsupervised GAN models are limited in their ability to translate images and typically only

modify low-level factors, e.g ., color and texture. As a result, current GAN-based domain

translation methods are ill-equipped to deal with the fact that images from different domains

contain high-level differences (e.g ., novel objects present only in one domain), that cannot be

easily resolved. Figure 2.1 highlights this difficulty. High-level domain shifts in the form of

novel objects or clutter can drastically disrupt predictions of models trained on synthetic

images. To combat this lack of robustness, we argue that a better strategy may be to explicitly

identify and remove these unknowns rather than letting them corrupt model predictions.

(2) Input vs. output domain adaptation. Unlike domain adaptation for image classifi-

13

cation where appearances change but the set of labels stays constant, in depth regression

the domain shift is not just in the appearance statistics of the input (image) but also in

the statistics of the output (scene geometry). To understand how the statistics of geometry

shifts between synthetic and real-world scenes, it is necessary that we have access to at least

some real-world ground-truth. This precludes solutions that rely entirely on unsupervised

domain adaptation. However, we argue that a likely scenario is that one has available a small

quantity of real-world ground-truth along with a large supply of synthetic training data. As

shown in our experiments, when we try to tailor existing unsupervised domain adaptation

methods to this setup, surprisingly we find that none of them perform satisfactorily and

sometimes even worse than simply training with small amounts of real data!

Motivated by these observations, we propose a principled approach that improves depth

prediction on real images using a somewhat unconventional strategy of translating real images

to make them more similar to the available bulk of synthetic training data. Concretely, we

introduce an attention module that learns to detect problematic regions (e.g ., novel objects

or clutter) in real-world images. Our attention module produces binary masks with the

differentiable Gumbel-Max trick [89, 110, 239, 120], and uses the binary mask to remove

these regions from the input images. We then develop an inpainting module that learns to

complete the erased regions with realistic fill-in. Finally, a translation module adjusts the

low-level factors such as color and texture to match the synthetic domain.

We name our translation model ARC, as it attends, removes and completes the real-world

image regions. To train our ARC model, we utilize a modular coordinate descent training

pipeline where we carefully train each module individually and then fine-tune as a whole to

optimize depth prediction performance. We find this approach is necessary since, as with

other domain translation methods, the multiple losses involved compete against each other

and do not necessarily contribute to improve depth prediction.

To summarize our main contributions:

14

• We study the problem of leveraging synthetic data along with a small amount of

annotated real data for learning better depth prediction, and reveal the limitations of

current unsupervised domain adaptation methods in this setting.

• We propose a principled approach (ARC) that learns identify, remove and complete

“hard” image regions in real-world images, such that we can translate the real images to

close the synthetic-real domain gap to improve monocular depth prediction.

• We carry out extensive experiments to demonstrate the effectiveness of our ARC model,

which not only outperforms state-of-the-art methods, but also offers good interpretability

by explaining what to remove in the real images for better depth prediction.

2.2 Related Work

Learning from Synthetic Data is a promising direction in solving data scarcity, as the

render engine could in theory produce unlimited number of synthetic data and their perfect

annotations used for training. Many synthetic datasets have been released [280, 220, 73, 137,

26, 55], for various pixel-level prediction tasks like semantic segmentation, optical flow, and

monocular depth prediction. A large body of work uses synthetic data to augment real-world

datasets, which are already large in scale, to further improve the performance [144, 55, 237].

We consider a problem setting in which only a limited set of annotated real-world training

data is available along with a large pool of synthetic data.

Synthetic-Real Domain Adaptation. Models trained purely on synthetic data often suffer

limited generalization [177]. Assuming there is no annotated real-world data during training,

one approach is to close synthetic-real domain gap with the help of adversarial training. These

methods learn either a domain invariant feature space or an image-to-image translator that

maps between images from synthetic and real-world domains. For the former, [155] introduces

Maximum Mean Discrepancy to learn domain invariant features; [234] jointly minimizes MMD

15

Figure 2.2: Flowchart of our whole ARC model in predicting the depth given a real-world image.
The ARC framework performs real-to-synthetic translation of an input image to account for low-level
domain shift and simultaneously detects the “hard” out-of-domain regions using a trained attention
module A. These regions are removed by multiplicative gating with the binary mask from A and the
masked regions inpainted by module I. The translated result is fed to final depth predictor module
D which is trained to estimate depth from a mix of synthetic and (translated) real data.

and classification error to further improve domain adaptation performance; [233, 231] apply

adversarial learning to aligning source and target domain features; [224] proposes to match

the mean and variance of domain features. For the latter, CyCADA learns to translate images

from synthetic and real-world domains with domain-wise cycle-constraints and adversarial

learning [104]. T2Net exploits adversarial learning to penalize the domain-aware difference

between both images and features [291], demonstrating successful monocular depth learning

where the synthetic data alone provide the annotation for supervision.

Attention and Interpretability. Our model utilizes a learnable attention mechanism

similar to those that have been widely adopted in the community [225, 238, 78], improving not

only the performance for the task in question [171, 120], but also improving interpretability

and robustness from various perspectives [7, 6, 239, 66]. Specifically, we utilize the Gumbel-

Max trick [89, 110, 239, 120], to learn binary decision variables in a differentiable training

framework. This allows for efficient training while producing easily interpretable results that

indicate which regions of real images introduce errors that hinder the performance of models

trained primarily on synthetic data.

16

2.3 Attend, Remove, Complete (ARC)

Recent methods largely focus on how to leverage synthetic data (and their annotations)

along with real-world images (where no annotations are available) to train a model that

performs well on real images later [104, 291]. We consider a more relaxed (and we believe

realistic) scenario in which there is a small amount of real-world ground-truth data available

during training. More formally, given a set of real-world labeled data Xr = {xr
i ,y

r
i }Mi=1 and a

large amount of synthetic data Xs = {xs
j ,y

s
j}Nj=1, where M ≪ N , we would like to train a

monocular depth predictor D, that accurately estimates per-pixel depth on real-world test

images. The challenges of this problem are two-fold. First, due to the synthetic-real domain

gap, it is not clear when including synthetic training data improves the test-time performance

of a depth predictor on real images. Second, assuming the model does indeed benefit from

synthetic training data, it is an open question as to how to best leverage the knowledge of

domain difference between real and synthetic.

Our experiments positively answer the first question: synthetic data can be indeed exploited

for learning better depth models, but in a non-trivial way as shown later through experiments.

Briefly, real-world images contain complex regions (e.g ., rare objects), which do not appear

in the synthetic data. Such complex regions may negatively affect depth prediction by a

model trained over large amounts of synthetic, clean images. Figure 2.2 demonstrates the

inference flowchart of ARC, which learns to attend, remove and complete challenging regions

in real-world test images in order to better match the low- and high-level domain statistics of

synthetic training data. In this section, we elaborate each component module, and finally

present the training pipeline.

17

2.3.1 Attention Module A

How might we automatically discover the existence and appearance of “hard regions” that

negatively affect depth learning and prediction? Such regions are not just those which are

rare in the real images, but also include those which are common in real images but absent

from our pool of synthetic training data. Finding such “hard regions” thus relies on both the

depth predictor itself and synthetic data distribution. To discover this complex dependence,

we utilize an attention module A that learns to automatically detect such “hard regions”

from the real-world input images. Given a real image xr ∈ RH×W×3 as input, the attention

module produces a binary mask M ∈ RH×W used for erasing the “hard regions” using simple

Hadamard product M⊙ xr to produce the resulting masked image.

One challenge is that producing a binary mask typically involves a hard-thresholding operation

which is non-differentiable and prevents from end-to-end training using backpropagation. To

solve this, we turn to the Gumbel-Max trick [89] that produces quasi binary masks using a

continuous relaxation [110, 163].

We briefly summarize the “Gumbel max trick” [110, 163, 239]. A random variable g follows a

Gumbel distribution if g = − log(− log(u)), where u follows a uniform distribution U(0, 1).

Let m be a discrete binary random variable1 with probability P (m = 1) ∝ α, and let g be

a Gumbel random variable. Then, a sample of m can be obtained by sampling g from the

Gumbel distribution and computing:

m = sigmoid((log(α) + g)/τ), (2.1)

where the temperature τ → 0 drives the m to take on binary values and approximates the

non-differentiable argmax operation. We use this operation to generate a binary mask of size

M ∈ RH×W .
1A binary variable m = 0 indicates the current pixel will be removed.

18

To control the sparsity of the output mask M, we penalize the empirical sparsity of the mask

ξ = 1
H∗W

∑H,W
i,j Mi,j using a KL divergence loss term [120]:

ℓKL = ρ log(
ρ

ξ
) + (1− ρ) log(

1− ρ

1− ξ
). (2.2)

where hyperparameter ρ controls the sparsity level (portion of pixels to keep). We apply

the above loss term ℓKL in training our whole system, forcing the attention module A to

identify the hard regions in an “intelligent” manner to target a given level of sparsity while

still remaining the fidelity of depth predictions on the translated image. We find that training

in conjunction with the other modules results in attention masks that tend to remove regions

instead of isolated pixels (see Fig. 2.5)

2.3.2 Inpainting Module I

The previous attention module A removes hard regions in xr2 with sparse, binary mask M,

inducing holes in the image with the operation M⊙ xr. To avoid disrupting depth prediction

we would like to fill in some reasonable values (without changing unmasked pixels). To this

end, we adopt an inpainting module I that learns to fill in holes by leveraging knowledge

from synthetic data distribution as well as the depth prediction loss. Mathematically we

have:

x̃ = (1−M)⊙ I(M⊙ xr) +M⊙ xr. (2.3)

To train the inpainting module I, we pretrain with a self-supervised method by learning to
2Here, we present the inpainting module as a standalone piece. The final pipeline is shown in Fig. 2.2

19

reconstruct randomly removed regions using the reconstruction loss ℓrgbrec:

ℓrgbrec = Exr∼Xr [||I(M⊙ xr)− xr||1] (2.4)

As demonstrated in [211], ℓrgbrec encourages the model to learn remove objects instead of

reconstructing the original images since removed regions are random. Additionally, we use

two perceptual losses [278]. The first penalizes feature reconstruction:

ℓfrec =
K∑
k=1

Exr∼Xr [||ϕk(I(M⊙ xr))− ϕk(x
r)||1], (2.5)

where ϕk(·) is the output feature at the kth layer of a VGG16 pretrained model [215]. The

second perceptual loss is a style reconstruction loss that penalizes the differences in colors,

textures, and common patterns.

ℓstyle =
K∑
k=1

Exr∼Xr [||σϕ
k (I(M⊙ xr))− σϕ

k (x
r)||1], (2.6)

where function σϕ
k (·) returns a Gram matrix. For the feature ϕk(x) of size Ck ×Hk ×Wk,

the corresponding Gram matrix σϕ
k (x

r) ∈ RCk×Ck is computed as:

σϕ
k (x

r) =
1

CkHkWk

R(ϕk(x
r)) ·R(ϕk(x

r))T , (2.7)

where R(·) reshapes the feature ϕk(x) into Ck ×Hk Wk.

Lastly, we incorporate an adversarial loss ℓadv to force the inpainting module I to fill in pixel

values that follow the synthetic data distribution:

ℓadv = Exr∼Xr [log(D(x̃))] + Exs∼Xs [log(1−D(xs)], (2.8)

where D is a discriminator with learnable weights that is trained on the fly. To summarize,

20

we use the following loss function to train our inpainting module I:

ℓinp = ℓrgbrec + λf · ℓfrec + λstyle · ℓstyle + λadv · ℓadv, (2.9)

where we set weight parameters as λf = 1.0, λstyle = 1.0, and λadv = 0.01.

2.3.3 Style Translator Module T

The style translator module T is the final piece to translate the real images into the synthetic

data domain. As the style translator adapts low-level feature (e.g ., color and texture) we

apply it prior to inpainting. Following the literature, we train the style translator in a

standard CycleGAN [301] pipeline, by minimizing the following loss:

ℓcycle = Exr∼Xr [||Gs2r(Gr2s(x
r))− xr||1] + Exs∼Xs [||Gr2s(Gs2r(x

s))− xs||1], (2.10)

where T = Gr2s is the translator from direction real to synthetic domain; while Gs2r is the

other way around. Note that we need two adversarial losses ℓradv and ℓsadv in the form of

Eqn.(2.8) along with the cycle constraint loss ℓcycle. We further exploit the identity mapping

constraint to encourage translators to preserve the geometric content and color composition

between original and translated images:

ℓid = Exr∼Xr [||Gs2r(x
r)− xr||1] + Exs∼Xs [||Gr2s(x

s)− xs||1]. (2.11)

To summarize, the overall objective function for training the style translator T is:

ℓtrans = λcycle · ℓcycle + λid · ℓid + (ℓradv + ℓsadv), (2.12)

where we set the weights λcycle = 10.0, λid = 5.0.

21

2.3.4 Depth Predictor D

We train our depth predictor D over the combined set of translated real training images x̃r

and synthetic images xs using a simple L1 norm based loss:

ℓd = E(xr,yr)∼Xr ||D(x̃r)− yr||1 + E(xs,ys)∼Xs||D(xs)− ys||1. (2.13)

2.3.5 Training by Modular Coordinate Descent

In principle, one might combine all the loss terms to train the ARC modules jointly. However,

we found such practice difficult due to several reasons: bad local minima, mode collapse

within the whole system, large memory consumption, etc. Instead, we present our proposed

training pipeline that trains each module individually, followed by a fine-tuning step over

the whole system. We note such a modular coordinate descent training protocol has been

exploited in prior work, such as block coordinate descent methods [164, 3], layer pretraining

in deep models [101, 215], stage-wise training of big complex systems [15, 39] and those with

modular design [7, 66].

Concretely, we train the depth predictor module D by feeding the original images from

either the synthetic set, or the real set or the mix of the two as a pretraining stage. For the

synthetic-real style translator module T , we first train it with CycleGAN. Then we insert the

attention module A and the depth predictor module D into this CycleGAN, but fixing D

and T , and train the attention module A only. Note that after training the attention module

A, we fix it without updating it any more and switch the Gumbel transform to output real

binary maps, on the assumption that it has already learned what to attend and remove with

the help of depth loss and synthetic distribution. We train the inpainting module I over

translated real-world images and synthetic images.

22

Table 2.1: A list of metrics used for evaluation in experiments, with their calculations, denoting by
y and y∗ the predicted and ground-truth depth in the validation set.

Abs Relative diff. (Rel) 1
|T |
∑

y∈T |y − y∗|/y∗

Squared Relative diff. (Sq-Rel) 1
|T |
∑

y∈T ||y − y∗||2/y∗

RMS
√

1
|T |
∑

y∈T ||yi − y∗i ||2

RMS-log
√

1
|T |
∑

y∈T || log yi − log y∗i ||2

Threshold δi, i∈{1, 2, 3} % of yi s.t. max(yi
y∗i
,
y∗i
yi
)<1.25i

The above procedure yields good initialization for all the modules, after which we may keep

optimizing them one by one while fixing the others. In practice, simply fine-tune the whole

model (still fixing A) with the depth loss term only, by removing all the adversarial losses.

To do this, we alternate between minimizing the following two losses:

ℓ1d = E(xr,yr)∼Xr ||D(I(T (xr)⊙A(xr))))− yr||1 + E(xs,ys)∼Xs||D(xs)− ys||1, (2.14)

ℓ2d = E(xr,yr)∼Xr ||D(I(T (xr)⊙A(xr))))− yr||1. (2.15)

We find in practice that such fine-tuning better exploits synthetic data to avoid overfitting

on the translated real images, and also avoids catastrophic forgetting [70, 119] on the real

images in face of overwhelmingly large amounts of synthetic data.

2.4 Experiments

We carry out extensive experiments to validate our ARC model in leveraging synthetic data

for depth prediction. We provide systematic ablation study to understand the contribution of

each module and the sparsity of the attention module A. We further visualize the intermediate

results produced by ARC modules, along with failure cases, to better understand the whole

ARC model and the high-level domain gap.

23

2.4.1 Implementation Details

Network Architecture. Every single module in our ARC framework is implemented by a

simple encoder-decoder architecture as used in [301], which also defines our discriminator’s

architecture. We modify the decoder to output a single channel to train our attention module

A. As for the depth prediction module, we further add skip connections that help output

high-resolution depth estimate [291].

Training. We first train each module individually for 50 epochs using the Adam opti-

mizer [116], with initial learning rate 5e-5 (1e-4 for discriminator if adopted) and coefficients

0.9 and 0.999 for computing running averages of gradient and its square. Then we fine-tune

the whole ARC model with the proposed modular coordinate descent scheme with the same

learning parameters.

Datasets. We evaluate on indoor scene and outdoor scene datasets. For indoor scene depth

prediction, we use the real-world NYUv2 [214] and synthetic Physically-based Rendering

(PBRS) [280] datasets. NYUv2 contains video frames captured using Microsoft Kinect, with

1,449 test frames and a large set of video (training) frames. From the video frames, we

randomly sample 500 as our small amount of labeled real data (no overlap with the official

testing set). PBRS contains large-scale synthetic images generated using the Mitsuba renderer

and SUNCG CAD models [220]. We randomly sample 5,000 synthetic images for training.

For outdoor scene depth prediction, we turn to the Kitti [79] and virtual Kitti (vKitti) [73]

datasets. In Kitti, we use the Eigen testing set to evaluate [296, 84] and the first 1,000 frames

as the small amount of real-world labeled data for training [63]. With vKitti, we use the split

{clone, 15-deg-left, 15-deg-right, 30-deg-left, 30-deg-right} to form our synthetic training set

consisting of 10,630 frames. Consistent with previous work, we clip the maximum depth in

vKitti to 80.0m for training, and report performance on Kitti by capping at 80.0m for a fair

comparison.

24

Comparisons and Baselines. We compare four classes of models. Firstly we have three

baselines that train a single depth predictor on only synthetic data, only real data, or the

combined set. Secondly we train state-of-the-art domain adaptation methods (T2Net [291],

CrDoCo [38] and GASDA [284]) with their released code. During training, we also modify them

to use the small amount of annotated real-world data in addition to the large-scale synthetic

data. We note that these methods originally perform unsupervised domain adaptation, but

they perform much worse than our modified baselines which leverage some real-world training

data. This supports our suspicion that multiple losses involved in these methods (e.g .,

adversarial loss terms) do not necessarily contribute to reducing the depth loss. Thirdly, we

have our ARC model and ablated variants to evaluate how each module helps improve depth

learning. The fourth group includes a few top-performing fully-supervised methods which

were trained specifically for the dataset over annotated real images only, but at a much larger

scale For example, DORN [71] trains over more than 120K/20K frames for NYUv2/Kitti,

respectively. This is 200/40 times larger than the labeled real images for training our ARC

model.

Evaluation metrics. for depth prediction are standard and widely adopted in literature, as

summarized in Table 2.1.

2.4.2 Indoor Scene Depth with NYUv2 & PBRS

Table 2.2 lists detailed comparison for indoor scene depth prediction. We observe that

ARC outperforms other unsupervised domain adaptation methods by a substantial margin.

This demonstrates two aspects. First, these domain adaptation methods have adversarial

losses that force translation between domains to be more realistic, but there is no guarantee

that “more realistic” is beneficial for depth learning. Second, removing “hard” regions in

real images makes the real-to-synthetic translation easier and more effective for leveraging

25

Table 2.2: Quantitative comparison over NYUv2 testing set [214]. We train the state-of-the-art
domain adaptation methods with the small amount of annotated real data in addition to the
large-scale synthetic data. We design three baselines that only train a single depth predictor directly
over synthetic or real images. Besides report full ARC model, we ablate each module or their
combinations. We set ρ=0.85 in the attention module A if any, with more ablation study in Fig. 2.3.
Finally, as reference, we also list a few top-performing methods that have been trained over several
orders more annotated real-world frames.

Model/metric ↓ lower is better ↑ better
Rel Sq-Rel RMS RMS-log δ1 δ2 δ3

State-of-the-art domain adaptation methods (w/ real labeled data)
T2Net [291] 0.202 0.192 0.723 0.254 0.696 0.911 0.975
CrDoCo [38] 0.222 0.213 0.798 0.271 0.667 0.903 0.974
GASDA [284] 0.219 0.220 0.801 0.269 0.661 0.902 0.974

Our (baseline) models.
syn only 0.299 0.408 1.077 0.371 0.508 0.798 0.925
real only 0.222 0.240 0.810 0.284 0.640 0.885 0.967
mix training 0.200 0.194 0.722 0.257 0.698 0.911 0.975
ARC: T 0.226 0.218 0.805 0.275 0.636 0.892 0.974
ARC:A 0.204 0.208 0.762 0.268 0.681 0.901 0.971
ARC: A&T 0.189 0.181 0.726 0.255 0.702 0.913 0.976
ARC: A&I 0.195 0.191 0.731 0.259 0.698 0.909 0.974
ARC: full 0.186 0.175 0.710 0.250 0.712 0.917 0.977

Training over large-scale NYUv2 video sequences (>120K)
DORN [71] 0.115 – 0.509 0.051 0.828 0.965 0.992
Laina [128] 0.127 – 0.573 0.055 0.811 0.953 0.988
Eigen [62] 0.158 0.121 0.641 0.214 0.769 0.950 0.988

synthetic data in terms of depth learning. The second point will be further verified through

qualitative results. We also provide an ablation study adding in the attention module A

leads to better performance than merely adding the synthetic-real style translator T . This

shows the improvement brought by A. However, combining A with either T or I improves

further, while A & T is better as removing the hard real regions more closely matches the

synthetic training data.

2.4.3 Outdoor Scene Depth with Kitti & vKitti

We train the same set of domain adaptation methods and baselines on the outdoor data,

and report detailed comparisons in Table 2.3. We observe similar trends as reported in

26

Table 2.3: Quantitative comparison over Kitti testing set [79]. The methods we compare are
the same as described in Table 2.2, including three baselines, our ARC model and ablation studies,
the state-of-the-art domain adaptation methods trained on both synthetic and real-world annotated
data, as well as some top-performing methods on this dataset, which have been trained over three
orders more annotated real-world frames from kitti videos.

Model/metric ↓ lower is better ↑ better
Rel Sq-Rel RMS RMS-log δ1 δ2 δ3

State-of-the-art domain adaptation methods (w/ real labeled data)
T2Net [291] 0.151 0.993 4.693 0.253 0.791 0.914 0.966
CrDoCo [38] 0.275 2.083 5.908 0.347 0.635 0.839 0.930
GASDA [284] 0.253 1.802 5.337 0.339 0.647 0.852 0.951

Our (baseline) models.
syn only 0.291 3.264 7.556 0.436 0.525 0.760 0.881
real only 0.155 1.050 4.685 0.250 0.798 0.922 0.968
mix training 0.152 0.988 4.751 0.257 0.784 0.918 0.966
ARC: T 0.156 1.018 5.130 0.279 0.757 0.903 0.959
ARC: A 0.154 0.998 5.141 0.278 0.761 0.908 0.962
ARC: A&T 0.147 0.947 4.864 0.259 0.784 0.916 0.966
ARC: A&I 0.152 0.995 5.054 0.271 0.766 0.908 0.962
ARC: full 0.143 0.927 4.679 0.246 0.798 0.922 0.968

Training over large-scale kitti video frames (>20K)
DORN [71] 0.071 0.268 2.271 0.116 0.936 0.985 0.995
DVSO [261] 0.097 0.734 4.442 0.187 0.888 0.958 0.980
Guo [90] 0.096 0.641 4.095 0.168 0.892 0.967 0.986

the indoor scenario in Table 2.2. Specifically, A is shown to be effective in terms of better

performance prediction; while combined with other modules (e.g ., T and I) it achieves

even better performance. By including all the modules, our ARC model (the full version)

outperforms by a clear margin the other domain adaptation methods and the baselines.

However, the performance gain here is not as remarkable as that in the indoor scenario. We

conjecture this is due to several reasons: 1) depth annotation by LiDAR are very sparse

while vKitti have annotations everywhere; 2) the Kitti and vKitti images are far less diverse

than indoor scenes (e.g ., similar perspective structure with vanishing point around the image

center).

27

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

ρ

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34
A
b
s
R
e
l

0.45

0.50

0.55

0.60

0.65

0.70

0.75

δ1

syn only

real only

mix training

Figure 2.3: Ablation study of the sparsity factor ρ of the ARC model on NYUv2 dataset. We use
“Abs-Rel” and “δ1” to measure the performance (see Table 2.1 for their definition). Note that the
sparsity level ρ cannot be exact 1.0 due to KL loss during training, so we present an approximate
value with ρ = 0.99999.

2.4.4 Ablation Study and Qualitative Visualization

Sparsity level ρ controls the percentage of pixels to remove in the binary attention map.

We are interested in studying how the hyperparameter ρ affects the overall depth prediction.

We plot in Fig. 2.3 the performance vs. varied ρ on two metrics (Abs-Rel and δ1). We can see

that the overall depth prediction degenerates slowly with smaller ρ at first; then drastically

degrades when ρ decreases to 0.8, meaning ∼ 20% pixels are removed for a given image.

We also depict our three baselines, showing that over a wide range of ρ. Note that ARC

has slightly worse performance when ρ = 1.0 (strictly speaking, ρ = 0.99999) compared to

ρ = 0.95. This observation shows that remove a certain amount of pixels indeed helps depth

predictions. We also show the curve of how sparsity level ρ affects the performance of ARC

on Kitti dataset. As shown in Fig. 2.6, the trend of the curve on Kitti dataset is similar

to the curve plotted on NYUv2 dataset, but the slope is quite different. The performance

changes very slightly with different sparsity level ρ. Considering the LiDAR depth map is

28

Table 2.4: Quantitative comparison between ARC and mix training baseline inside and outside
of the mask region on NYUv2 testing set [214], where ∆ represents the performance gain of ARC
over mix training baseline under each metric.

Model/metric ↓ lower is better ↑ better
Rel Sq-Rel RMS RMS-log δ1 δ2 δ3

Inside the mask (e.g ., removed/inpainted)
mix training 0.221 0.259 0.870 0.282 0.661 0.889 0.966
ARC: full 0.206 0.232 0.851 0.273 0.675 0.895 0.970

∆ ↓0.015 ↓0.027 ↓0.019 ↓0.009 ↑0.014 ↑0.006 ↑0.004
Outside the mask

mix training 0.198 0.191 0.715 0.256 0.700 0.913 0.976
ARC: full 0.185 0.173 0.703 0.249 0.713 0.918 0.977

∆ ↓0.013 ↓0.018 ↓0.012 ↓0.007 ↑0.013 ↑0.005 ↑0.001

0 200 400 600 800 1000 1200 1400

Sample Index

−0.2

−0.1

0.0

0.1

R
M
S
-l
o
g
G
a
in

Figure 2.4: Sorted per-sample error reduction of ARC over the mix training baseline on NYUv2
dataset w.r.t. the RMS-log metric. The error reduction is computed as RMS-log(ARC) − RMS-
log(mix training). The blue vertical line represents the index separating negative and positive error
reduction.

sparse and there is no depth annotation in the sky regions of Kitti images, we believe this

behavior matches our expectations. As shown in the previous section, the attention module

A is likely to focus on the sky or pavement. As there is little supervision (no depth in sky

regions) and large plain regions (e.g ., road), removing pixels from these regions to different

extents does not significantly affect the overall depth prediction.

With the comprehensive study of sparsity hyper-parameter ρ from both Fig. 2.3 and Fig. 2.6,

we see that the performance drops when the sparsity level ρ increases from 0.95 to 1.0

(strictly speaking, ρ = 0.999993). Decrements in performance show that learning to remove a
3One cannot set ρ = 1.0 exactly due to the KL loss.

29

Figure 2.5: Qualitative results list some images over which our ARC model improves the depth
prediction remarkably, as well as failure cases. (Best viewed in color and zoomed in.)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
ρ

0.10

0.15

0.20

0.25

0.30

Ab
s R

el

0.5

0.6

0.7

0.8

δ1
syn only
real only
mix training

Figure 2.6: Study of the sparsity factor ρ of the ARC model on Kitti dataset.

reasonably portion of pixels, e.g ., ρ = 0.90 or ρ = 0.95, indeed helps improve depth prediction.

Note that although ρ = 1.0 expects no sparse attention map output from the attention

module, we observe training with ρ = 1.0 achieves better performance than simply training

without attention modules. We believe one possible reason behind this observation is that

learning A before its convergence during training still introduce pixel/region removal, which

leads to more robust training as studied in literature [82].

Per-sample improvement study to understand where our ARC model performs better

over a strong baseline. We sort and plot the per-image error reduction of ARC over the mix

30

Figure 2.7: Per-sample improvement of ARC and the mix training baseline on NYUv2 testing set
w.r.t RMS-log.

training baseline on NYUv2 testing set according to the RMS-log metric, shown in Fig. 2.4.

The error reduction is computed as RMS-log(ARC) − RMS-log(mix training). It’s easy to

observe that ARC reduces the error for around 70% of the entire dataset. More importantly,

ARC decreases the error over 0.2 at most when the average error of ARC and our mix training

baseline are 0.252 and 0.257, respectively. Additionally, we also compute the per-image

prediction of ARC and the mix training baseline on NYUv2 testing set w.r.t RMS-log and

plot the result by sorting the baseline performance. As shown in Fig. 2.7, ARC reduces errors

over a majority of samples as there are more red dots below the blue curve visually. This

observation matches the result shown in Fig. 4 in this chapter, where experimentally proves

ARC reduces error for around 70% of the sample in the dataset. More importantly, ARC

reduces error even more when the mix training baseline has larger prediction errors, which

demonstrates the effectiveness of removing “hard” pixels.

Masked regions study analyzes how ARC differs from mix training baseline on “hard"

pixels and regular pixels. For each sample in the NYUv2 testing set, we independently

compute the depth prediction performance inside and outside of the attention mask. As

shown in Table 2.4, ARC improves the depth prediction not only inside but also outside

of the mask regions on average. This observation suggests that ARC improves the depth

prediction globally without sacrificing the performance outside of the mask.

31

Qualitative results of NYUv2 dataset are shown in Fig. 2.5, including some random

failure cases (measured by performance drop when using ARC). These images are from NYUv2

dataset. From the good examples, we can see ARC indeed removes some cluttered regions

that are intuitively challenging: replacing clutter with simplified contents, e.g ., preserving

boundaries and replacing bright windows with wall colors. From an uncertainty perspective,

removed pixels are places where models are less confident. By comparing with the depth

estimate over the original image, ARC’s learning strategy of “learn to admit what you don’t

know” is superior to making confident but often catastrophically poor predictions. It is also

interesting to analyze the failure cases. For example, while ARC successfully removes and

inpaints rare items like the frames and cluttered books in the shelf, it suffers from over-smooth

areas that provide little cues to infer the scene structure. This suggests future research

directions, e.g . improving modules with the unsupervised real-world images, inserting a

high-level understanding of the scene with partial labels (e.g . easy or sparse annotations) for

tasks in which real annotations are expensive or even impossible (e.g ., intrinsics).

Qualitatively Visualizations of Kitti dataset. We also present qualitative results of

ARC on Kitti dataset. From Fig. 2.8, we observe that the attention module A attempts to

mask out the sky, pavements, and overexposured areas in both improvements and failure

cases. In failed cases, we find a pattern in some images that the sky and pavements are

connected (e.g ., due to overexposure). Under such condition, the attention module is very

likely to remove them together and the original vanishing point cannot be reliably inferred,

we believe important to estimate the depth in Kitti images. Recall that Kitti images have

similar structures as the car is moving forward and the vanishing point is around the image

center in most images. It is worth noting that in real training images of Kitti dataset, the

depth annotations are very sparse (due to LiDAR sensor) or missing in sky regions. So it is

reasonable that the model learns to remove sky regions in a lazy way as there is no penalty

from the depth loss on the sky region. Moreover, interestingly, the ARC model learns to

paste “green trees” to the removed regions. We conjecture that the green trees are large

32

(a) real-world image (b) translated&masked
image from (a)

(c) completed image
from (b) (d) ground-truth depth (e) predicted depth

from (a)
(f) predicted depth

from (c)
vi

su
al

 im
pr

ov
em

en
t

fa
ilu

re
 c

as
e

Figure 2.8: Qualitative visualizations of our ARC on Kitti dataset including improvements as
well as failure cases. White arrows in the last column are used to highlight the regions over which
the model improves or degrades visibly w.r.t depth prediction. We use the same color bar for the
visualizing depth in each row. (Best view in color and zoomed in.)

regions besides the road and reliable cues to estimate vanishing point and thus better depth

prediction.

2.5 Conclusion and Future Work

In this chapter, we present the ARC framework which learns to attend, remove and complete

“hard regions” that depth predictors find not only challenging but detrimental to overall depth

prediction performance. ARC learns to carry out completion over these removed regions in

33

order to simplify them and bring them closer to the distribution of the synthetic domain.

This real-to-synthetic translation ultimately makes better use of synthetic data in producing

an accurate depth estimate. With our proposed modular coordinate descent training protocol,

we train our ARC system and demonstrate its effectiveness through extensive experiments:

ARC outperforms other state-of-the-art methods in depth prediction, with a limited amount

of annotated training data and a large amount of synthetic data. We believe our ARC

framework is also applicable of boosting performance on a broad range of other pixel-level

prediction tasks, such as surface normals and intrinsic image decomposition, where per-pixel

annotations are similarly expensive to collect. Moreover, ARC hints the benefit of uncertainty

estimation that requires special attention to the “hard” regions for better prediction.

34

(a) real-world image (b) translated&masked
image from (a)

(c) completed image
from (b) (d) ground-truth depth (e) predicted depth

from (a)
(f) predicted depth

from (c)

Figure 2.9: Additional qualitative visualizations of our ARC on NYUv2 dataset. (Best viewed in
color and zoomed in.)

35

Chapter 3

Mitigating camera pose distribution shift

in depth predictions

Monocular depth predictors are typically trained on large-scale training sets which are

naturally biased w.r.t. the distribution of camera poses. As a result, trained predictors fail to

make reliable depth predictions for testing examples captured under uncommon camera poses.

To address this issue, we propose two novel techniques that exploit the camera pose during

training and prediction. First, we introduce a simple perspective-aware data augmentation

that synthesizes new training examples with more diverse views by perturbing the existing

ones in a geometrically consistent manner. Second, we propose a conditional model that

exploits the per-image camera pose as prior knowledge by encoding it as a part of the input.

We show that jointly applying the two methods improves depth prediction on images captured

under uncommon and even never-before-seen camera poses. We show that our methods

improve performance when applied to a range of different predictor architectures. Lastly,

we show that explicitly encoding the camera pose distribution improves the generalization

performance of a synthetically trained depth predictor when evaluated on real images.

36

Figure 3.1: Contemporary monocular depth predictors, e.g ., DORN [71], rely on large-scale training
data which is naturally biased w.r.t. the distribution of camera poses (e.g ., pitch angle distribution
shown in gray). As a result, DORN makes unreliable predictions on test images captured with
uncommon poses (red bars), e.g ., pitch angles >120◦. To address this issue, we propose two novel
techniques that drastically reduce prediction errors (cf . black bars) by leveraging perspective-aware
data augmentation during training and known camera pose at test time. Qualitative examples with
more extreme camera pitch angles (top) show that incorporating our techniques leads to notable
improvements.

3.1 Background

Monocular depth prediction aims to estimate 3D scene geometry from a 2D image. Despite

being a largely underdetermined problem, convolutional neural network (CNN) based depth

predictors trained on a sufficiently large-scale dataset are able to learn the joint statistics of

scene geometry and appearance, and achieve impressive performance [63, 62, 71, 90, 128, 267].

However, an important overlooked fact is that the distribution of camera poses in training

37

sets are naturally biased. As a result, a learned depth predictor is unable to make reliable

predictions on images captured from uncommon camera poses, as shown in Fig. 3.1. Impor-

tantly, camera poses of testing examples may follow a different distribution from that in the

training set. This will exacerbate prediction errors on images that are captured by cameras

with uncommon poses relative to the training set.

Contributions. To this end, we propose two novel approaches that significantly improve

depth prediction under diverse test-time camera poses. First, we introduce a simple perspective-

aware data augmentation (PDA) that synthesizes new geometrically consistent training

examples with more diverse viewpoints by perturbing the camera pose of existing samples. In

contrast, common data augmentation (CDA) methods such as random-crop, though widely

adopted in prior work [71, 121, 282, 106, 267, 35], produce training examples where the

resulting image and target depth are inconsistent with the perspective geometry (Fig. 3.2).

Second, we propose training a conditional depth predictor which utilizes the camera pose

(e.g ., acquired from IMU or other pose predictors) as a prior (CPP) when estimating depth.

We propose an effective approach to encode CPP as an additional channel alongside the RGB

input. We find incorporating pose using CPP yields more accurate depth predictors that

generalize much better under diverse test-time camera poses.

Through extensive experiments, we show that these techniques significantly improve depth

prediction on images captured from uncommon and even never-before-seen camera poses.

Both techniques are general and broadly applicable to any network architecture. We show

that incorporating them in recent state-of-the-art architectures improves their performance

further. Lastly, we show that explicitly handling the biased camera pose distribution can

improve the performance of a synthetically trained depth predictor when tested on real images.

This highlights the importance that camera pose distribution plays in domain adaptation for

3D geometric prediction tasks.

38

3.2 Related Work

Monocular Depth Prediction and scene layout estimation have been greatly advanced

since the seminal works [105, 202]. State-of-the-art approaches train increasingly sophisticated

CNN-based predictors [148, 63, 128], utilize better training losses [71, 213, 267] and train on

larger-scale training datasets [145, 130, 281, 288].

Surprisingly little attention has been paid to camera pose bias and out-of-distribution

generalization. The recent study of [52] concluded that the learned depth predictors have

a strong implicit bias causing them to perform poorly on test images when captured from

differing camera poses. Our work systematically analyzes this pose bias/robustness in detail

and offers technical contributions that improve generalization on test images captured under

diverse camera poses.

Camera Pose Estimation plays an essential role in many traditional 3D geometry vision

problems such as SLAM [11, 222, 114] and 3D reconstruction [217, 2]. Predicting the relative

camera pose between a pair of frames has been widely exploited to perform self-supervised

learning of monocular depth prediction [85, 296, 235]. Absolute camera pose is often

represented implicitly in predictions of room layout [132, 305, 254, 251]. Closer to our work

is [12] which estimates the absolute camera pose (height,pitch,roll) in order to regularize

depth predictions in world coordinates.

We explore the benefit of providing the camera pose as an additional input to depth prediction.

In practical applications, such pose information may come from other sensors (e.g ., pitch

from IMU) or prior knowledge (e.g ., camera mounted at a known height and pitch on an

autonomous vehicle). The work of [99, 64] encode camera intrinsics (e.g ., focal length) as a

part of the input for depth prediction, with a goal to learn a universal depth predictor that

generalizes to images captured by different cameras. Similarly, we propose to encode camera

extrinsic parameters (e.g ., camera height) which we exploit for training better depth predictors

39

Figure 3.2: Visual comparison of PDA and CDA. From the original example (left), conventional
data augmentation (CDA) synthesizes a new example (middle) by randomly cropping a sub-region.
It ignores camera pose information and will simply copy the depth values w.r.t. the corresponding
pixels. In contrast, perspective-aware augmentation (PDA) simulates a rotation of the camera and
synthesizes a new training example with geometrically consistent depth values corresponding to the
new camera pose (right).

that perform well on testing images captured with diverse camera extrinsic parameters.

Distribution Bias. Challenges of class imbalance and bias have been a widely discussed

topic in the literature on classification and recognition [97, 304, 152]. Distribution bias

naturally exists in a training set, implying that some examples are underrepresented or few

in number w.r.t. some attributes (e.g ., class labels). As a result, a trained model is unlikely

to perform well on the underrepresented testing inputs. Even worse, testing examples may

come from out-of-distribution data [100, 146, 134, 290], meaning that the training set does

not have similar examples. For example, in monocular depth prediction, training examples

might be collected with cameras held vertical with minimal pitch and roll variations, but the

testing scenario (e.g ., AR/VR headset) might have potentially large variations in pitch and

roll.

40

Figure 3.3: Left: We illustrate the proposed CPP which encodes camera pose (ω, θ, h) as a 2D
image. Intuitively, for a spatial coordinate q on the image plane (i.e., the encoding map), we find
its physical point pg on the ground plane, along the ray cast from the camera. Then we compute
the pseudo depth value as the length from the camera to pz

g which is the projection of pg onto the
depth direction z (red line) using Eqn. 3.7. This results in an encoded CPP map for a given camera
pose. Right: We visualize some encoded CPP maps by varying the ω, θ and h independently.

3.3 Perspective-aware Data Augmentation

Due to the biased distribution of camera poses in the training set, some examples are

underrepresented w.r.t. camera poses. To resolve this issue, we would like to augment the

training data to cover these underrepresented poses.

Resampling (RS) the training data with replacement to enlarge the prevalence of uncommon

poses in the train-set is perhaps the simplest approach. However, this does not increase the

diversity of the train-set because it cannot generate new training examples. Perhaps even

worse, in practice, training on repeated examples from uncommon camera poses forces the

model to weight them more (cf . overfitting), while sacrificing performance on other examples

captured under common camera poses.

Conventional data augmentation (CDA), specifically random-cropping of the training

examples, is widely used to enrich the training data in prior work [63, 127, 71, 121, 267].

While CDA seems to increase the diversity of the training set, its generated data could

adversely affect depth prediction. Cropping a subregion from an original example naively

copies depth values without considering the view-dependent nature of depth maps that

depend on both the camera pose and scene geometry. Such a cropped image is equivalent to

41

capturing another image of the same scene using a camera with an off-center principle point

(Fig. 3.2) and can make it difficult to train depth predictors [64]. In our work, we find CDA

helps only if we crop sufficiently large regions, which presumably reduces this effect.

Perspective-aware data augmentation (PDA) is our solution that augments training

examples consisting of RGB images and depth maps. Given a training example, PDA first

perturbs the camera pose, re-projects all pixels to a new image, and recomputes the depth

values for the new image using the new camera pose and the original depth map. Despite its

simplicity, to the best of our knowledge, no prior work exploits this idea for data augmentation

during the training of a monocular depth predictor.

Given the training image I, depth D and camera intrinsic matrix K, we would like to

synthesize a new image Is and depth Ds corresponding to a perturbed viewing direction. Let

Trel be the relative rotation between the two poses. Then for any point q = [u v] on I, we

compute the corresponding point q′ on the new image Is via the homography:

q′
h ∼ KTrelzK

−1qh, (3.1)

where z is the corresponding depth value of the point q from the original depth map D; qh

and q′
h are the homogeneous coordinates of points q and q′, respectively.

Similarly, we compute the depth value for each pixel in the new depth map Ds(q
′):

z′ = vT
projTrelzK

−1qh, (3.2)

where vproj = [0, 0, 1]T is a unit vector pointed along the z-axis of the camera.

While the above demonstrates the computation of per-pixel depth values, in practice, we

can compute the whole depth map Ds efficiently by using backward-warping and standard

bilinear interpolation. For larger rotations, we note that the synthesized views will have void

42

regions on the boundary, as shown Fig. 3.2. This does not pose a problem for depth since we

simply exclude those regions from the loss during training. However, we find it helpful to

pad the RGB void regions using values from the RGB images (using the “reflection” mode

during warping).

We also considered applying PDA with camera translation. However, this requires forward-

warping and introduces “holes” in the synthesized result [166] at disoccluion boundaries.

Handling disocclusions is still an open problem and out of our scope [27, 179, 159], therefore,

we choose to only augment camera rotations to avoid disocclusion artifacts and allow for

efficient computation.

3.4 Depth Prediction with Camera Pose Prior

Depth maps are view-dependent representations that depend on both the scene geometry and

camera pose. The camera pose inherently provides prior knowledge about the expected scene

depth map. For example, knowing a camera is pointing down to the ground at one-meter

height, we should expect a depth map of one-meter height roughly everywhere. Therefore,

we are motivated to train a conditional depth predictor on camera pose as prior (CPP).

Camera pose is a six-degree-of-freedom (6DoF) vector that describes translation and

rotation in 3D world coordinates. In typical terrestrial man-made scenes, we consider a global

coordinate with one axis pointing upwards (as specified by gravitational acceleration) and

fix the origin along that axis to be 0 at the ground plane. Since there is no unique origin

along the two remaining axes, we assume that our camera pose prior should be uniform over

translations parallel to the ground plane. Similarly, there is no unique way to specify the

orientation of the axes parallel to the ground plane so our prior should necessarily be uniform

over rotations of the camera about the up-axis. This leaves three degrees-of-freedom (3DoF):

43

the height of the camera above the ground plane h, the pitch (angle relative to the up-axis)

of the camera θ, and any roll ω of the camera around its optical axis (Fig. 3.3).

A naive encoding approach. We now consider using this 3DoF camera pose as a part of

the input (along with RGB) to depth predictors. To incorporate this as input into a CNN,

inspired by the literature [64, 269], we convert 3DoF camera poses into 2D maps, which are

concatenated with the RGB image as a whole input to learn the depth predictor. Naively, we

can create three more channels of resolution H ×W , which copy values of roll ω, pitch θ and

height h, i.e., Mω[:, :] = ω, Mθ[:, :] = θ and Mh[:, :] = h, respectively. However, the effect

of pose on the depth distribution depends strongly on the position in the image relative to

the camera center so translation-equivariant convolutions cannot fully exploit this encoding

(except by relying on boundary artifacts). This is supported by an experimental comparison

showing this naive encoding is inferior to our proposed CPP encoding method, elaborated in

the following.

CPP encoding encodes the pose locally by assuming that the camera is placed in an empty

indoor scene with an infinite floor and ceiling. Intuitively, it encodes the camera pose by

intersecting rays from the camera center with predefined ground/ceiling planes and recording

the depth, see Fig. 3.3.

Let p = [x y z] be a 3D point in the global coordinate, q = [u v] be a 2D point on the image

plane whose homogeneous form is qh, n ∈ R3 denotes the normal vector of ground planes, C

be the distance between two planes in the up direction.

The projection from 3D coordinates to 2D image plane is:

λqh = KR−1(p− t), (3.3)

where λ is a scale factor; K is the intrinsic matrix; R ∈ SO(3) and t ∈ R3 are rotation

44

and translation matrices known from the camera pose, respectively. We compute the 3D

point p where the ray shooting from the camera center through point q eventually intersects

with planes or the horizon. However, λ is an unknown scalar and we need extra constraints

to compute it. Taking ground plane as an example, we know the collections of 3D points

intersecting with ground plane is {p : nTp = 0}. With this new constraint, we rearrange

Eqn. 3.3 and multiply nT on both sides of the equation:

nTp = λnTRK−1qh + nTt ⇒ λ =
−nTt

nTRK−1qh

(3.4)

Now, we plug the computed λ back to Eqn. 3.3, then the 3D point pg that intersects the

ground plane for q is:

pg =
−nTt

nTRK−1qh

RK−1qh + t (3.5)

Similarly, with the constraint {p : nTp = C}, the 3D point pc that intersects with the ceiling

plane for q is:

pc =
C − nTt

nTRK−1qh

RK−1qh + t (3.6)

Once we have the 3D intersection point p for each point q on the image plane, we compute

the projection on the camera z direction (i.e., the depth direction):

z(p) = vT
projR

−1(p− t), (3.7)

where vproj is the projection vector that computes the projection of a 3D point along the

camera depth direction. Finally, for each point [u, v] in the encoding map M ∈ RH×W , we

compute both pg and pc and take the maximum (positive) value as the pseudo depth value

45

(Fig. 3.3):

M[u, v] = max{z(pg), z(pc)} (3.8)

The encoding map M can have infinite values, e.g ., when the ray shooting from the camera is

parallel to the ground plane. To map values into a finite range, we apply the inverse tangent

operator tan−1(·) to obtain our final encoding MCPP = tan−1(M) which takes on values in

the range [tan−1(min{h,C − h}), π
2
]. We visualize some CPP maps in Fig. 3.3-right.

To train a conditional depth prediction, we simply concatenate the CPP encoded map with the

corresponding RGB as a four-channel input. This implies that our CPP encoding approach

applies to any network architectures with a simple modification on the first convolution layer.

3.5 Experiments

We validate our methods through extensive experiments. Specifically, we aim to answer the

following questions:1

• Do our methods improve depth prediction on a test-set that has a different camera

pose distribution from the train-set?

• Does resampling improve depth prediction on a test-set that has a different camera

pose distribution?

• Do our methods improve depth estimation on testing images captured with out-of-

distribution camera poses?

• Does applying our methods to other state-of-the-art depth predictors improve their

performance?

• Do our methods improve the performance of a depth predictor when training and
1Answers: yes, no, yes, yes, yes.

46

testing on different datasets?

Datasets. In our work, we use two publicly available large-scale indoor-scene datasets,

InteriorNet [141] and ScanNet [43] which come with ground-truth depth and camera pose.

Compared to other datasets such as [80, 40, 219], these were selected because they illustrate

a much wider variety of camera poses. InteriorNet [141] consists of photo-realistic synthetic

video sequences with randomly generated camera trajectories with a wide variety of pitch

and height but minimal roll. ScanNet [43] contains real-world RGBD videos of millions of

views from 1,513 indoor scenes collected with substantial variation in pitch, roll, and height.

For each dataset, we create train/test sets by randomly splitting scenes into two disjoint

sets with 85%/15% examples, respectively. We use a stratified sampling approach to avoid

picking adjacent video sequences in the same set.

Sampling. To explore how the biased camera pose distribution affects depth learning and

prediction, we sample three subsets from the test/train set (Fig. 3.4) which each have 10k/1k

images but with different distributions of camera poses.

• Natural selects samples at random to reflect the natural distribution of the dataset.

• Uniform selects samples that simulate a uniform distribution over poses with priority:

pitch→roll→height. Concretely, we quantize the range of camera pitch/roll/ height

into equal-size bins, and sample an approximately equal number of examples in each

bin.

• Restricted samples images within a narrow range: camera pitch θ ∈ [85◦, 95◦] and height

h ∈ [1.45, 1.55] (meters). While InteriorNet does not have roll variations, ScanNet

does: roll ω ∈ [−5◦, 5◦]. We create Restricted to particularly study how depth predictor

performs on testing images captured with out-of-distribution camera poses.

Evaluation Metrics. There are several evaluation metrics widely used in the literature [63,

71, 267], including absolute relative difference (Absr), squared relative difference (Sqr), root

47

Figure 3.4: Distribution of camera pitch and heights for three subsets of images from InteriorNet.
From the Natural subsect, we observe the dataset of InteriorNet does have a naturally biased
distribution (esp. pitch). Please refer to the text on how we construct the three subsets.

Figure 3.5: Breakdown analysis of depth prediction w.r.t. pitch. The background shade denotes
the camera pose distribution w.r.t. pitch. Clearly, both PDA and CPP improve depth prediction
in underrepresented camera poses. Surprisingly, CPP remarkably boosts depth prediction, while
applying both CPP and PDA achieves the best performance “everywhere”.

mean squared log error (RMS-log), and accuracy with a relative error threshold of δk < 1.25k,

i = 1, 2.

Implementation. We use a standard UNet structured model to perform most of our

experimental analysis [288, 284, 291]. We also demonstrate that our techniques apply to

other depth predictor architectures (Section 3.5.3). Unless specified, all models are trained

with the L1 loss and applied random left-right flip augmentation during training.

While we initially learn the conditional depth predictor using the true camera pose, we also

48

Table 3.1: Within & cross-distribution evaluation. In each dataset, we train depth predictors
on their Natural train-sets and evaluate on both Natural and Uniform test-sets. We apply different
methods to a Vanilla model. All models use the same network architecture. Vanilla performs
poorly in cross-distribution evaluation (cf .Natural-test vs. Uniform-test), demonstrating that the
biased camera pose distribution affects the training of depth predictors. As expected, RS hurts
depth prediction compared to Vanilla. In contrast, CPP and PDA show better performance; jointly
applying them performs the best (i.e., “Both”). Finally, comparing alternative methods to our CPP
(vs. Native) and PDA (vs. RS and CDA) shows the merits of our methods.

Models
Natural-Test-Set Uniform-Test-Set

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

InteriorNet
Vanilla .154 / .148 / .229 .803 / .945 .183 / .146 / .250 .724 / .926
+ RS .192 / .203 / .267 .726 / .918 .210 / .174 / .272 .661 / .906
+ CDA .142 / .137 / .222 .825 / .950 .172 / .125 / .238 .738 / .934
+ PDA .138 / .123 / .207 .834 / .957 .168 / .122 / .229 .757 / .942
+ Naive .132 / .145 / .219 .835 / .944 .137 / .116 / .213 .810 / .944
+ CPP .108 / .120 / .199 .872 / .958 .106 / .088 / .183 .876 / .961
+ Both .095 / .101 / .180 .898 / .966 .091 / .069 / .161 .903 / .973

ScanNet
Vanilla .125 / .068 / .186 .837 / .962 .177 / .121 / .265 .711 / .928
+ RS .216 / .158 / .279 .619 / .889 .218 / .168 / .300 .630 / .881
+ CDA .116 / .062 / .179 .853 / .964 .174 / .121 / .264 .727 / .922
+ PDA .115 / .059 / .171 .860 / .970 .166 / .110 / .248 .752 / .938
+ Naive .120 / .069 / .184 .846 / .959 .173 / .127 / .255 .755 / .923
+ CPP .108 / .060 / .171 .871 / .965 .154 / .106 / .239 .781 / .943
+ Both .102 / .052 / .160 .882 / .973 .143 / .097 / .230 .809 / .952

tested encoding a predicted camera pose in Section 3.5.4. For predicting camera pose, we

train a pose predictor with the ResNet18 architecture [98] to directly regresses to camera

pitch, roll, and height. We resize all images and depth maps to 240× 320, and adjust camera

intrinsic parameters (for CPP encoding) accordingly. We use PyTorch [180] to train all the

models for 200 epochs on a single Titan Xp GPU. We use the Adam optimizer [117] with

a learning rate 1e-3, and coefficients 0.5 and 0.999 for computing the running averages of

gradient and its square.

For CPP encoding, we set the ceiling height C = 3 meters. We have studied different settings

of C, but find little difference. For PDA, we randomly perturb camera pose within [−0.1, 0.1]

radius angle jointly w.r.t. pitch, roll, and yaw; we also ablate the perturbation scale in

49

Figure 3.6: Qualitative comparison between Vanilla and our method (using both CPP and PDA)
on random testing images from InteriorNet (left) and ScanNet (right). Depth maps for each example
are shown with the same colorbar range. Notably, the images are captured under some uncommon
camera angles relative to the training pose distribution (Fig. 3.5). The Vanilla model seems to make
erroneous predictions w.r.t. the overall scale of the depth. In contrast, by applying CPP and PDA,
the new model (“ours”) produces visually improved results.

Section 3.5.5.

3.5.1 Within & Cross-Distribution Evaluation

We start with initial experiments designed to reveal how bias in camera pose statistics affects

depth predictor performance (Fig. 3.4). The experiments also explore the design choices

of our methods and validate their effectiveness. Specifically, we train depth predictors on

the Natural train-sets, and test them on both Natural and Uniform test-sets. We apply a

sequence of different modifications to a “Vanilla” baseline model, i.e., a UNet-based predictor.

Table 3.1 lists detailed comparisons, and Fig. 3.6 shows qualitative comparisons.

The Vanilla model degrades notably when evaluated on a test-set that has a different pose

distribution, i.e., from Natural to Uniform, showing the clear influence from the biased

distribution of camera poses. In terms of data augmentation, simply resampling the training

data (RS) hurts performance (cf . Vanilla and “+RS”). Moreover, our PDA outperforms

CDA, demonstrating the importance of synthesizing geometric-aware training examples using

the corresponding camera and the scene geometry in depth prediction. As for camera pose

encoding, our CPP encoding method clearly outperforms the Naive method, Importantly,

jointly applying CPP and PDA performs the best on both within-distribution (Natural) and

50

cross-distribution (Uniform) test-sets. Finally, we breakdown the performance in Fig. 3.5 to

analyze when (i.e., w.r.t. pitch angle) PDA and CPP improve depth prediction. Generally,

both of them help reduce prediction errors on testing images captured with underrepresented

camera poses, while CPP yields the largest benefits. Applying both achieves the best

performance “everywhere”.

3.5.2 Out-of-Distribution Evaluation

We now study how our methods help when training depth predictors on a train-set which

have a rather restricted range of camera poses. Specifically, we train models on the Restricted

train-sets of InteriorNet and ScanNet, respectively, and test the models on their Natural

test-sets. This setup is synthetic and unlikely to be a real-world scenario, but it allows for

exclusive analysis of depth predictors when tested on images captured with out-of-distribution

or never-before-seen camera poses.

Table 3.2 lists detailed comparisons. Vanilla model performs poorly when tested on Natural

test-set. CPP slightly improves prediction, but PDA helps a lot. CDA (i.e., random-crop

as augmentation) also helps, presumably owing to more diverse training examples, but

underperforms our PDA. This further confirms the importance of generating geometric-aware

new training examples for the given scene and camera in depth prediction. Under expectation,

applying both PDA and CPP performs the best.

3.5.3 Applicability to Other Predictor Networks

CPP and PDA are general and applicable to different model architectures. We study applying

them to training two well-established depth predictors: DORN [71] and VNL [267]. Compared

to the Vanilla model, both predictors adopt different network architectures [255, 98] and

51

Table 3.2: Out-of-distribution evaluation. We train depth predictors on the Restricted train-sets
and test on both Restricted and Natural test-sets of each datasets. Vanilla model performs poorly
on Natural test-sets, clearly showing the challenge of depth prediction on images captured under
novel/never-before-seen camera poses. CPP slightly improves performance, but PDA helps more.
CDA also improves performance presumably because it synthesizes more training examples, but
underperforms PDA. As expected, jointly applying both CPP and PDA achieves the best performance
on both Restricted and Natural test-sets.

Models
Restricted-Test-Set Natural-Test-Set

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

InteriorNet
Vanilla .150 / .234 / .296 .819 / .916 .265 / .368 / .412 .538 / .767
+ CPP .149 / .237 / .301 .820 / .915 .264 / .350 / .397 .548 / .782
+ CDA .139 / .228 / .286 .830 / .922 .227 / .279 / .336 .637 / .845
+ PDA .136 / .178 / .239 .833 / .935 .237 / .266 / .295 .652 / .878
+ Both .131 / .170 / .237 .839 / .936 .216 / .231 / .286 .666 / .894

ScanNet
Vanilla .177 / .131 / .259 .705 / .897 .317 / .304 / .390 .444 / .748
+ CPP .169 / .125 / .258 .726 / .897 .301 / .283 / .384 .464 / .756
+ CDA .163 / .121 / .259 .724 / .904 .289 / .266 / .371 .467 / .771
+ PDA .160 / .112 / .244 .729 / .914 .283 / .251 / .353 .493 / .795
+ Both .155 / .108 / .228 .731 / .918 .277 / .245 / .348 .504 / .804

different loss functions. They convert continuous depth values to discrete bins and model

depth prediction as a classification problem. Moreover, VNL incorporates a virtual surface

normal loss which provides a geometric-aware regularization during training. We implement

DORN and VNL using publicly-available third-party code. We train and test all models on

the Natural train/test-sets, in InteriorNet and ScanNet, respectively.

Table 3.3 lists detailed results, which are comparable to the Natural-Test-Set column in

Table 3.1. Consistent with previous experiments, both CPP and PDA improve the performance

further based on DORN and VNL. As our CPP and PDA improve other depth predictors as

a general approach, we suggest using them in future research of monocular depth estimation.

52

Table 3.3: Applicability to other predictor architectures. In each dataset, we train state-of-
the-art depth predictors (DORN [71] and VNL [267]) by optionally applying our CPP and PDA
approaches. All models are trained/tested on the Natural train/test-sets per dataset. Clearly, both
CPP and PDA boost their performance.

Models
InteriorNet ScanNet

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

DORN .128 / .126 / .218 .854 / .957 .112 / .065 / .197 .856 / .959
+ CPP .098 / .105 / .197 .899 / .962 .108 / .062 / .191 .875 / .960
+ PDA .115 / .112 / .207 .867 / .958 .110 / .068 / .195 .857 / .963
+ Both .085 / .088 / .124 .912 / .971 .093 / .049 / .153 .903 / .979
VNL .131 / .140 / .235 .853 / .954 .115 / .069 / .205 .855 / .960
+ CPP .101 / .120 / .207 .893 / .960 .112 / .064 / .195 .871 / .961
+ PDA .117 / .115 / .210 .861 / .959 .110 / .065 / .199 .855 / .962
+ Both .086 / .085 / .131 .909 / .970 .095 / .051 / .157 .901 / .980

3.5.4 Synthetic-to-Real Generalization

Previous experiments have validated that addressing the biased camera pose distribution helps

train a depth predictor that works better on another test-time distribution, or more generally

another domain. Here we evaluate performance in the presence of substantial synthetic-to-

real domain shift which includes both low-level shifts (e.g ., local material appearance) and

high-level shifts (novel objects, layouts and camera poses) [288]. Specifically, we synthetically

train a depth predictor (on InteriorNet Natural train-set) and test it on real images (ScanNet

Natural and Uniform test-sets). We also consider a more practical scenario that one does not

have access to the true camera pose but instead must rely on the predicted poses. To this

end, we train a camera pose predictor on ScanNet Natural test-set to predict camera pitch,

height and roll for a given RGB image. Then, we perform CPP encoding with the predictive

pose, i.e., CPPpred

Table 3.4 lists detailed setups and results; we summarize the salient conclusions. Vanilla

achieves worse performance compared to Table 3.1, showing a clear domain gap between

the two datasets. Applying CDA hurts the performance, presumably because the generated

training data by CDA disobey the projective geometry relations between scene geometry and

53

Figure 3.7: Left: We plot depth prediction error (Absr) w.r.t. different levels of noise in camera
height and pitch. We apply CPP to train/test a depth predictor (based on Vanilla) on InteriorNet
Natural train/test-set. For a given noise level δ, the trained model makes depth predictions using a
CPP map computed with a perturbed camera pose, e.g ., the pitch is sampled from θgt+U[−δ, δ].
The black dot at the origin stands for the (best) performance using the true camera pose (i.e., no
noises are presented in pitch and height). The dashed lines represent the average performance levels
for the Vanilla and CPP with predictive poses. Right: We visualize depth prediction by CPP
model when encoding perturbed camera pitch angles θgt±18◦ and heights hgt±0.1(m). CPP model
predicts shallower depth when both pitch and camera height decrease (i.e., camera is tilted down
or translated closer to the floor). This qualitatively confirms that the camera pose prior induces a
meaningful shift in the estimator. The corresponding RGB image and ground-truth depth appear in
Fig. 3.8.

camera model and pose (cf . Section 3.3). In contrast, our PDA helps, but CPP improves

even more notably. Applying CPP with the predictive pose (CPPpred) achieves a remarkable

performance boost over PDA, suggesting that using predictive poses, or more generally

exploiting camera poses during training, is quite valuable in depth prediction. We analyze in

the next section how the model is resilient to the errors in predicted poses. Lastly, using the

true camera pose in CPP performs the best.

3.5.5 Further Discussion and Ablation Study

“Blind” depth prediction without RGB. To characterize the prior knowledge carried by

camera poses in terms of depth prediction, we train a “blind predictor” on the InteriorNet

Natural train-set, taking as input only the CPP encoded maps of camera poses without

RGB images. For comparison, we compute an average depth map over the whole Natural

train-set. We qualitatively compare results on two testing examples in Fig. 3.8. Visually,

54

Table 3.4: Mitigating distribution bias of camera poses improves synthetic-to-real domain
adaptation. We train depth predictors synthetically on InteriorNet (Natural train-set) and test
them on real-world images from ScanNet Natural and Uniform test-sets. This is a typical setup
for synthetic-to-real domain adaptation in the context of depth prediction. Interestingly, we find
that CDA hurts the performance, presumably because the generated training examples by CDA do
not obey the relations among camera model, scene geometry and camera pose, and hence do not
necessarily help training a generalizable depth predictor. In contrast, our PDA helps synthetic-to-real
generalization and applying CPP improves further. Importantly, applying CPP with predictive poses
(CPPpred) achieves a remarkable performance boost, whereas using the true camera pose in CPP
performs the best.

Methods
Natural-Test-Set Uniform-Test-Set

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

Vanilla .242 / .204 / .315 .570 / .852 .305 / .259 / .364 .457 / .797
CDA .246 / .205 / .321 .568 / .843 .316 / .288 / .391 .433 / .771
PDA .239 / .198 / .311 .575 / .857 .298 / .252 / .359 .461 / .804
PDA+CPPpred .219 / .190 / .305 .586 / .866 .273 / .231 / .346 .548 / .835
PDA+CPP .208 / .170 / .282 .677 / .893 .245 / .228 / .315 .620 / .858

encoding camera pose alone using CPP reliably provides depth estimate on floor regions.

This intuitively explains that using camera pose does serve as strong prior knowledge of scene

depth.

Resilience to noisy camera pose. Camera pose estimates (e.g ., from IMU sensors) are

potentially noisy, and the predicted camera poses are undoubtedly erroneous (cf . the previous

experiment using predicted poses in CPP). We study how resilient CPP is to test-time errors

in the camera pose. Specifically, when testing a trained model with CPP, we randomly

perturb the camera poses of all testing examples up to a pre-defined scale, and measure the

overall performance as a function of prediction error w.r.t. noise added to the true camera

pitch θgt and height hgt, as shown in Fig. 3.7. We find that CPP outperforms the vanilla

model even with significant misspecification of the pose (e.g ., height error < 0.3m, pitch error

< 5 degrees).

Augmentation scales in PDA. We ablate the augmentation scale in PDA during training

depth predictors, as detailed in Fig. 3.9. Perhaps surprisingly, applying a larger scale PDA

consistently improves depth prediction until a very large perturbation (i.e., rotating at most

55

Figure 3.8: Camera pose alone provides a strong depth prior even for “blind” depth prediction.
Specifically, over the InteriorNet Natural train-set, we train a depth predictor solely on the CPP
encoded maps M without RGB as input. For visual comparison, we compute the average depth
map (shown left). We visualize depth predictions on two random examples. All the depth maps
are visualized with the same colormap range. Perhaps not surprisingly, M presents nearly the true
depth in floor areas, suggesting that camera pose alone does provide strong prior depth information
for these scenes.

80◦), presumably when very large void regions are introduced in the synthesized training

examples (Fig. 3.2).

Handling infinite values in CPP encoding. At the last step in computing CPP encoded

maps MCPP , we apply the inverse tangent operator to eliminate the infinity values (happens

when the ray shooting from camera is parallel to the ground plane) and maps the values of

M (i.e. MCPP = tan−1(M)) to the range [tan−1(min{h,C − h}), π
2
]. However, the inverse

tangent operator is not the only choice. We provide an ablation study that replaces the

tan−1(·) with a clipping operation.

Specifically, we set a threshold τ that represents the prior knowledge of the distance from

camera to the furthest point in the scene. Mathematically, for each point [u, v] in the new

CPP clipping encoded map MClip
CPP ∈ RH×W, we compute the pseudo depth value:

MClip
CPP [u, v] =


M [u, v] M [u, v] < τ

τ otherwise

We set τ = 20.0 in this experiment. After clipping, we linearly rescale the encoded map to

56

Figure 3.9: During training on InteriorNet Natural train-set, we randomly perturb camera pose
to generate new training examples. We specify the scale of the perturbation s = {0, 2, 4, 8, 16},
meaning that, when s = 2, we randomly perturb pitch/roll/yaw angles by adding a perturbation
within [−s ∗ 5◦, s ∗ 5◦]. Left: Applying more larger scale PDA “flattens” camera pose distribution
of the whole training set. Right: We test each of the trained models on the InteriorNet Uniform
test-set. We find applying more intense PDA consistently improves depth prediction until s = 16 (i.e.,
rotating at most 80◦), presumably when very large void regions are introduced in the synthesized
training examples (Fig. 3.2).

the range of [-1.0, 1.0] to match the statistics of RGB images. We find this yields better

performance than directly using MClip
CPP . We visually compare some encoded maps in Fig. 3.10,

where we see the clipping method introduces artificial stripes. Probably due to this, CPP-Clip

does not perform as well as CPP that adopts inverse tangent transform, as shown in Table 3.5.

Hyperparameter analysis in CPP encoding. CPP encoding assumes that the camera

moves in an empty indoor scene with an infinite floor and ceiling and the distance between

two planes in the up direction is described by the parameter C. This distance is set to C = 3

meter in all experiments in this chapter unless otherwise specified. To verify the performance

change w.r.t the distance C, we conduct experiments on InteriorNet Natural train-set with

various distance C = [4, 5, 6, 7, 8]. As shown in Fig. 3.11, the performance of depth predictors

are very robust in terms of the parameter C. In other words, CPP encoding improves the

depth predictor performance and reduces the distribution bias consistently, regardless of the

parameter C.

Quantitative Results of Blind Predictions. In this chapter, we visually demonstrate

57

Table 3.5: Comparisons of different encoding methods evaluated on InteriorNet test-sets. CPP
applies an inverse tangent transform tan−1 in encoding the camera poses. In contrast, CPP-Clip
replaces the tan−1 function with a clipping operation while keeping every other step the same as
CPP encoding. Both CPP and CPP-Clip perform better than Vanilla model, demonstrating the
effectiveness of our CPP method. Clearly, using the inverse tangent operator is better than clipping.

Models
Natural-Test-Set Uniform-Test-Set

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

InteriorNet
Vanilla .154 / .148 / .229 .803 / .945 .183 / .146 / .250 .724 / .926
+ CPP-Clip .109 / .124 / .204 .871 / .956 .111 / .096 / .189 .867 / .959
+ CPP .108 / .120 / .199 .872 / .958 .106 / .088 / .183 .876 / .961

ScanNet
Vanilla .125 / .068 / .186 .837 / .962 .177 / .121 / .265 .711 / .928
+ CPP-Clip .110 / .064 / .179 .869 / .964 .157 / .108 / .248 .758 / .936
+ CPP .108 / .060 / .171 .871 / .965 .154 / .106 / .239 .781 / .943

Table 3.6: Comparison between using the average depth map (Avg) computed on the InteriorNet
Natural train-set and the “blind predictor”, which estimates depth solely from per-image CPP encoded
maps without RGB images. We report results on InteriorNet Natural test-set. We find that “blind
predictor” performs better than “avg depth map”, implying the benefit of exploiting camera poses.
We also report on two specific images on which “blind predictor” performs well compared to the
average performance of Avg or Blind, as shown in Fig. 3.12. This further confirms that camera poses
contain useful prior knowledge about scene depth.

Models ↓ better ↑ better
Abs-Rel/Sq-Rel/RMS-log δ1 / δ2

Avg .414 / .641 / .466 .346 / .638
Blind .342 / .519 / .395 .485 / .750
Img-1 .041 / .010 / .082 .946 / .999
Img-2 .115 / .059 / .176 .793 / .990

that camera poses indeed contain prior knowledge of scene depth. The quantitative results of

those visual examples are shown in Table 3.6, from which we find two key insights. First,

the blind predictor achieves better performance than evaluating with average training depth

maps, suggesting that camera poses alone contain the prior information about scene depth.

In other words, training depth predictors with the camera pose alone are better than “random

guess” from average training depth maps. Second, the blind predictor achieves promising

performance on two images shown in Fig. 3.12 quantitatively. Together with the visualization

of the prediction, we find that blind predictors make significantly more accurate depth

prediction on floor regions, which confirms that the camera pose carries the prior knowledge

58

Figure 3.10: Visual comparisons of encoded maps of CPP and CPP-Clip with different pitch θ and
camera height h. We set the threshold τ=20 for CPP-Clip. Encoded maps computed by CPP-Clip
have the “red stripe” when the pitch is around 90◦ while CPP encoded maps have more smooth
transitions when capturing the horizon.

about scene depth, especially on floor and ceiling regions.

Further Study of PDA Augmentation Scales. We provide a more detailed analysis of

Vanilla depth predictor plus PDA with different scales of pitch and roll, individually. Please

refer to Fig. 3.9 for detailed descriptions. As shown in Fig. 3.13, the performance of the depth

predictor monotonically increase until augmenting pitch to the scale of 16. From the visual

demonstrations, we believe that the performance drop is due to the introduction of large void

regions. On the other hand, by rotating roll, we observe steady performance improvement,

which demonstrates that PDA boosts the performance of depth predictors by generating

training examples with diverse camera poses.

Further study of camera height and rotation in CPP encoding. CPP encodes

59

Figure 3.11: Uppeer: visualizations of CPP encoding with different hyper-parameter C (top);
bottom: depth prediction performance as a function of hyper-parameter C. We train depth
predictors on InteriorNet Natural train-set and test on its Natural test-set. From visual inspection,
changing the parameter C only affects the part of CPP encoded maps where pixels are above the
horizon. As shown by the performance curve, our proposed CPP encoding is very robust w.r.t
different values of C.

rotation (roll and pitch) and camera height, however, it is still worth exploring which DOF is

more important in CPP encoding. While it is nontrivial to define “importance” as pitch/roll

and height have different units and ranges, we did study the pitch and height on InteriorNet

(which has a nearly fixed roll). To apply CPP, we fixed either pitch or height and only encode

the other with the true value. As shown in Fig. 3.14, we find that encoding the true camera

height (top plot) performs better than the true pitch (bottom plot), and both perform better

than the vanilla model. This implies that camera height is “more important” than pitch

(probably roll as well).

CPP encoding with predicted poses. We study CPP to encode predicted poses. Specif-

ically, we train depth predictors with CPP using true poses on Natural train-sets of the

two datasets (Table 3.7). We test models on Natural and Uniform test-sets, respectively.

60

Figure 3.12: Illustration of how camera pose provides a strong depth prior through “blind depth
prediction”. Specifically, over the InteriorNet Natural train-set, we train a depth predictor solely on
the CPP encoded maps M without RGB as input. For visual comparison, we compute an averaged
depth map (shown left). We visualize depth predictions on two random examples. All the depth
maps are visualized with the same colormap range. Perhaps not surprisingly, M presents nearly
the true depth in floor areas, suggesting that camera pose alone does provide strong prior depth
information for these scenes.

Note that in testing we encode the predicted poses given by a pose predictor. As shown in

Table 3.7, CPP with predicted poses still outperforms Vanilla model; when jointly trained

with PDA, CPP with predicted poses performs even better.

3.6 Conclusion

While large-scale datasets allow for end-to-end training of monocular depth predictors, we

find the training sets naturally biased w.r.t. distribution of camera poses. As a result,

trained predictors fail to make reliable depth predictions for testing examples captured under

uncommon camera poses. We mitigate this bias with two novel methods, perspective-aware

data augmentation (PDA) and camera pose prior encoding (CPP). We show that applying

both our methods improves depth prediction on images captured under uncommon or never-

before-seen camera poses. Moreover, our methods are general and readily applicable to other

depth predictors, which can perform better when trained with PDA and CPP, suggesting

using them in the future research of monocular depth estimation.

61

Figure 3.13: Upper row: visualizations of augmented examples using PDA with different scales.
Bottom row: performance curves of depth predictor trained with PDA with different scales of
pitch θ (left) and roll ω (right), respectively. Please refer to Fig. 3.9 for detailed descriptions. All
models are trained on InteriorNet Natural train-set and evaluated on both Natural (dotted line) and
Uniform (solid line) test-sets. As we increase the augmentation scale in pitch, the performance of
depth predictors improves until scale s=16, when large void regions are introduced in the generated
examples. On the other hand, increasing augmentation scales in roll lead to steady performance
increments. In general, PDA consistently improves depth prediction over a Vanilla model trained
without PDA.

Table 3.7: CPP Encoding with Predicted Poses. We train depth predictors with CPP using
true poses on Natural train-sets of the two datasets. We test models on Natural and Uniform test-sets,
respectively. Note that in testing we encode predicted poses given by a pose predictor. Clearly,
CPP with predicted poses still outperforms Vanilla model; when jointly trained with PDA, CPP
with predicted poses performs even better. Nevertheless, encoding predicted poses underperforms
encoding true poses.

Models
Natural-Test-Set Uniform-Test-Set

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

InteriorNet
Vanilla .154 / .148 / .229 .803 / .945 .183 / .146 / .250 .724 / .926
+ CPPpred .142 / .132 / .212 .825 / .951 .164 / .121 / .228 .756 / .946
+ CPP .108 / .120 / .199 .872 / .958 .106 / .088 / .183 .876 / .961
+ Bothpred .135 / .127 / .205 .849 / .955 .148 / .114 / .213 .780 / .952
+ Both .095 / .101 / .180 .898 / .966 .091 / .069 / .161 .903 / .973

ScanNet
Vanilla .125 / .068 / .186 .837 / .962 .177 / .121 / .265 .711 / .928
+ CPPpred .116 / .065 / .180 .852 / .964 .169 / .117 / .255 .731 / .931
+ CPP .108 / .060 / .171 .871 / .965 .154 / .106 / .239 .781 / .943
+ Bothpred .111 / .061 / .173 .866 / .965 .159 / .111 / .247 .773 / .938
+ Both .102 / .052 / .160 .882 / .973 .143 / .097 / .230 .809 / .952

62

Figure 3.14: Top: CPP encoding with ground-truth camera height and fixed pitch. Bottom:
CPP encoding with ground-truth pitch and fixed camera height. All models are trained/evaluated on
InteriorNet Natural train/test-set. Comparing two blue or red curves across two plots, we find that
encoding ground-truth height achieves better performance, suggesting height is “more important”
than pitch. Moreover, encoding either ground-truth height or pitch outperforms Vanilla model.

63

Figure 3.15: Depth predictions of Vanilla and our model (jointly applied CPP and PDA) on
InteriorNet test-set. From these images captured under various camera poses, our model predicts
better depth than Vanilla model in terms of the overall scale.

64

Figure 3.16: Depth predictions of Vanilla and our model (jointly applied CPP and PDA) on ScanNet
test-set. From these images captured under various camera poses, our model predicts better depth
than Vanilla model in terms of the overall scale.

65

Chapter 4

Reference-based image inpainting

leveraging depth maps

Reference-guided image inpainting restores image pixels by leveraging the content from

another single reference image. The primary challenge is how to precisely place the pixels

from the reference image into the hole region. Therefore, understanding the 3D geometry that

relates pixels between two views is a crucial step towards building a better model. Given the

complexity of handling various types of reference images, we focus on the scenario where the

images are captured by freely moving the same camera around. Compared to the previous work,

we propose a principled approach that does not make heuristic assumptions about the planarity

of the scene. We leverage a monocular depth estimate and predict relative pose between

cameras, then align the reference image to the target by a differentiable 3D reprojection and

a joint optimization of relative pose and depth map scale and offset. Our approach achieves

state-of-the-art performance on both RealEstate10K and MannequinChallenge dataset with

large baselines, complex geometry and extreme camera motions. We experimentally verify

our approach is also better at handling large holes.

66

Figure 4.1: Given a reference image and a target image with hole, GeoFill utilizes predicted
correspondence matching and depth maps to estimate a 3D mesh and relative camera pose and
intrinsics. Compared to TransFill, the previous state-of-the-art approach, GeoFill handles complex
scenes better by iteratively refining predicted depth maps and relative pose.

4.1 Background

Image inpainting aims to plausibly restore missing pixels within a given hole region. Existing

single image inpainting models [270, 256, 271] solve this problem without additional informa-

tion by leveraging the knowledge learned from large scale training data or existing patches

within the image. These methods become less reliable when input images contains large holes

and the filling regions are complex in structures and textures.

In 2021, Zhou et al . [299] proposed a novel inpainting task called reference-based image

inpainting. It aims at filling the hole regions of a “target" image using another single source

photo taken of the same scene. This foreground removal application is particularly useful

when people take photos at museums or famous landmarks where the background is unique.

It is nearly impossible for existing single image inpainting to faithfully restore what was

actually there in the background for such cases. Inpainting with a reference image is appealing

and indispensable, and also feasible, since other photos taken at different viewpoints of the

same scene can be available, e.g ., in the users’ albums or even downloaded from the Internet.

67

Figure 4.2: Overview of our system pipeline. We are given a target image with a hole and a source
image. We aim at warping the single-source image to the target to fill the hole. We first estimate
the relative pose as well as predict the monocular depth of the source, and then adjust the scale
and offset of the depth map. After that, to mitigate the potential errors caused by deep models, we
jointly optimize camera relative pose and depth map scale and offset to make the depth map and
image contents well-align near the hole region. Finally, we render the reprojected source and refine
it using post-processing.

However, reference-based image inpainting is very challenging and not well explored. That is

because reference-based inpainting is a photography-oriented task that has only one single

reference frame as “source", and has usually large baseline or challenging camera movements

between the target and source. Therefore, the target and source images cannot be easily

aligned to fill in the hole due to issues such as parallax. To address the alignment problems,

the previous state-of-the-art method TransFill [299] has a strong assumption that the scenes

can be blended by multiple planar structures. It clusters the predicted depth on matched

feature points and utilizes multiple homographies to fill the hole. However, real scenes rarely

consist of only a few planar surfaces, and even when they do, it can be hard to identify the

relevant planar surfaces. This indicates that to better solve the problem of reference-based

inpainting, it is crucial to understand the camera positions and geometry of the 3D scene,

especially near the hole region in order to find the appropriate content for hole filling.

In this work, we propose a more principled approach that fills the hole region by explicitly

estimating the 3D scene structure from two limited views. Specifically, we first estimate sparse

feature correspondences, from which we derive an initial relative pose between the two views.

We then predict a monocular dense depth map of the source image and determine a scale and

68

offset that aligns the depth map with the target using a sparse 3D triangulated point cloud.

To mitigate the prediction errors and improve alignment accuracy, we next jointly optimize

the depth scale and offset and the relative pose using a fast differentiable 3D reprojection of

the source image to the target. We synthesize a warped source image by rendering a textured

source mesh with the optimized depth and target pose, and fill dis-occluded regions with

single image inpainting. Lastly, we adjust the exposure, white balance, lighting, and correct

any residual misalignments before pasting the result back into the hole region.

In summary, our GeoFill is the first to apply a more principled approach for reference-based

inpainting, i.e., the first to leverage an explicit non-planar 3D scene representation given

only limited two-view RGB images (no camera pose information). Compared with the

previous state-of-the-art, GeoFill better handles complex 3D scene structures within the hole,

wide-baseline image pairs and larger holes. Extensive experiments demonstrate that our

methods achieve the best perceptual quality on various scenes in benchmarks and real user

cases.

4.2 Related Work

Image inpainting. Traditional image inpainting models rely on hand-crafted heuristics.

Diffusion-based approaches [17] propagate pixel colors from the background to the hole region.

These approaches generate artifacts when the hole size is large or texture variations are

significant. Alternatively, patch-based approaches [249, 13] search for similar patches outside

the hole region to complete the missing regions. Although these approaches offer high quality

texture by copying texture patches, the filled regions may be inconsistent with regions around

the hole due to lack of high-level structural understanding of the entire image.

Recent deep models fill the hole by learning from large amounts of training data. Context

69

encoders [183] generate semantically plausible content in the hole by encoding the surroundings.

Iizuka et al. [108] adopt two discriminators to ensure the inpainted content is both locally

and globally consistent. Artifacts can be reduced along the hole boundary by filtering using

partial [149] or gated [271] convolutions. Some recent inpainting models improve the generated

image quality with additional information, such as edges [168], segmentation masks [221],

and low frequency structures [194, 147]. Moreover, several papers show deep neural networks

can fill holes on high resolution images [260, 264, 275]. Despite the significant advancements

in single inpainting models, filling with one single image remains fundamentally an ill-posed

problem [292]. Image inpainting with additional information is also explored in the literature,

such as inpainting with stereo images [244, 19, 9, 162, 161] and utilizing more than one

image [230]. TransFill [299] is closely related to our work: it performs reference-guided

inpainting by warping a reference image with multiple homographies. However, due to the

planar nature of homographies, TransFill has a limited ability to handle image pairs with

complex 3D structures, wide baselines, or significant disocclusions.

Video Inpainting. Classical works mainly focus on globally optimizing patch-based ener-

gies [184, 250, 87]. Recent work often adopts deep generative models for better inpainting

performance. Wang et al. introduce a data-driven framework that jointly learns temporal

structure and spatial details [240]. Onion-Peel Network (OPN) proposes to fill in the missing

region progressively with the spatio-temporal attention [174]. Spatial-Temporal Transformer

Network (STTN) adopts a deep generative model with adversarial training along the spatial-

temporal dimension to mitigate blurriness and temporal artifacts [274]. Note that video

inpainting approaches heavily exploit the dense temporal information in the video while we

only have one single reference image which is a much harder scenario.

Two-view Geometry. SfM establishes correspondences between two monocular frames

and subsequently estimates 3D structure [94, 205, 296, 243, 160]. In classic geometric vision,

it is well understood that the camera poses as well as depth for corresponding points can

70

be computed from feature matching points alone [156, 96]. Traditional methods utilize

hand-crafted descriptors [157, 16, 197] to build sparse correspondence for the subsequent

fundamental matrix estimation with the 8-point algorithm [95]. Learned local features have

shown great success in recent works [263, 49, 50] together with the learning-based feature

matching models, such as SuperGlue [200] or differentiable formations of RANSAC [23,

191, 24]. Another alternative is to directly estimate relative pose using an end-to-end pose

estimation network [114]. We leverage these recent advances (specifically OANet [276]). Our

method uses components inspired by SfM, however, our differentiable joint optimization stage

is novel and has been carefully formulated for our task.

Monocular Depth Estimation. Predicting depth from a single image is an ill-posed

problem. However, learning based approaches have shown impressive performance by either

treating monocular depth estimation as a regression or classification task [63, 128, 257, 92,

258, 71, 106, 5, 133, 288, 107, 287, 209]. Recent advances include BTS [133], which introduces

local planar guidance layers to guide the features to full resolution instead of standard

upsampling layers during the decoding phase. DAV [107] proposes to exploit the co-planarity

of objects in the scene via depth-attention volume. DPT [190] leverages the high quality

intermediate representation from transformers and become state-of-the-art.

4.3 Method

Suppose we are given a target image It with a hole M to be filled, and a reference (source)

image Is of the same scene. Our goal is to find a 3D-aware warped source image Is→t that

geometrically aligns the source image to the target image which can be used to fill the hole.

The final composite image can be represented as Icomp
t = It⊙M+(MsingleIs→t+(1−Msingle)⊙

Isingle)⊙ (1−M), where Msingle is the blending map to merge the warped source with the

single image inpainting result Isingle. Note that ideally there should be enough contents that

71

GeoFill can copy from the source image to the target hole region, i.e., the source image Is

is useful. Cases with very few target-source content pixels overlapping inside the hole will

cause GeoFill to fall back to the single image inpainting Isingle.

To compute the final warping matrix and use it to reproject the source image, as shown

in Figure 4.2, we propose a pipeline consisting of three stages named initialization, joint

optimization, and rendering and post-processing. In the first stage, we establish sparse

correspondences between Is and It and estimate the relative pose Trel between two views.

Meanwhile, we obtain a dense depth map of the source image using a pretrained deep model.

Then we align the scale and offset of the predicted depth map with the sparse 3D triangulated

feature points. In the second stage, we mitigate the potential errors of the initial guess of

pose and depth by optimizing the related parameters so contents well-align near the hole.

Finally, we render the warped image using the optimized parameters, and post-process it to

address any residual spatial and color misalignments like TransFill. We will introduce each

stage in the following sections.

4.3.1 Initialization Stage

Initialize Relative Pose Our approach first estimates the relative pose Trel based on

predicted sparse correspondences. We extract sparse corresponding feature points Pt and Ps

between the target and source images, and compute the fundamental matrix F between Is

and It via the normalized 8-point algorithm [95] using RANSAC [69]. From F, we derive the

relative pose Trel using the classic multi-view geometry algorithm mentioned in [95].

Initialize Dense Depth Map We then predict the inverse depth map on the source image

using a pretrained monocular depth estimator as the cues to estimate the real source depth.

Mathematically, we only need the source depth and Trel to compute the 3D-aware warp Is→t.

However, the source depth is predicted up to an unknown scale and offset by a pretrained

72

deep model, therefore, we need to solve for these such that the initial source depth Di
s best

matches the estimated relative pose. Note the estimated translation in Trel is normalized and

will not match the arbitrary scale in the predicted depth maps from pretrained deep models.

As suggested in [285], aligning dense depth to sparse triangulated points is much simpler

than rescaling the relative pose. Therefore, we first triangulate points with the relative pose,

then align the scale of depth predictions with triangulation to subsequently match the scale

of the relative pose.

Specifically, a 3D triangulated point x with point qs ∈ Ps and qt ∈ Pt is computed as,

x∗ = argmin
x

[E(rs,x)]
2 + [E(rt,x)]

2, (4.1)

where rs represents the ray shooting from the source camera center through the point qs on

the image plane, rt is the ray from the target camera following a similar analogy, and E

measures the Euclidean distance between two inputs. In this way, we compute a set of 3D

triangulated points X using all matching sparse correspondences. In order to form the linear

problem to compute the scale and offset, we first compute a sparse triangulated depth map

Dtri by projecting 3D triangulated points to source camera coordinates. Note Dtri is in the

same scale as the relative pose. Therefore, we correct Ds to match Dtri, which subsequently

matches the scale of the relative pose. We correct Ds by estimating two scalars, the scale si

and offset bi associated with the depth map, by solving a linear least square problem. The

initial depth maps are then expressed as: Di
s = siDs + bi.

4.3.2 Joint Optimization Stage

To mitigate the effects of potential errors in sparse correspondence and depth estimation since

deep models can be not robust or generalized enough, we further introduce an optimization

module to improve the quality of Is→t. We optimize the depth scale, offset, and the relative

73

pose that jointly define Is→t in the 3D scene. Specifically, we convert the rotation matrix

into quaternions, which leads to a total of 9 parameters to optimize. Both relative pose

and the initial depth computed in the previous section are used as the initial guess for the

optimization. Our optimization contains 3 different loss functions: a multiscale photometric

loss Lphoto, a feature correspondence loss Lfeat, and a negative depth penalty LnegD.

Multiscale Photometric Loss Lphoto measures the pixel-level color difference between Is→t

and the It outside the hole region. We downsample both Is→t and It and sum the normalized

color difference across different resolutions. Specifically, we build Gaussian pyramids on both

Is→t and It using an RGB representation for the source image and an alpha-premultiplied

RGBA representation on the target image to incorporate the hole region properly into the

target image. Computing a multi-scale photometric loss within each iteration is obviously

computationally expensive. Moreover, the optimization might also get trapped into the local

minima associated with the finest resolution due to poor initialization [303]. To accelerate the

computation speed and find better solutions, we adopt a coarse-to-fine optimization strategy,

which means we first compute photometric loss on the most coarse level and move to the finer

level once the convergence criteria at the current pyramid level are met. Additionally, instead

of building a 3D triangle mesh and rendering from the target view at each iteration, we use a

much more efficient differentiable 3D reprojection to find a warping field that computes Is→t

from Is with bilinear interpolation. Mathematically, we have:

Is→t = bilinear(Is, reproj(K,Trel,D
o
s)), (4.2)

where reproj() represents the reprojection operation. The photometric loss at a given

resolution with the pyramid is:

Lphoto =
1

|M|
∑

W ⊙ ||Is→t ⊙M− It ⊙M||2. (4.3)

74

Here W is a pixel importance weight map discussed shortly.

Feature Correspondence Loss Lfeat computes the distance between reprojected matching

feature points in the source images and the target images. We use the reproj() operator

on all 2D image coordinates in Ps to get another set Ps→t. Then, we compute the average

distance between Ps→t and Pt. However, the average distance of all points is very sensitive

to outliers, i.e., very few outliers dominate the loss function. To reduce the effects of the

outliers on the loss function, we adopt the general robust loss function from [14]. The general

form of the loss function is:

f(x, α, c) =
|α− 2|

α

((
(x/c)2

|α− 2|
+ 1

)α/2

− 1

)
, (4.4)

where α and c are the shape and scale parameters, respectively. In our experiments, we set

α = −2 and c = 10. Then, feature correspondence loss is written as:

Lfeat =
1

|Ps→t|

|Ps→t|∑
m=0

W(qm
t)f(||qm

s→t − qm
t ||, α, c), (4.5)

where f is the general robust loss function, qm
s→t and qm

t is the mth point in Ps→t and Pt,

respectively.

Negative Depth Penalty LnegD aims to penalize negative values in the remapped depth.

Although depth predictions have arbitrary scale and offset, they should have all positive

values, meaning that a fragment of geometry associated with a pixel should never move

behind the camera. Mathematically, we adopt a hinge loss function:

LnegD =
∑

max{0,−Do
s}. (4.6)

Our final objective function is written as: l = λ1Lphoto + λ2Lfeat + λ3LnegD, where {λj}

are weights. The convergence criteria and the average running time are discussed in the

75

supplemental material.

Pixel Importance Weight Map W. When computing the photometric loss or feature

correspondence loss, we assign weights to each pixel to replace uniform weighting. It

encourages our optimization to better align the warped source with the target image both

locally and globally.

The first type of weighting strategy is hole-distance weighting Wh. We encourage the

optimization to focus on the regions close to the hole boundary since those pixels are more

important for filling the hole regions. To achieve this, we apply the distance transform to the

hole image and obtain a distance map Mh, where each pixel records the Euclidean distance

to the closest boundary pixel of the hole Mh. We compute the weight at each pixel using

a Gaussian function Wh = exp(−M2
h/2σ

2), where σ is a hyperparameter that adjusts how

weights change w.r.t distance to the hole boundary.

The second type is the edge-based weighting We. This is because high-gradient edge regions

are more salient while checking the alignment quality so we intend to give strong edges larger

weights. We compute a multi-scale Canny edge map by first applying Gaussian blur on It with

N different kernel sizes, running the Canny edge detector [30], and dilating each edge to get

{e1, e2, · · · , eN}. Our pixel-level edge-based weight map becomes We =
∑N

k=1 ek/
∑

p ek(p),

where the inner sum is over spatial coordinates. Our overall weighting map is W = Wh⊙We.

4.3.3 Rendering and Postprocessing Stage

Mesh Rendering. After optimization, we find To
rel, so, and bo, the camera relative pose and

depth map scale and offset, respectively. However, computing Is→t using depth reprojection

always has some gaps between valid pixels due to it relying on a forward warping for efficiency

in the inner loop of the optimization. One way to overcome this problem is interpolation

76

but that has two disadvantages. First, the reprojected image is sparse and for regions with

multiple layers of depth, pixels for a far-away depth layer might splat between pixels of

a closer depth layer, which could result in interpolations that do not fully remove hidden

surfaces. Additionally, interpolation cannot distinguish between holes due to disoccluded

regions or simple gaps between the pixels due to the forward warping.

To address the above problems, we choose to render a textured mesh to get the final Is→t.

We first build a triangle mesh with a regular grid from the source view. The mesh vertices

are computed by projecting the optimized depth Do
s to the 3D space and the texture is the

RGB colors of the source image. After obtaining the mesh, we drop the edges around depth

discontinuities. We adopt a simplified version of the footprint algorithm [248] by comparing

the depth values between connected vertices. We drop the edge between two vertices vi and vj

if 2|d(vi)−d(vj)|
d(vi)+d(vj)

> ϵedge, where d(vi) is the depth value of the vertex vi and ϵedge is a predefined

threshold. After building the triangle mesh, we render the target view with To
rel. Note that

we also normalize the mesh to the unit size before rendering. The textured mesh densely fills

in pixels and removes hidden surfaces. It also allows us to use the rendered alpha channel

to find pixels where there is no ray intersection with the mesh, which represent disoccluded

regions near depth discontinuities or regions outside the photo: these are later filled by single

image inpainting. We use PyTorch3D [193] as our renderer.

Refinement and Merging. With the rendered image, we apply the color-spatial transforma-

tion (CST) module from TransFill to further improve any small residual spatial misalignments

and correct color and exposure differences. Lastly, we merge the output from CST with

results from the single image inpainting model as in TransFill to handle the disocclusions

and regions outside the photo.

77

Figure 4.3: Qualitative comparison of GeoFill against other baselines on user-provided images (top
2 rows), RealEstate10K (mid 2 rows), and MannequinChallenge dataset (last two rows).

4.4 Experiments

Datasets. No large-scale image-based dataset for reference-based inpainting is available.

So we follow TransFill to randomly sample multiple image pairs from video-based datasets

because it is easier to simulate user behaviours and analyze the target-source difference

(or camera view changes). During evaluation we only use one single reference frame. This

is different from what video inpainting works did. We follow DeepFillv2 [271] to generate

random free-form brush stroke masks and evaluate GeoFill and other baselines on the following

datasets.

RealEstate10K [297]: It contains a diverse collection of YouTube video sequences shot from a

moving camera for both indoor and outdoor scenes. Each video clip contains a variety of

views of the same scene. We randomly sample 500 videos and select one pair of images in

each video sequence with a specific frame difference (FD). Specifically, we sample FD=25,

50, and 75 to build three different sets with a resolution of 720× 1280 while automatically

78

filtering out image pairs without enough overlapping content inside the hole by checking

the number of matching sparse features. Note that our filtering mechanism is only for the

purpose of simulating user behaviors and removing non-useful image pairs. In practice, we

believe users could simply check overlap between photos by visual inspection.

MannequinChallenge [143]: This is a challenging dataset with video sequences shot from

a hand-held camera freely roaming in a scene of people with frozen poses. This dataset

contains more than 170K frames and corresponding camera poses derived from about 2k

YouTube videos. The camera motion in this dataset is more extreme and scene complexity is

much higher due to diverse frozen human poses and rich background objects. We reduce the

sampling FD to ensure enough overlap between image pairs. Similar to the previous dataset,

we randomly sample 3 subsets with FD=10, 20, 30, where each contains 500 image pairs of

720× 1280.

Real User-provided Images : We also evaluate our approach on the real user-provided images

like TransFill to validate the generalization ability and practicability.

Baselines. In addition to TransFill, which is directly related to our work, we compare our

approach against several different types of baselines to evaluate final inpainting performance.

The first type is state-of-the-art video completion models. OPN [174] achieves high quality

inpainting results with spatio-temporal attention. STTN [274] proposes to optimize a

spatial-temporal adversarial loss function. In addition, we compare against state-of-the-art

single-image inpainting methods including ProFill [275] and CoModGAN [283]. We use their

off-the-shelf pretrained weights directly since they are both trained on more diverse scenes in

Places2 [294] than RealEstate10K and have strong generalization ability. Lastly, we compare

a two-view SfM based approach [285] — which we refer to as JointDP — by warping the

source image with the jointly estimated relative pose and depth using dense correspondence.

To ensure fairness in the comparison, we use the same depth predictor and rendering process

as in GeoFill while keeping all other settings the same as in the original work.

79

Table 4.1: Quantitative comparisons of GeoFill against other baselines on the RealEstate10K
dataset.

Model FD=25 FD=50 FD=75

JointDP [285] 22.46 / 0.9469 / 0.1011 21.76 / 0.9457 / 0.1063 20.89 / 0.9423 / 0.1122
OPN [174] 28.41 / 0.9684 / 0.0525 27.80 / 0.9669 / 0.0570 26.91 / 0.9634 / 0.0624
STTN [274] 28.83 / 0.9696 / 0.0710 28.26 / 0.9697 / 0.0721 27.59 / 0.9680 / 0.0751
ProFill [275] 27.45 / 0.9642 / 0.0775 27.67 / 0.9654 / 0.0755 27.37 / 0.9639 / 0.0768
CoModGAN [283] 26.02 / 0.9594 / 0.0703 26.14 / 0.9607 / 0.0686 25.88 / 0.9596 / 0.0697
TransFill [299] 32.03 / 0.9764 / 0.0461 30.64 / 0.9732 / 0.0540 29.24 / 0.9694 / 0.0608
GeoFill (Ours) 32.57 / 0.9775 / 0.0467 31.47 / 0.9748 / 0.0525 30.43 / 0.9717 / 0.0581

Implementation Details. We follow TransFill to extract SIFT features [158] and feed them

into OANet [276] to reject outliers and establish correspondences. This combination was

already proven to be quite robust. A better matching strategy could always be adopted to

further improve results while leaving the rest of our framework intact. Our pretrained monoc-

ular depth predictor is DPT [190]. No ground-truth camera intrinsic information is required

to run our approach. We use fixed camera intrinsic parameters for all images by setting focal

length to 750 and principal point to the image center. We use the pretrained CST module

from TransFill [299] without finetuning. This module generalizes well to MannequinChallenge

and user provided images. Our pipeline is implemented with PyTorch [181] and we choose

DiffGrad [58] as our optimizer due to its fast convergence speed. In the optimization step, we

use a constant learning rate 10−2 and the maximum number of iteration is set to 104. The

loss weights λ1, λ2, and λ3 are 10, 10, 0.5, respectively. In the coarse-to-fine optimization

strategy, the number of pyramid levels is 4 and the maximum number of cumulative iterations

at each level from coarse to fine are 4× 103, 7× 103, 9× 103, 104. We set the σ in hole-based

weighting to 192 pixels. In edge-based weight, we compute 4 different Canny edge maps and

dilate each of them with a kernel size equal to 4. In mesh rendering, the edge threshold ϵedge

is 4× 10−2.

80

Table 4.2: Quantitative comparisons of GeoFill against other baselines on the MannequinChallenge
dataset.

Model FD=10 FD=20 FD=30

JointDP [285] 20.13 / 0.9346 / 0.1087 19.52 / 0.9290 / 0.1195 19.38 / 0.9315 / 0.1177
OPN [174] 25.63 / 0.9628 / 0.0605 24.92 / 0.9584 / 0.0698 24.84 / 0.9591 / 0.0702
STTN [274] 25.60 / 0.9623 / 0.0803 25.09 / 0.9602 / 0.0865 24.94 / 0.9613 / 0.0844
ProFill [275] 25.04 / 0.9589 / 0.0808 25.02 / 0.9582 / 0.0836 25.22 / 0.9599 / 0.0810
CoModGAN [283] 23.39 / 0.9504 / 0.0770 23.14 / 0.9486 / 0.0808 23.36 / 0.9503 / 0.0791
TransFill [299] 28.01 / 0.9680 / 0.0569 26.56 / 0.9628 / 0.0688 26.17 / 0.9632 / 0.0701
GeoFill (Ours) 28.85 / 0.9702 / 0.0553 27.72 / 0.9658 / 0.0652 27.44 / 0.9664 / 0.0665

4.4.1 Quantitative Results

The quantitative results comparing our approach with other baselines are shown in Table 4.1

and 4.2. We report the PSNR, SSIM and LPIPS[279] on the RealEstate10K and the

MannequinChallenge datasets. Single image inpainting models are not competitive enough for

image pairs with larger scale differences and wider baselines. Video inpainting approaches also

show bad performance due to the lack of dense temporal information and multiple reference

frames. JointDP is based on optical flow and is not able to accurately estimate parameters

like the camera pose needed to correctly align the image pairs. Our method demonstrates

superiority over TransFill because we have a better understanding of the 3D structures of the

scenes, and better leverage the depth estimation. Note that GeoFill has higher performance

gain over TransFill on MannequinChallenge than on RealEstate10K dataset. TransFill relies

on the fusion module to handle multiple homographies for the final hole filling and it is less

robust on the images different from the training data. In contrast, GeoFill only has a single

proposal to merge during inpainting, which also greatly reduces blending artifacts that arise

from multiple proposals. Therefore, our GeoFill is robust and stable on image pairs with

even larger frame differences.

81

4.4.2 Qualitative Results

Figure 4.3 shows the visual comparisons with other baseline algorithms on the user-provided

images, the RealEstate10K and the MannequinChallenge dataset. JointDP utilizes estimated

optical flow for the initial matching, thus the results fail to obtain accurate depth and

camera pose if the baseline of the image pair is wide. The contents inside the hole are often

misaligned with the target image. The original OPN uses five reference frames to achieve

a more efficient non-local matching among frames, but a single reference frame makes the

results less visually-pleasing. ProFill is not able to take advantage of the reference image

contents, and TransFill usually has blending artifacts or content misalignment issues when

objects inside the hole regions occupy multiple depth planes. However, GeoFill avoids the

blending artifacts by using one single proposal, and aligns the objects well by understanding

the camera poses and reconstructing the 3D scene from two images.

4.4.3 Ablation Study

In this section, we first study how different components in the joint optimization step

contribute the final results. We demonstrate the importance of the joint optimization module

by comparing both inpainting performance and the accuracy of optimized parameters before

and after the optimization. Second, we compare the performance of TransFill and GeoFill on

cases with larger holes and their alignment accuracy without CST. Additionally, We show

the inpainting results of GeoFills under various scenarios, such as different focal lengths and

appearance changes from camera movement. We also show a per-sample improvement study

and a user study to further analyze the performance gain. Lastly, we provide additional

visualizations of GeoFill and some failure cases of the model. All experiment results in the

following section are reported for the RealEstate10K FD=50 subset unless specified.

82

Table 4.3: Ablations on the objective functions in the joint optimization stage of GeoFill.

Lphoto Lfeat LnegD PSNR↑ SSIM↑ LPIPS↓

✓ ✓ ✓ 31.47 0.9748 0.0525
✗ ✓ ✓ 31.19 0.9742 0.0533
✓ ✗ ✓ 30.88 0.9734 0.0554
✓ ✓ ✗ 31.23 0.9742 0.0532

Table 4.4: Ablations on the pixel importance weight map W.

Hole Wh Edge We PSNR↑ SSIM↑ LPIPS↓

✓ ✓ 31.47 0.9748 0.0525
✓ ✗ 31.20 0.9740 0.0534
✗ ✓ 31.12 0.9739 0.0539
✗ ✗ 30.95 0.9734 0.0552

Analysis of objective functions. We claim that all the objective functions used in

the optimization process contribute to a higher perceptual and reconstruction quality as

shown in Table 4.3. Comparing GeoFill without photometric loss against without feature

correspondence loss, the feature loss contributes to the performance the most. We find that

photometric loss by itself may get distracted by local textures and fall into local minima,

such that it achieves lower RGB errors on average but ignores the global structure. However,

using the photometric loss does help improve alignments. Lastly, GeoFill without negative

depth penalty still has a performance drop, suggesting negative depth penalty is able to

prevent corner cases where depth scale or offset estimates are non-robust.

Analysis of pixel importance weight map. We present results of GeoFill with different

combinations of pixel importance weight maps in the optimization in Table 4.4. This suggests

that hole-distance weighting Wh which puts higher weights around the hole lead to better

local alignment around the hole. Edge-based weighting We also helped by matching strong

edges within the image. Using a uniform weighting map leads to the worst performance,

indicating the effectiveness of the weighting maps.

83

Inpainting performance w/ and w/o the joint optimization. We show the importance

of our optimization module by comparing the performance of GeoFill with initial estimated

parameters and optimized parameters. As shown in Table 4.5, GeoFill with optimized

parameters has substantially better performance. Initial parameters are computed from SIFT

and pretrained models such as OANet, which can make erroneous predictions, especially

for image pairs with holes. Experimental results demonstrate our optimization module

successfully mitigates such errors and improves the inpainting performance.

Depth and pose accuracy before and after the joint optimization. In this section,

we further demonstrate the effectiveness of our joint optimization step by measuring the

depth and pose accuracy before and after the optimization. Since both RealEstate10K and

MannequinChallenge do not have ground-truth labels, we choose the ScanNet [44] dataset

which comes with ground-truth camera poses and depth maps. We randomly sampled 75

pairs of images with approximately 30 frame difference. We generate random holes in the

same manner as described before. Each image pair comes from a unique scene in the dataset.

Note that ScanNet includes images with heavy motion blur, which we manually filtered out.

We evaluate depth and relative camera pose separately by providing the ground-truth for one

of these (depth or camera pose) when evaluating the accuracy of the other one. For example,

when evaluating the accuracy of depth maps, we first follow the same pipeline described in

this chapter. Then, instead of estimating the relative pose, we provide the ground-truth

camera pose and evaluate the accuracy of the depth map determined by our pipeline before

and after the optimization. Note that we only optimize scale and offset when evaluating

depth accuracy. A similar analogy applies when evaluating the accuracy of camera poses:

we provide the ground truth depth map to our pipeline and then evaluate the accuracy of

the relative pose before and after optimization. For pose evaluation, we report the geodesic

errors [34] for both rotations and translation directions. For depth evaluation, we follow

the commonly adopted metrics used in the literature [63, 71]. As shown in Table 4.6 and

Table 4.7, both depth and pose errors are significantly reduced after the optimization module,

84

Table 4.5: Quantitative comparison of our method with initially estimated parameters and optimized
parameters.

Model PSNR↑ SSIM↑ LPIPS↓

GeoFill (optim) 31.47 0.9748 0.0525
GeoFill (init) 30.66 0.9719 0.0548

Table 4.6: Relative camera pose evaluation of initial guess and our optimized results, where R and
t represent the rotation and translation, respectively.

R ↓ t ↓
mean (◦) med (◦) mean (◦) med (◦)

GeoFill (optim) 1.588 1.062 3.688 3.457
GeoFill (init) 7.378 7.807 11.861 11.096

which demonstrates the ability of the optimization module to find more accurate depth and

poses in our challenging case where the images have holes.

Performance w.r.t hole size. This ablation study aims to examine the performance of

our approach against TransFill under more difficult settings. As the hole becomes larger,

inevitably we have fewer matching points, which makes Is→t hard to align with It. We

generate holes with different average stroke widths ranging from 90 to 210 pixels. As shown

in Figure 4.4, GeoFill has an increasing performance gain over TransFill until the hole average

stroke width reaches 180 pixels. As the hole size grows, the complexity of the content in the

hole also increases. In other words, we are more likely to encounter a growing number of

depth layers, a more complicated objects layout, and a higher chance of occlusions due to

camera translation in a larger hole. These problems are harder for homography-based models,

therefore, GeoFill has a greater advantage when the hole is larger. The drop in performance

gain at the end of the curve can be because there are not enough matching points for GeoFill

to infer an accurate 3D structure. We also provide visual comparisons to better understand

the performance boost for larger holes. We simulate larger holes by generating the same hole

shape with larger stroke width. As shown in Fig. 4.5, GeoFill has a robust performance while

TransFill has ghosting artifacts and misalignments as the hole grows larger.

85

Table 4.7: Depth evaluation of our initial guess and optimized results. The evaluation metrics
include absolute relative difference (Absr), squared relative difference (Sqr), root mean squared log
error (RMS-log), and accuracy with a relative error threshold of δk < 1.25k, k = 1, 2.

Models Absr ↓ Sqr ↓ RMS-log↓ δ1 ↑ δ2 ↑

GeoFill (optim) .258 .233 .302 .683 .851
GeoFill (init) .372 .766 .403 .609 .788

Figure 4.4: Performance gain of our method compared to TransFill w.r.t the average hole size.
GeoFill has a greater advantage when the hole is larger.

Initial alignment comparisons against TransFill. We adopted the CST module from

TransFill to adjust auto exposure, lighting conditions, and potential remaining misalignments.

In this experiment, we analyze the performance of using the aligned images directly, e.g.

without using CST for both models. We retain the multiple homographies used by TransFill,

drop the CST module, and keep the merging module so TransFill can merge its different

regions. Table 4.8 shows that GeoFill maintains better performance, dropping 2.12 in PSNR,

while TransFill drops 4.62 without CST. We visually compare the quality of our single

proposal to the merged proposal from TransFill without the CST on RealEstate10K dataset.

As shown in Fig. 4.6, the single proposal from GeoFill is significantly more accurate than

merged heuristic proposals from TransFill, demonstrating the superiority of our approach over

TransFill. Additionally, we also show the quantitative comparisons of GeoFill and TransFill

without the CST module on the MannequinChallenge dataset. As shown in Table 4.9, we find

GeoFill without the CST module has a huge advantage over TransFill merged homographies.

This experimentally validates the proposal from GeoFill is much more accurate than TransFill

86

Figure 4.5: Qualitative comparisons of our approach against TransFill with different hole sizes.
Please zoom in to see that ours looks good but there are broken structures, ghosting, and distortion
artifacts in TransFill.

by better leveraging the depth.

Performance w.r.t intrinsic parameters. GeoFill handles incoming image pairs using

fixed camera intrinsic parameters instead of explicitly knowing the ground-truth camera

intrinsic parameters. In the previous experiments, we use fixed camera intrinsic parameters

by setting the focal length of all images to 750 pixels and the principal point to the center of

the image. It is intuitive to set the principal point to the center of the images with unknown

intrinsic parameters, therefore, we focus on studying the effect of focal lengths. We compare

the performance of GeoFill with the camera focal lengths of 600, 750, 900, 1050, and 1200

pixels. As shown in Fig. 4.7, GeoFill with different focal lengths has very slight differences

87

Table 4.8: Ablations on Initial alignment comparisons of our method compared to TransFill without
the CST Module.

Model PSNR↑ SSIM↑ LPIPS↓

GeoFill 31.47 0.9748 0.0525
GeoFill (no CST) 29.35 0.9688 0.0579
TransFill 30.64 0.9732 0.0540
TransFill (no CST) 26.03 0.9598 0.0742

Table 4.9: Initial alignment comparisons of our method compared to TransFill without the CST
Module on MannequinChallenge dataset (FD=10).

Model PSNR↑ SSIM↑ LPIPS↓

GeoFill 28.85 0.9702 0.0553
GeoFill (no CST) 26.84 0.9626 0.0615
TransFill 28.01 0.9680 0.0569
TransFill (no CST) 24.04 0.9526 0.0760

in terms of PSNR. There is a slight trend that the performance drops as the focal length

increases. We believe this indicates that the ground-truth focal length is close to 600 and

higher focal lengths make the optimization have a harder time finding improved relative

poses. Nevertheless, GeoFill can still adapt to different focal lengths by jointly optimizing

depth scale, offset, and relative pose, therefore, it still can render similar images across a

variety of focal lengths.

Handling appearance changes from camera movement. As we stated in the previous

sections, we focus on the common scenario of capturing photos with the same camera freely

moving around. However, there are potential appearance changes of the same parts of the

scene due to the camera movement, for example, changes due to automatic exposure or

automatic white balance between source and target images. This is a common yet non-trivial

challenge when applying GeoFill in real-world applications. In this section, we show some

visual examples of image pairs with appearance changes in the dataset. As shown in Figure 4.8,

GeoFill still inpaints plausible results even when the appearance of the same part of the scene

is different between source and target images.

88

Figure 4.6: Visual comparisons of GeoFill and TransFill without the CST module.

Per-sample improvement study. This ablation is designed to break down the numbers

shown in Table 4.1 and 4.2 by comparing the performance of GeoFill against TransFill over

each individual sample. We sort and plot the per-image PSNR difference over TransFill, shown

in Figure 4.9. Specifically, PSNR difference is computed as GeoFill PSNR − TransFill PSNR,

therefore a positive PSNR gain indicates GeoFill is better. GeoFill improves performance on

the majority of samples, specifically for around 75.4% of the entire subset. Moreover, the

PSNR gains when GeoFill outperforms are much greater: up to 3 dB, as opposed to the

PSNR losses when TransFill outperforms.

User study. To better evaluate the performance of GeoFill against other baselines, we

conduct a user study via Amazon Mechanical Turk (AMT). We compare our method against

OPN, ProFill, and TransFill by showing users image pairs with binary choice questions. The

89

Figure 4.7: Visual plots showing the performance of GeoFill with different focal lengths. PSNR diff
is computed by using GeoFill with new focal length subtract GeoFill with focal length equals to 750.

Table 4.10: User study results of GeoFill against ProFill, OPN, and TransFill.

Filtered Non-Filtered

Model PR p-value PR p-value

ProFill 100% p < 10−6 96.25% p < 10−6

OPN 97.37% p < 10−6 95.00% p < 10−6

TransFill 70.90% p < 2× 10−3 68.13% p < 2× 10−3

users are requested to choose the inpainting results that look more realistic and faithful. To

improve the quality of collected data, we adopt a qualification test with trivial questions to

filter noisy results. For each method pair, we randomly sampled 80 examples in RealEstate10K

dataset with FD=50, and each example was evaluated by 7 independent users. We present

two approaches to computing the preference rate. The first one is the filtered approach, in

which we filter the responses to retain only those where one method is “preferred" if 6 or more

users select it. The filtering helps suppress noise in the responses of Mechanical Turk workers,

whose work quality can vary. The second one is the non-filtered approach where we retain

all responses and choose the method as “preferred" where a simple majority of 4 or more

users select it. We reported GeoFill’s Preference Rate (PR) in Table 4.10. GeoFill has much

higher preference rates against OPN and ProFill. Compared against TransFill, we receive

a PR around 70% on filtered and non-filtered approaches. TransFill is still very robust on

small holes and relatively small camera motions in the randomly sampled data. Therefore,

GeoFill is favored by users over TransFill but less strongly than in the other comparisons.

90

Figure 4.8: Qualitative results of GeoFill handling some common appearance changes such as in
white balance and exposure due to camera movement.

We performed a one sample permutation t test with 106 simulations using the null hypothesis

that each pair are preferred equally by users: the p-values are all sufficiently small that the

preference for our method is statistically significant.

Failure cases. We show some failure cases of GeoFill under extreme conditions. Fig. 4.10

shows three common failure cases of GeoFill. The image pair on the left contains transparent

surfaces in the images. These objects often cause monocular depth estimators to fail and

can lead to bad optimization results. In the second failure case, the drastic changes in the

lighting environment affect the feature correspondence matching and depth prediction, which

makes the final result from GeoFill less accurate. In the last case, dynamic objects, e.g.,

pedestrians, make our optimization module estimate inaccurate parameters. We discuss in

the last section of this chapter ways that future work might address these issues.

91

Figure 4.9: Per-sample performance gain of ours compared to TransFill. The blue vertical line
separates positive and negative PSNR gain.

Additional visual results. We include additional qualitative comparisons of GeoFill against

other baselines in Fig. 4.11. Additionally, we also show the inpainting performance of GeoFill

on user-provided images, RealEstate10K, and MannequinChallenge dataset in Fig. 4.12.

4.5 Discussion, Limitations, and Conclusion

Limitations and Future Work. GeoFill inpaints the hole with one image pair with no

auxiliary pose or depth information from sensors, therefore, our pipeline may not work well

when the quality of feature matching points is poor, e.g ., matching points are inaccurate

or too few. Under these cases, our relative pose and triangulated points can be inaccurate,

which may be hard for optimization to correct. Additionally, our pipeline is also sensitive

to depth prediction quality: artifacts such as blurry depth discontinuities or wrong order

of depth planes can lead to potential bad inpainting results. Future work might mitigate

these problems by jointly reasoning about monocular depth and the stereo cues established

by triangulation. In the optimization, we used a 3D reprojection based on forward warping

because it is much faster than rendering a triangle mesh even though it does not fully remove

hidden surfaces in the rare cases where a mesh occludes itself: this could be addressed in

future work by testing and pruning those splatted points. GeoFill utilizes the CST module

92

to adjust auto exposure and lighting condition changes, which still suffers when the scene

environment changes drastically, e.g ., day to night, spring to fall. Future work could better

address these by incorporating specialized lighting estimation (e.g ., [277]) and relighting

modules. One last limitation of GeoFill is that our pipeline only handles static scenes. Any

dynamic objects, e.g ., walking people or moving cars, not in the hole could lead to bad

relative pose estimation and our optimization may cause misalignments under such cases.

A simple solution would be masking out objects that are likely to move such as people and

cars, but how to correctly identify all moving objects is still an open question.

93

Figure 4.10: Visual examples of failure cases of GeoFill.

94

Figure 4.11: Qualitatively comparison of GeoFill against other baselines on user-provided images
(top 3 rows), RealEstate10K (mid 3 rows), and MannequinChallenge dataset (last 3 rows).

95

Figure 4.12: Visual illustration of inpaiting performance of GeoFill on user-provided images,
RealEstate10K, and MannequinChallenge dataset.

96

Chapter 5

Instance tracking in 3D scenes with

RGBD egocentric videos

Egocentric sensors such as AR/VR devices capture human-object interactions and offer

the potential to provide task-assistance by recalling 3D locations of objects of interest in

the surrounding environment. This capability requires instance tracking in real-world 3D

scenes from egocentric videos (IT3DEgo). We explore this problem by first introducing a

new benchmark dataset, consisting of RGB and depth videos, per-frame camera pose, and

instance-level annotations in both 2D camera and 3D world coordinates. We present an

evaluation protocol which evaluates tracking performance in 3D coordinates with two settings

for enrolling instances to track: (1) single-view online enrollment where an instance is specified

on-the-fly based on the human wearer’s interactions. and (2) multi-view pre-enrollment where

images of an instance to be tracked are stored in memory ahead of time. To address IT3DEgo,

we first re-purpose methods from relevant areas, e.g., single object tracking (SOT) — running

SOT methods to track instances in 2D frames and lifting them to 3D using camera pose

and depth. We also present a simple method that leverages pretrained segmentation and

detection models to generate proposals from RGB frames and match proposals with enrolled

97

Figure 5.1: Motivation for the proposed IT3DEgo benchmark task. We envision the
real-world application of an assistive agent that continuously tracks enrolled object instances in
3D and can provide navigation guidance to users to retrieve object instances at any time. Tracked
objects are either enrolled online (first row in the library) where objects of interest are identified
automatically based on user interactions or pre-enrolled (bottom four rows in the library), where
task-relevant objects are modeled from a collection of photos taken from different views. The former
setup comes with additional in-context sensor information, such as camera pose and depth while the
latter features richer visual information.

instance images. Our experiments show that our method (with no finetuning) significantly

outperforms SOT-based approaches in the egocentric setting. We conclude by arguing that

the problem of egocentric instance tracking is made easier by leveraging camera pose and

using a 3D allocentric (world) coordinate representation.

5.1 Background

Egocentric video obtained from AR/VR devices provides a unique perspective that captures

the interaction between the human wearer and the surrounding 3D environment. With the

rapid development of AR/VR hardware, there is increasing interest in building assistive

agents [170, 226, 252, 212], that track the user’s environment and provide contextual guidance

on the location of objects of interest (illustrated in Figure 5.1). We argue that developing

such an agent requires solving the largely unexplored problem of tracking object instances in

3D from egocentric video.

98

Why this problem? First, tracking in egocentric video is a novel and underexplored

problem, compared to the well-studied tracking from fixed, third-person viewpoints. More

broadly, egocentric visual understanding tasks, such as human pose estimation and trajectory

prediction [20, 242, 60] are a growing area of interest. Second, tracking in 3D scenes is essential

in robotics, autonomous driving, and AR/VR applications. Compared to the 2D counterpart,

tracking objects in 3D is crucial for an agent to not only understand the surrounding 3D

environment but also to determine precise locations for planning and navigation. Combining

the two perspectives above, there is a broader question of what information processing

constraints govern how the human visual system integrates egocentric sensory data into a

seemingly allocentric perception of the world around us.

Challenges and new opportunities. (1) Egocentric video often features motion blur,

hand occlusions, and frequent object disappearances and reappearances which make the 2D

tracking problem very challenging from pure visual signals [60, 227]. Tracking in 3D offers an

opportunity to fuse additional sensor streams, such as depth and camera pose, to improve

accuracy. Unlike 2D tracking with a moving camera, 3D tracking in world coordinates allows

the model to leverage the unique prior information – an object should remain still unless being

interacted with the human operator. (2) For the downstream application of task guidance,

we propose exploring novel approaches to identify or enroll object instances to be tracked.

One approach is automatically enrolling objects with which the user interacts or identifies

via hand gestures such as pointing. Alternatively, object instances relevant to a particular

task could be pre-enrolled based on a collection of images that specify the visual appearance

of the object in advance.

Contribution 1: Dataset collection. To our best knowledge, no existing dataset supports

exploring the problem of IT3DEgo (c.f. Table 5.1). The recent Ego4D dataset [88] highlights

some of these challenges. However, the Ego4D dataset only provides RGB frames1 and
1Ego4D does provide a sparse set of camera poses (less than 15% of frames) estimated with COLMAP

and predicted depth maps using monocular depth estimation.

99

sparse annotations (may miss potential object location changes), making it unsuitable to

fully explore the problem. We collect a new benchmark dataset with HoloLens2, including

an RGB camera, a depth sensor, four grayscale cameras, per-frame camera pose and coarse

scene geometry as a mesh. We describe the details of dataset statistics, capture procedures,

and annotations in Section 5.3.2.

Contribution 2: Benchmarking protocol. We propose a new IT3DEgo Benchmark for

studying instance tracking in 3D scenes from egocentric videos with two settings for how

objects are selected for tracking. (1) Tracking with single-view online enrollment (SVOE)

studies the scenario where object instances of interest are defined on-the-fly, i.e., objects are

specified with a 2D bounding box in the frame where they first become fully visible to the

user. (2) Tracking with multi-view pre-enrollment (MVPE) assumes objects of interest are

specified by multiple photos of the object of interest from different viewpoints before the

tracking system starts. As detailed in Section 5.3.1, we evaluate performance with standard

precision/recall metrics as well as geometric L2 and angular errors used in the Ego4D VQ3D

evaluation [88].

Contribution 3: Technical explorations. Since our benchmark task is novel and

underexplored in the literature, it is natural to re-purpose and evaluate existing approaches

(e.g., SOT methods). We also explore an alternative piecewise constant velocity method

that utilizes the Kalman filter [112] with instance proposals from SAM [118] and encoded

by DINOv2 [175], resulting in drastic performance improvement over state-of-the-art SOT

methods. Section 5.4 and 5.5 provide details regarding baselines and benchmark results,

respectively. From the experimental results, we provide the following insights: Tracking

object instances in egocentric videos is easier in 3D scenes leveraging camera poses and

depth maps. Intuitively, an object not being interacted with has the same 3D position in a

predefined world coordinate but the positions in 2D frames can change drastically due to

the head motion. As a result, existing state-of-the-art 2D SOT approaches perform poorly

100

Table 5.1: Comparisons of egocentric datasets that explore tracking-related problem.
Existing egocentric datasets only explore the tracking problem in 2D or predicting discrete 3D
locations. Some mention the tracking problem in 3D but only consider limited sensor data (RGB)
or synthetic environments. Our benchmark dataset supports the study of instance tracking in 3D
real-world scenarios (RWS in the table) from egocentric videos.

Dataset Modality Device Avg. Length Annot. FPS RWS Camera Trajectory 3D Tracking Year

TREK-150 [59] RGB GoPro 10s 60 ✓ Natural ✗ 2021
EK-VISOR [45] RGB GoPro 12s 0.9 ✓ Natural ✗ 2022
Ego4D-VQ3D [88] RGB GoPro - - ✓ Natural ✗ 2022
EMQA [48] RGB-D+IMU - - - ✗ Simulated ✗ 2022
EgoPAT3D [142] RGB-D+IMU Kinect 4min 30 ✗ Object-Centric ✗ 2022
DigitalTwin [178] RGB-D+IMU Aria 2min - ✗ Natural ✓ 2022
EgoTrack [227] RGB GoPro 6min 5 ✓ Natural ✗ 2022

Ours RGB-D+IMU HoloLens >5min 6 ✓ Natural ✓ 2023

on egocentric data. Future work should address the problem of re-identifying objects by

leveraging the camera poses and accurately identifying and updating object motion changes.

5.2 Related Work

Egocentric video datasets have been developed to study different problems over the last

decade [135, 185, 67, 223, 45, 88]. Traditionally, egocentric video understanding has focused on

tasks such as activity recognition [199, 187, 113, 186], human-object interactions [46, 150, 151],

and inferring the camera wearer’s body pose [196, 111, 169, 242]. Recently, more tasks have

emerged due to the increasing interest in egocentric videos, such as action anticipation [195,

72, 68], privacy protection [198, 53, 229], and estimating social interactions [268, 139, 173].

However, object tracking in egocentric videos is largely underexplored in the literature until

the introduction of recent datasets[60, 227]. These existing tracking datasets only support

2D tracking, which motivates us to collect and setup a new benchmark to evaluate real-world

3D instance tracking.

Tracking in 3D scenes aims to identify objects of interest in 3D space from a sequence

of frames. The prediction output format depends on the downstream tasks, including 3D

101

bounding boxes [115, 247], 3D object centers [298, 266], or 6DOF poses [76, 4]. State-of-the

art 3D tracking models [295, 153, 37] have focused on well-established third-person perspective

benchmark datasets [79, 29, 44]. The recent large-scale Ego4D dataset starts to address the

problem of querying the 3D positions of objects from a first-person perspective. However,

the raw sensor data in Ego4D only includes RGB images and no other 3D information,

such as depth and camera poses [288, 287]. However, contemporary AR/VR headsets

come with additional cameras, depth, and IMU sensors that allow for richer geometric

reasoning [236, 178]. Therefore, we believe it is realistic to leverage diverse sensor streams

and explore the egocentric tracking problem in 3D. Our benchmark dataset thus includes

multiple raw sensors and derived data streams to support the study tracking in 3D scenes

with modern hardware platforms.

Object instance detection and tracking is a long-standing problem in computer vision

and robotics [81, 61, 103, 241, 210, 208]. Instead of predicting labels from a predefined

set of object categories, instance-level predictions treat every object instance as a separate

category. Instance-level tracking aims to locate given object instances in a sequence of frames,

commonly using a tracking-by-detection paradigm. One common formulation is person

re-identification [293, 262], which aims to track and associate individual people as they enter

and leave multiple cameras’ fields of view. Our setting is closely related but is dominated by

the motion of the (egocentric) camera rather than the dynamics of object motion.

5.3 IT3DEgo: Protocol and Dataset

The problem of IT3DEgo is motivated by real-world assistive agents running on AR/VR

devices. Given an object instance specified by the end user, developed models are required to

track it in the 3D environment, i.e., recording its 3D location over time (cf. Fig. 5.2). In this

section, we introduce our benchmarking protocol and dataset.

102

Figure 5.2: Illustration of input and output of our benchmark task. Given a raw RGB-D
video sequence with camera poses and object instances of interest, i.e., either by online enrollment
(SVOE) or pre-enrollment (MVPE), the goal of our benchmark task is to output the object instance
3D centers in a predefined world coordinate at each timestamp. Please check Section 5.3.1 for more
details.

5.3.1 Benchmarking Protocol

Because object instances of interest are naturally diverse and may fall outside of the vocabulary

of existing detectors, we set up a benchmarking protocol that focuses on evaluation without

a separate training set. In other words, models should be pretrained on other data sources

and cannot see objects in our dataset. This aligns with the contemporary foundation models

(e.g., CLIP [188] and SAM [118]) pretrained on open-world data.

Instances enrollment. We consider two distinct setups to specify object instances of interest.

The first is single-view online enrollment (SVOE), similar to single object tracking (SOT)

where an object is specified on-the-fly by the end users. For example, the user can specify an

object of interest by interacting or pointing to it, after which the system should track it in the

3D world. The second is multi-view pre-enrollment (MVPE), which defines (or pre-enrolls)

concerned objects with a set of object-centric images captured from multiple angles. The two

setups present different challenges. SVOE provides a bounding box of the object (similar

to specifying an object in SOT), but the visual quality is generally lower in resolution as

the objects can be far from the camera. MVPE provides 25 high-resolution (2124×2832)

object-centric images of the instances captured from different angles. However, the object

103

instance is captured under different lighting conditions than the tracking environment, and

can be posed differently (e.g., keys can be deformed over time).

Evaluation protocols. Following the literature on object tracking and detection, we use

the metrics below in our benchmarking protocol.

• Precision and recall at different L2 distance thresholds. Given N specific thresholds

τi with i ∈ {1, 2, ..N}, specifically 0.25, 0.5, 0.75, 1.0, and 1.5 meters, a ground-truth

object location ogt ∈ R3 and a predicted location opred ∈ R3, we count a true positive

(TPi) when ||ogt − opred||2 ≤ τi. At each timestamp, each ground-truth is matched

to the prediction with the smallest L2 distance below the threshold. Unmatched

predictions and ground-truth at threshold τi are counted as false positives (FPi) and

false negatives (FNi), respectively. TPi, FPi, and FNi are computed over all object

instances in every frame. The precision and recall at threshold τi is computed as
∑

TPi

/ (
∑

TPi +
∑

FPi) and
∑

TPi / (
∑

TPi +
∑

FNi), respectively [189, 265].

• L2 and angular error. Following VQ3D in Ego4D [88], we also compute the L2

distance between the ground-truth and predictions in the world coordinates in meters.

We also report the angular error in radians in the current camera coordinate system.

Unlike threshold-aware 3D precision and recall, these metrics are computed only on

frames where both ground-truth and prediction of the object instance location are

available.

To make 3D annotation tractable, we only evaluate predictions during time intervals when

target objects are stationary (i.e., not being handled by the camera wearer).

104

5.3.2 Dataset

We present additional details of the datasets, such as collection details and annotations,

to help others better understand and utilize the benchmark dataset. Note that the data

collection protocol was registered with the appropriate institutional review board (IRB).

Raw video collection. The raw IT3DEgo data was recorded by three individuals in

ten diverse indoor scenes, e.g., kitchen, garage, office, labs, etc. The participants perform

naturalistic tasks with different object instances in the scene, e.g., cooking, repairing, writing,

etc. The raw data includes 50 recordings in total. Each recording contains five or more object

instances, each of which appears at three different 3D locations on average. The average

length of each recording is 10K frames or >5min. We capture the raw data with HoloLens2

which includes an RGB camera, four grayscale cameras and a depth sensor operating in 2

different modes, shown in Figure 5.3. Considering the downstream application scenarios of

our benchmark task, we choose to capture our benchmark dataset in 10 different indoor

scenes. To capture the real-time geometry information, we capture all videos with high

fps AHAT depth mode in HoloLens2 [236]. Note that AHAT depth maps come with phase

wrapping [91] at 1 meter but they can be unwrapped using rendered depth from mesh or

exploring existing unwrapping algorithms [57, 56]. Before capturing in a new environment,

we have a warm-up phase to make the device familiar with the surrounding environment in

order to output accurate camera poses when capturing the video. In the warm-up phase, we

walk around in the environment with the HoloLens2 turned on and make sure the device

has seen all visible surfaces. In practice, we spend around 20 minutes for the warm-up phase

when we move to a new environment and around 5 minutes every time before we capture the

new video. The resolutions of RBG, grayscale and depth sensors are 720×1280, 480×640,

512×512, respectively. Raw sensors operate at different frequencies, we sync all other sensors

to the frequency of the RGB camera (30 fps). We also provide a coarse resolution scene mesh

of each environment reconstructed by the Hololense OS. We include additional 2D and 3D

105

Figure 5.3: Illustration of our benchmark dataset. It is collected with HoloLens2 which
captures RGB, depth, and four grayscale side views at 30 fps. Additionally, the device also captures
per-frame camera poses allowing coarse reconstruction of the surroundings.

visualizations of our benchmark dataset in Figure 5.11.

Object instance collection. The entire videos come with 220 unique object instances,

which cover a wide range of object instances for naturalistic daily tasks, such as cooking,

writing, and repairing. To support the SVOE setup, annotators identify the first RGB frame

where a given object is fully visible and close enough to specify a 2D bounding box which is

at least 500 pixels in area. For MVPE, we take 25 high-resolution images on a rotary table

with the QR code (c.f. Figure 5.4 for visual examples). Specifically, the photos are taken by

hand-held iPhone 13 Pro approximately 45 cm away from the object center. Each object was

placed on a rotary table with QR codes. As illustrated in Figure 5.5, we took 12 photos of

each object evenly from 360◦ while keeping the camera at about 30◦ elevation, 12 more at

60◦ elevation and 1 top-down view. We zoom in 2.5 times for objects whose diameter is lower

than 20 cm to ensure the object instance is large enough in the image and use the normal

scale (no zoom) for the rest of the case.

106

Figure 5.4: Visualization of raw and preprocessed multi-view images. Raw images represent
the images directly output from the capture device, i.e., iPhone 13 Pro. We process raw images with
segmentation and cropping before feeding them into the models.

Annotations. Our dataset includes three types of manual annotations: (1) Object instance

3D centers describe the 3D positions of each object instance center in a world coordinate

frame. We annotate the 3D center by first averaging 3D points computed from camera poses

and depth maps of different views of the object instance. The annotator is first asked to

draw boxes on depth maps from ≥5 diverse views if possible. Each 2D bounding box is lifted

to the 3D space with camera poses. The 3D centers of each object instance in a stationary

period are averaged to get the initial estimation. The annotators then examine the adjust

the annotated 3D points based on the RGB frames from the video sequence and captured

mesh. (2) 2D bounding box annotations are axis-aligned 2D bounding boxes of the instance

every five frames starting from the beginning of the video. Specifically, we ask the annotators

to go through the entire video first. We provide one video frame with a 2D bounding box to

specify each object instance to the annotators. We ask annotators to draw amodal bounding

107

Figure 5.5: Illustration of our multi-view capture setup. The left panel shows our camera
positions when taking 25 images to support the pre-enrollment study. Specifically, we take 12
object-centric photos evenly from 360◦ while keeping the camera 30◦ elevation. Another 12 images
are taken in a similar fashion while keeping the camera 60◦ elevation. Lastly, we take one top-down
view. An example of the top-down view with the QR code is shown on the right.

boxes of each object instance and do not annotate the object instances with heavy occlusions

(i.e., when less than 25% of the object is visible). (3) Object motion state annotations are

a per-frame annotation of whether the object is stationary or dynamic. For the data we

collected, dynamic implies the camera wearer is interacting with the object. All annotations

are first labeled by a group of annotators and checked by other independent annotators to

ensure the quality.

5.4 Methodology

5.4.1 Baseline: Re-purposed SOT Trackers

To approach the problem of IT3DEgo, we first explore a simple unified pipeline as the baseline

approach based on single object tracking (SOT). It allows instance-level 2D tracking by

providing the visual appearance of object instances to track [47, 18, 259], which enables us

to re-purpose them for our benchmark task. In the unified pipeline, we first compute the 2D

108

trajectories of each object instance with SOT. The final 3D trajectories are computed by

lifting the center of 2D bounding boxes with depth maps and camera poses. Lastly, we adopt

a simple memory mechanism that stores the previous locations of each object instance to

handle the case where the instance moves out of sight, i.e., frames without valid predictions.

Lifting 2D trajectories to 3D. With the 2D trajectory predicted from SOT, each valid

2D detection is then lifted into 3D space with the equation: oi
t = TtzK

−1cit, where cit is the

2D coordinate of the center of the bounding box of instance i at timestamp t, oi
t is the 3D

position of instance i at timestamp t in world coordinate. z is the corresponding depth value

of cit on the depth map. Tt is the camera pose at timestamp t that specifies the camera

rotation and translation w.r.t to a predefined world coordinate. K is the intrinsic matrix. A

frame may lack a valid 3D prediction because either there is no 2D location from SOT (e.g.,

the object is outside the field-of-view) or the depth map is missing the depth value at cit.

Completing 3D trajectories with memory. Any given frame may lack a valid 3D

prediction, either because there is no 2D location from SOT (e.g., the object is outside the

field-of-view) or the depth map has missing depth values at cit. To address this we implement

a simple memory mechanism that stores only the most recent 3D location for each tracked

instance (memory size=1). We update the memory whenever there is a new valid prediction.

We note that this heuristic is a good match for the prior that object locations change only

when they are being interacted with, in which case they should also be visible to the camera.

5.4.2 Improved Baseline

We also explore the approach that leverages the recent foundation model SAM [118] and

state-of-the-art feature encoder DINOv2 [175] for IT3DEgo. Following a tracking-by-detection

pipeline, we first compute the per-frame 2D detections of each object instance by comparing

the cosine similarity of DINOv2 encoded features between candidate proposals from SAM

109

Figure 5.6: Qualitative visualizations of tracking with SVOE in both 3D space (left) and
projected 2D view (right). We visualize three top-performing trackers from different categories,
i.e., EgoSTARK, VITKT_M, and SAM+DINOv2. For projected 2D visualization, we compare the
projected 3D points of each model w.r.t to the ground-truth annotated 2D bounding boxes. In the
3D view, we show 3 concentric circles at each ground-truth position representing 0.25, 0.5 and 0.75
meter thresholds. In both 2D and 3D visualizations, we find SAM+DINOv2 outperforms others as
the predictions are closer to the center of object instances.

and a visual feature template. Together with the depth and camera pose information, we

convert the 2D detection of each object into a 3D point in a predefined world coordinate. A

simple memory with size 1 is also adopted to handle the frames without valid predictions.

Exploring motion prior with Kalman filters. Currently, the naive update mechanism,

i.e., always updating the memory for all incoming predictions, does not exploit the temporal

information in video sequences. Inspired by the Kalman filter [246, 182, 247] that is widely

adopted in the tracking literature, we simply model the stationary position of each object

instance as piecewise constant velocity motion, leveraging the prior information that an object

without being interacted with has the same 3D coordinate. Mathematically, the motion

update with Kalman filter in each stationary position: x̂t+1 = x̂t +Kt(zt −Hx̂t), where x̂t

is a 6DOF estimated state vector including position and velocity at time step t, Kt is the

Kalman gain, zt is a 3DOF the measurement vector, H is the observation matrix. Please

refer to Kalman [112] for more details. Moving from one stationary position to the next

one, we introduce an L2 distance heuristic to model the period where objects are being

interacted. Specifically, we compute the L2 distance between incoming 3D positions and the

state predictions from the Kalman filter. If the L2 distance is above the threshold, we reset

110

the Kalman filter with the current 3D predictions as the initialization.

5.5 Experiments

In this section, we first describe the implementation details of benchmark results. Then, we

show the quantitative results of both setups and the visualizations of tracking results. Lastly,

we demonstrate the importance of exploiting camera pose for tracking in 3D and perform

ablation studies of the trackers. Note that we split our benchmark dataset into validation

and test sets. All experiments are conducted on the validation set; the test set is used for

future work.

Baseline SOT trackers. We choose top-ranked trackers from well-established SOT lit-

erature and VOT challenges with open-source code for both tracking setups. Specifically,

we benchmark three short-term trackers ToMP [167], MixFormer [42], and ARTrack [245];

and three top-performing trackers from VOT long-term tracking challenges 2021 [124] and

2022 [123], mixLT, mlpLT and VITKT_M. We also evaluate trackers that utilize additional

depth information as part of the input, including SAMF and MixForRGBD from VOT

RGB-D tracking challenge 2022 [123], and ViPT [300]. Lastly, we benchmark the recent

egocentric specific finetuned trackers, EgoSTARK [227]. Note that SOT trackers require

initial bounding boxes to track, which are not available in MVPE. When re-purposing to

MVPE setup, we explore two different initializations: (1) detection-based initialization: use

multi-view pre-enrollment images to search for the initial bounding boxes where object

instances first appear in the video and initialize SOT trackers with the predicted 2D boxes.

(2) template-based initialization: directly adopt multi-view pre-enrollment images as visual

templates in the tracker and set the initial tracking search region to the entire frame.

111

Table 5.2: Benchmark results of tracking with SVOE. From the results, we draw three salient
conclusions: (1) The ability of re-identifying object instances after they disappear is important, as
long-term and egocentric specific trackers outperform short-term trackers, i.e., RGB-ST and RGB-D.
(2) Currently, encoding depth maps as auxiliary information cannot improve performance since
depth maps are sparse and not always perfectly aligned with RGB frames due to distortions. (3)
The Kalman filter smoothing yields marginal improvements over the simple memory heuristic. The
method with KF subscript indicates it applies the Kalman filter.

Model Modality Precision(%)↑ Recall(%)↑ L2↓ Angle↓
0.25 0.5 0.75 1.0 1.5 0.25 0.5 0.75 1.0 1.5 (m) (rad)

ToMP RGB-ST 5.6 10.1 17.2 25.3 39.0 6.1 11.0 18.8 27.7 42.6 2.11 1.32
MixFormer RGB-ST 8.3 12.2 18.7 27.0 43.0 9.0 13.4 20.4 29.5 47.0 1.97 1.15
ARTrack RGB-ST 9.1 13.9 21.5 30.3 45.1 10.1 15.3 23.7 32.4 47.2 1.92 1.10

SAMF RGB-D 7.0 11.5 15.7 24.0 40.8 7.7 12.5 17.2 26.3 44.7 1.90 1.00
MixForRGBD RGB-D 7.5 12.1 16.8 25.3 41.0 8.3 13.4 20.1 28.5 45.0 2.11 1.32
ViPT RGB-D 8.9 13.6 20.6 28.1 41.4 9.7 14.9 22.5 30.7 45.3 2.02 1.21

mixLT RGB-LT 14.4 17.5 23.9 31.8 47.2 15.8 19.2 26.1 34.8 51.6 1.85 1.02
mlpLT RGB-LT 16.0 20.0 25.5 35.2 48.2 16.7 20.8 26.5 36.7 50.1 1.77 0.97
VITKT_M RGB-LT 21.5 24.2 29.7 37.5 50.6 23.0 25.9 31.8 40.2 54.2 1.55 0.83

EgoSTARK RGB-Ego 17.5 21.2 26.8 36.3 49.1 17.6 22.0 27.4 38.0 51.2 1.70 0.91

SAM + DINOv2 RGB 23.3 26.4 33.1 43.3 59.4 24.9 28.1 35.3 46.3 63.4 1.35 0.81
SAM + DINOv2KF RGB 23.7 27.1 33.9 44.5 61.2 25.5 29.0 36.8 48.0 64.9 1.32 0.79

Implementation details. The cosine similarity threshold in the SAM+DINOv2 approach

is 0.6, i.e., the object is considered not visible if the cosine similarity is smaller than the

threshold. For a fair comparison, we add additional 2D prediction filtering when re-purposing

SOT trackers. We discard 2D predictions from SOT trackers whose prediction scores are

lower than 75% of the maximum prediction score. When tracking with MVPE, we first

preprocess the captured multi-view images by segmenting and cropping the foreground

object using [140]. Many transformer-based SOT trackers only encode a limited number of

templates, therefore, we choose 5 images from 0◦, 90◦, 180◦, 270◦ and top-down for all models

in MVPE experiments. To keep the comparison fair, all detection-based trackers in MVPE

use SAM+DINOv2 with the same cosine thresholds to locate the initial bounding boxes. In

terms of benchmarking RGB-D trackers in MVPE, we utilize the estimated sparse depth

maps using COLMAP [206]. The L2 distance threshold of resetting Kalman filters is 0.15m.

All experiments are implemented with PyTorch and run on Nvidia 2080Ti GPUs.

112

5.5.1 Benchmark Results

Tracking with SVOE. From the results shown in Table 5.2, we have the following salient

insights: (1) Re-identifying object instances is important. Trackers designed with strong

re-identify ability, i.e., long-term and egocentric specific types, outperform short-term trackers.

Similar findings are shown in recent 2D egocentric tracking work [60, 227]. Surprisingly,

SAM+DINOv2, the non-learned approach which does not exploit temporal information beyond

the memory heuristic, performs the best among all baselines. We believe the exhaustive

proposals on every frame and high quality features provide the model strong, generic re-

identification ability. (2) Depth information is not fully leveraged. Current RGB-D trackers

show similar or slightly worse performance compared to RGB-ST trackers (c.f. MixFormer

and MixforRGBD). The main reason is that RGB-D trackers only encode depth maps as

auxiliary visual features, which cannot fully exploit the geometric information from depth

maps. Additionally, the depth maps are sparse and not always perfectly aligned with RGB

images due to camera distortions. (3) Simple Kalman filter brings marginal benefits. The

Kalman filter does not improve over the simple “most recent” memory heuristic for stationary

objects. The naive filter is also not sufficient for modeling the switching between stationary

and dynamic motions needed to capture user-object interactions.

Tracking with MVPE. We benchmark top-performing trackers in each category in Table 5.2

for MVPE setup. From the results shown in Table 5.3, we find: (1) SOT trackers cannot

fully exploit pre-enrollment information. SOT methods rely on the initial position defined

by 2D boxes on the frame to perform well. Comparing detection-based initializations and

SVOE results, e.g., ARTrackD and ARTrack in Table 5.2, the model performance drops

since the initial boxes are not as accurate as ground-truth initialization. VITKT_M adopts

many complicated modules that all rely on the initial bounding boxes and degrades more

significantly, compared to other types of trackers. (2) Encoding rich visual information

generally helps. From the results of template-based initializations, VITKT_M for the same

113

Table 5.3: Benchmark results of tracking with MVPE. We evaluate top-performing trackers
in each category in Table 5.2 for MVPE setup. From the results, we have the following summaries: (1)
SOT trackers cannot fully exploit pre-enrollment information. Detection-initialized versions perform
less well compared to SVOE due to the inaccurate estimated initial bounding boxes. VITKT_M,
which uses many modules that rely heavily on the initialization, degrades more significantly. (2)
Encoding rich visual information generally helps. SAM+DINOv2 shows an even larger performance
boost because it is more robust to the inaccurate initialization. The D and T superscripts indicate
the detection- and template-based initializations, respectively.

Model Modality Precision(%)↑ Recall(%)↑ L2↓ Angle↓
0.25 0.5 0.75 1.0 1.5 0.25 0.5 0.75 1.0 1.5 (m) (rad)

ARTrackD RGB-ST 6.8 12.1 18.5 25.8 41.0 7.1 12.3 18.8 26.8 42.1 1.98 1.16
ARTrackT RGB-ST 11.2 18.1 25.2 28.7 38.5 12.7 20.9 28.5 33.0 45.1 1.91 1.07

ViPTD RGB-D 6.3 11.7 17.9 24.9 40.2 6.9 11.8 17.9 25.9 41.0 2.01 1.21
ViPTT RGB-D 10.5 17.4 24.0 27.1 36.3 11.9 20.1 27.1 31.3 44.0 1.93 1.10

VITKT_MD RGB-LT 13.8 18.0 25.0 33.0 46.6 14.3 18.6 25.8 34.1 48.2 1.77 0.98
VITKT_MT RGB-LT 9.2 12.8 20.7 28.5 44.0 9.7 14.2 22.4 31.3 46.5 1.95 1.08

EgoSTARKD RGB-Ego 13.2 17.0 23.1 30.5 47.0 14.7 18.5 25.9 34.4 49.7 1.82 1.01
EgoSTARKT RGB-Ego 18.9 23.1 28.3 37.1 49.6 19.1 23.1 29.3 39.1 52.9 1.67 0.88

SAM + DINOv2 RGB 56.0 59.0 61.8 67.5 74.3 50.0 52.7 55.2 60.3 66.4 0.67 0.40
SAM + DINOv2 KF RGB 56.2 59.4 62.2 68.1 74.8 50.3 53.1 55.7 61.1 67.1 0.65 0.39

reason mentioned before, we find trackers benefit from the high-resolution multi-view images.

SAM+DINOv2 shows a significant performance boost because it is more robust to inaccurate

initialization without relying on temporal information.

Qualitative results. Figure 5.6 shows predictions of top-performing trackers from three

different categories, i.e., best tracker in long-term and egocentric specific, and SAM+DINOv2.

Clearly, SAM+DINOv2 predictions are closer to the object center in both 3D and projected

2D space.

5.5.2 Further Analysis and Ablation Study

We further compare tracking object instances in both 2D and 3D settings, demonstrating

tracking object instances is much easier in 3D space. We also include an ablation study

regarding the cosine similarity thresholds. All studies shown in this section are using

SAM+DINOv2 unless otherwise specified.

114

Figure 5.7: Performance comparisons of SAM+DINOv2 with different cosine thresholds.
By increasing the threshold, we find the model performance first improves and then gradually
decreases. Intuitively, increasing the threshold will initially filter noisy predictions but when the
threshold is too large the model will miss correct object 3D location updates.

Table 5.4: Quantitative comparisons of 2D tracking results w/ and w/o 3D guidance.
With 3D guidance means the 2D results are computed by finding the bounding box proposal with
the smallest L2 distance from projected 3D trajectories. Without 3D guidance means proposals
are selected purely based on the visual feature cosine similarity. Please refer to Section 5.5.2 for
more details. From the results, we find the tracking results are significantly improved with the 3D
guidance, indicating that tracking in 3D in egocentric videos is much easier than in 2D by leveraging
camera pose and depth sensors.

3D Guid. AUC(%)↑ N. Prec.(%)↑ Prec.(%)↑

SVOE ✗ 20.7 14.9 8.9
✓ 27.6 21.7 11.5

MVPE ✗ 14.1 7.4 3.0
✓ 39.1 35.2 18.7

Tracking in 2D with 3D guidance. We experimentally demonstrate the importance of

leveraging 3D information in egocentric instance tracking by comparing 2D tracking results

w/ and w/o 3D guidance. With 3D guidance means the 2D tracking results are computed

with predicted 3D trajectories as the guidance. For each object instance, the per-frame 2D

detection results are computed by selecting the (above threshold) proposal with the smallest

L2 distance between projected 3D points and the center of bounding boxes proposals. Without

3D guidance means the 2D tracking results are produced by selecting the proposal with the

highest cosine feature similarity. To keep a fair comparison, the cosine similarity threshold

is the same when computing the 3D and 2D trajectories. We evaluate the 2D tracking

performance using widely adopted precision, normalized precision metrics and AUC in SOT

literature [253]. As shown in Table 5.4, the model with 3D guidance performs significantly

better in both SVOE and MVPE, demonstrating that leveraging the 3D information, such as

115

Figure 5.8: Performance w.r.t number views in MVPE. We run SAM+DINOv2 with different
numbers of views while keeping everything else the same for a fair comparison. We find the
performance saturates after using 5 views. This suggests that simply encode and average features
benefit from a higher number of views (i.e., number of views from 1 to 5) but still cannot fully
exploit the visual information from different views (i.e., after using 5 views).

camera pose and depth map, makes the tracking problem much easier.

Performance w.r.t cosine similarity thresholds. Feature cosine similarity threshold

is adopted to determine whether the object instance is present in the current frame, which

is crucial for the memory updating mechanism. To characterize the relationship between

tracking performance and cosine similarity thresholds, we run the experiment with different

cosine similarity thresholds but keep everything else the same. As shown in Figure 5.7,

both models show improved performance at first and then a gradual decrease. Higher cosine

thresholds result in fewer predictions so the model must increasingly rely on previous confident

predictions stored in the memory. Models with large cosine similarity thresholds have a

higher chance of missing valid location updates, which leads to a drop in both precision and

recall.

Performance w.r.t number of views. Due to the architecture design of many transformer-

based trackers, we only use 5 views in the benchmark experiment. In this section, we further

study the relationship between the number of views and the tracking performance. Specifically,

we compare the performance of SAM+DINOv2 with 1, 2, 5, 10, 15, 25 images while keeping

116

Figure 5.9: Performance improvement by updating on visible only frames. We control
the memory update of SAM+DINOv2 by updating the memory only when the object instance is
visible. We find the performance is significantly improved, indicating one of the major challenges of
the baseline is to correctly update the memory with high quality predictions.

all other parameters the same. As shown in Figure 5.8, the performance improves from 1

view to 5 views but quickly saturates after using 5 views. This suggests that naively encode

and average features benefit from a higher number of views but still cannot fully exploit the

visual information from different views.

Performance improvement with visible update only. From the results shown in

Table 5.2 and Table 5.3, we find identifying high quality predictions and updating the memory

is the main challenge in the proposed baseline pipeline. To further validate this idea, we

control the update of memory in SAM+DINOv2 model by only updating on the visible frames.

We extract the visible information from the 2D annotations. In other words, the memory for

each instance is only updated on the frame where the 2D bounding box is annotated. As

shown in Figure 5.9, updating the memory only when object instances are visible significantly

improves the performance. Although the update timing is correct, errors from 2D predictions,

depth maps and camera poses prevent the model from improving further.

Performance w.r.t different feature encoders. The top-performing baseline, i.e.,

SAM+DINOv2 adopts DINOv2 as the pretrained feature encoder. To further explore

117

Figure 5.10: Performance comparisons of different encoders at various cosine thresholds.
From the results, we find: (1) Stronger encoder improve the performance. The best performance of
SAM+DINOv2 is stronger than SAM+DINO where both models have the peak performance when
the cosine threshold equals 0.6. (2) Similar performance trend w.r.t cosine similarity changes. The
performance of both models first improves and then gradually decreases when increasing the cosine
threshold from 0.3 to 0.8.

Table 5.5: Quantitative comparisons of different proposal generators. We compare the
performance of SAM+DINOv2 and YOLOv7+DINOv2. To keep the comparison fair, the only
differences between these models are the proposal generators. From the results, we find adopting
YOLOv7 makes the performance slightly worse. The proposal quality from YOLOv7 is lower but
runs faster.

Proposals Precision(%)↑ Recall(%)↑ L2↓
0.25 0.75 1.5 0.25 0.75 1.5 (m)

YOLOv7 20.3 28.1 50.2 21.5 30.7 53.9 1.72
SAM 23.3 33.1 59.4 24.9 35.3 63.4 1.35

the performance w.r.t different large-scale feature encoders, we experiment with another

state-of-the-art feature encoder, i.e., DINO [31]. We plot the results using DINO and

DINOv2 at different cosine thresholds in Figure 5.10. From the results, we find: (1) Stronger

encoder improves the performance. The best performance of SAM+DINOv2 is stronger than

SAM+DINO where both models have the peak performance when the cosine threshold equals

0.6. (2) Similar performance trend w.r.t cosine similarity changes. The performance of both

models first improves and then gradually decreases when increasing the cosine threshold from

0.3 to 0.8.

Comparisons of different proposal generators. Currently, the improved baseline

utilizes SAM as the proposal generator. In this part, we replace SAM with the proposals from

YOLOv7, i.e., the output before the final classification layer. The results are shown in Table 5.5.

Although the performance of YOLOv7+DINOv2 is lower compared to SAM+DINOv2, which

118

is not surprising. The proposal quality from YOLOv7 is lower but runs faster. However, the

current baseline approaches are not able to run in real time due to the following encoding

and lifting steps. One promising direction for future work is to improve the speed of the

tracking models.

5.6 Discussion

Limitations and future work. We point out that the current benchmark dataset has

limited geographic and demographic diversity and captures only a small range of objects

and activities. As such it is not appropriate for training large models and only serves as

a diagnostic test to identify some limitations of existing approaches. Our hope is that it

serves as a starting point for the research community to explore and eventually grow into a

more comprehensive challenge. Currently, the studied baseline approaches follow the same

paradigm, i.e., lifting predicted 2D trajectories into 3D space. We found empirically that the

simplest memory mechanism performed best but it seems very likely there are more nuanced

state-update models which can integrate multiple observations effectively.

Finally, we highlight two opportunities for future work. First, advanced models to detect object

3D motion changes. Our experiments demonstrate that tracking in 3D world coordinates

effectively narrows the problem to that of accurately predicting the object motion status,

i.e., finding all stationary periods for each object instance. However, accurately predicting

object state changes is still a non-trivial problem to solve. Second, better utilization of object

instance information. Currently, the object instances enrollments, i.e., SVOE and MVPE are

naively encoded as visual features. Future work should explore the approaches of fusing the

additional scene 3D information with object instances for better tracking performance.

Broader impact. We believe the broader impact of our work is two-fold. First, we hope

119

our benchmark brings more attention to the problem of tracking object instances in 3D

from the egocentric perspective and contributes towards building future task-aware assistive

agents. Second, our multi-modal benchmark dataset is beneficial to the study of other 3D

scene understanding related problems from the egocentric perspective, such as SLAM, camera

localization, 3D reconstruction, and depth estimation.

Potential negative impacts. Tracking in 3D from egocentric videos requires the geometric

data of surrounding environments and the sensor streams that continuously capture their

workplace or daily lives. There are obvious privacy concerns when deploying such hardware

and algorithms. Similar to other apps running on personal devices, the simple solution is to

keep all user data locally or (in the context of research) develop techniques for anonymizing

video [229].

5.7 Conclusion

We introduce a new IT3DEgo benchmark that allows us to study the problem of tracking

object instances in 3D from egocentric videos. The object instances to be tracked are either

determined in advance or enrolled online during user interactions with the environment. To

support the study, we collect and annotate a new dataset that features RGB-D videos and

per-frame camera poses, along with instance-level annotations in both 2D camera and 3D

world coordinate frames. We re-purpose and evaluate state-of-the-art single object trackers

and develop a strong baseline using large pretrained recognition models and Kalman filtering.

We hope our benchmark brings more attention to this challenge and contributes to the

development of perceptually-aware assistive agents.

120

Figure 5.11: 2D visualizations of frames from raw video sequences (upper panel) and
3D visualizations of the capture environments (lower panel). The benchmark videos record
camera wearers perform naturalistic tasks in real-world scenarios, such as cooking and repairing.
Please refer to Figure 5.3 for the layout of each sensor on the HoloLens2.

121

Chapter 6

Concluding Remarks

6.1 Summary of Contributions

In Chapter 2, we reveal the high-level domain gaps in learning monocular depth estimators.

Specifically, high-level domain gaps refer to the difference between real and synthetic images,

i.e. the cluttered scene and novel objects. State-of-the-art models focus on closing the

low-level gaps, such as colors and textures. We propose the attend-remove-complete (ARC)

approach that learns to remove the regions that are challenging and detrimental to overall

depth prediction performance. ARC outperforms state-of-the-art methods on both indoor

and outdoor datasets, suggesting the effectiveness of our proposed solution.

In Chapter 3, we describe the camera pose distribution shift between training and testing

data. State-of-the-art depth estimators rely on large-scale data for end-to-end training.

However, we find that trained predictors fail to make reliable depth predictions for testing

examples captured under uncommon camera poses. To mitigate this problem, we propose

two novel solutions: perspective-aware data augmentation and camera pose prior encoding.

The former one allows us to augment RGB-D data in a geometrically consistent way. The

122

latter one encodes the camera pose to learn a pose conditional depth predictor. Experimental

results demonstrate that both of the proposed approaches successfully mitigate the bias and

outperform state-of-the-art depth estimators.

In Chapter 4, we explore the reference-based image inpainting task that aims to inpaint

the hole region in the target image leveraging the texture from another reference image.

This task requires understanding the 3D geometry that relates pixels between two views to

accurately paste the texture for inpainting. We propose GeoFill that leverages an explicit

non-planar 3D scene representation from depth maps given only limited two-view RGB

images. Specifically, we utilize pretrained sparse correspondence models and monocular depth

estimators to reconstruct the scene geometry. A joint optimization step is introduced to adjust

the pose and relative pose. Experimental results show that GeoFill achieves state-of-the-art

performance. It also better handles large camera movements and complicated geometric

structures.

In Chapter 5, we introduce a new benchmark problem to explore instance tracking in 3D

from egocentric videos. This task is motivated by building task-assistive agents running

on AR/VR devices. Tracking from the egocentric perspective is different as the camera

is constantly moving while the object instance is stationary unless being interacted with.

Therefore, we formulate the problem in the 3D scene to leverage the camera poses and depth

maps. We explore this problem by collecting and annotating a new benchmark dataset. We

also re-purpose and evaluate state-of-the-art single object trackers on our benchmark test

and propose a novel method leveraging recent foundation models.

123

6.2 Future Directions

Based on the chapters discussed above, there are many exciting directions to explore in the

future.

Robust depth estimation. A major problem of current state-of-the-art monocular depth

estimators is that the model only performs well in certain scenarios, such as indoor scenes

only. This problem is largely due to the significant depth range difference between indoor and

outdoor scenarios, and the limited scale of RGB-D data. Recent works already start to address

this problem by predicting the inverse depth and training models on diverse datasets [192, 190].

Future work could try to leverage the powerful foundation models or inject more object-level

knowledge, such as object size to achieve more robust depth predictions.

Self-supervised depth estimation. Self-supervised learning paradigm does not need the

ground truth annotation, which enables the potential to train on a significantly larger scale

data. Current approaches exploit the relationship between frames and use the photometric

loss to supervise the depth training [84, 21]. However, the estimated pose and depth, can only

be estimated up to an unknown scale, which makes the model struggle to predict consistent

scales between frames. The model also struggles with dynamic objects and texture-less

regions. It is worth investigating these issues by incorporating semantic information and

stronger geometric constraints.

3D-aware image/video generation. Recent image/video generation models are capable of

generating high fidelity textures, such as diffusion models [51, 102]. One major problem that

remains is to generate controllable consistent textures across different views or in long-term

videos. State-of-the-art models incorporate 3D representation into the generation step or add

explicit geometric constraints [33, 32]. It is worth for future work to explore different 3D

representations for long-term video generation.

124

Task-assistive agents on egocentric videos. The strong demand of building task-assistive

agents motivates the future work to further explore in this direction [201, 88]. In terms of

the IT3DEgo benchmark, we suggest further work in the following two directions. First,

advanced models to detect object 3D motion changes. Second, better utilization of object

instance information. In terms of task-assistive agents in general, future works should explore

combining IT3DEgo with other tasks to enable agents to execute a series of actions or finish

more complicated tasks.

125

Bibliography

[1] Hololens 2 sensor streaming. https://github.com/jdibenes/hl2ss, 2023.

[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski.
Building rome in a day. Communications of the ACM, 54(10):105–112, 2011.

[3] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on signal processing,
54(11):4311–4322, 2006.

[4] A. Ahmadyan, L. Zhang, A. Ablavatski, J. Wei, and M. Grundmann. Objectron:
A large scale dataset of object-centric videos in the wild with pose annotations. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 7822–7831, 2021.

[5] I. Alhashim and P. Wonka. High quality monocular depth estimation via transfer
learning. arXiv preprint arXiv:1812.11941, 2018.

[6] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang.
Bottom-up and top-down attention for image captioning and visual question answering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6077–6086, 2018.

[7] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural module networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 39–48, 2016.

[8] A. Atapour-Abarghouei and T. P. Breckon. Real-time monocular depth estimation
using synthetic data with domain adaptation via image style transfer. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2800–2810,
2018.

[9] S.-H. Baek, I. Choi, and M. H. Kim. Multiview image completion with space structure
propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 488–496, 2016.

[10] X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C.-L. Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transformers. In Proceedings of the

126

https://github.com/jdibenes/hl2ss

IEEE/CVF conference on computer vision and pattern recognition, pages 1090–1099,
2022.

[11] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): Part
ii. IEEE robotics & automation magazine, 2006.

[12] M. Baradad and A. Torralba. Height and uprightness invariance for 3d prediction from
a single view. In CVPR, 2020.

[13] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: A
randomized correspondence algorithm for structural image editing. ACM Trans. Graph.,
28(3):24, 2009.

[14] J. T. Barron. A general and adaptive robust loss function. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4331–4339,
2019.

[15] E. Barshan and P. Fieguth. Stage-wise training: An improved feature learning strategy
for deep models. In Feature Extraction: Modern Questions and Challenges, pages 49–59,
2015.

[16] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European
conference on computer vision, pages 404–417. Springer, 2006.

[17] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques, pages
417–424, 2000.

[18] G. Bhat, M. Danelljan, L. V. Gool, and R. Timofte. Learning discriminative model
prediction for tracking. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 6182–6191, 2019.

[19] A. V. Bhavsar and A. N. Rajagopalan. Inpainting in multi-image stereo. In Joint
Pattern Recognition Symposium, pages 172–181. Springer, 2010.

[20] H. Bi, R. Zhang, T. Mao, Z. Deng, and Z. Wang. How can i see my future? fvtraj:
Using first-person view for pedestrian trajectory prediction. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
VII 16, pages 576–593. Springer, 2020.

[21] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid. Unsupervised
scale-consistent depth and ego-motion learning from monocular video. In Advances in
Neural Information Processing Systems, 2019.

[22] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother. Learning
6d object pose estimation using 3d object coordinates. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part II 13, pages 536–551. Springer, 2014.

127

[23] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and C. Rother.
Dsac-differentiable ransac for camera localization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6684–6692, 2017.

[24] E. Brachmann and C. Rother. Neural-guided ransac: Learning where to sample model
hypotheses. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4322–4331, 2019.

[25] M. Brady. Robot motion: Planning and control. MIT press, 1982.

[26] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie
for optical flow evaluation. In European conference on computer vision, pages 611–625.
Springer, 2012.

[27] P. Buyssens, O. Le Meur, M. Daisy, D. Tschumperlé, and O. Lézoray. Depth-guided
disocclusion inpainting of synthesized rgb-d images. IEEE Transactions on Image
Processing, 2016.

[28] C. Cadena, A. R. Dick, and I. D. Reid. Multi-modal auto-encoders as joint estimators
for robotics scene understanding. In Robotics: Science and systems, volume 5, 2016.

[29] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11621–11631, 2020.

[30] J. Canny. A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, (6):679–698, 1986.

[31] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin.
Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[32] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello, O. Gallo,
L. J. Guibas, J. Tremblay, S. Khamis, et al. Efficient geometry-aware 3d generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 16123–16133, 2022.

[33] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 5799–5809,
2021.

[34] K. Chen, N. Snavely, and A. Makadia. Wide-baseline relative camera pose estimation
with directional learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3258–3268, 2021.

[35] X. Chen, X. Chen, and Z.-J. Zha. Structure-aware residual pyramid network for
monocular depth estimation. arXiv preprint arXiv:1907.06023, 2019.

128

[36] Y. Chen, Y. Li, X. Zhang, J. Sun, and J. Jia. Focal sparse convolutional networks for
3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5428–5437, 2022.

[37] Y. Chen, J. Liu, X. Zhang, X. Qi, and J. Jia. Voxelnext: Fully sparse voxelnet for
3d object detection and tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 21674–21683, 2023.

[38] Y.-C. Chen, Y.-Y. Lin, M.-H. Yang, and J.-B. Huang. Crdoco: Pixel-level domain
transfer with cross-domain consistency. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1791–1800, 2019.

[39] Z. Chen, Z. Yuan, J. Yi, B. Zhou, E. Chen, and T. Yang. Universal stagewise learning
for non-convex problems with convergence on averaged solutions. arXiv preprint
arXiv:1808.06296, 2018.

[40] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset. In CVPR Workshop
on The Future of Datasets in Vision, 2015.

[41] S. Cova, A. Longoni, and A. Andreoni. Towards picosecond resolution with single-photon
avalanche diodes. Review of Scientific Instruments, 52(3):408–412, 1981.

[42] Y. Cui, C. Jiang, L. Wang, and G. Wu. Mixformer: End-to-end tracking with iterative
mixed attention. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13608–13618, 2022.

[43] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In CVPR, 2017.

[44] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5828–5839, 2017.

[45] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti,
J. Munro, T. Perrett, W. Price, et al. Scaling egocentric vision: The epic-kitchens
dataset. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 720–736, 2018.

[46] D. Damen, T. Leelasawassuk, O. Haines, A. Calway, and W. W. Mayol-Cuevas. You-do,
i-learn: Discovering task relevant objects and their modes of interaction from multi-user
egocentric video. In BMVC, volume 2, page 3, 2014.

[47] M. Danelljan, L. V. Gool, and R. Timofte. Probabilistic regression for visual tracking.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 7183–7192, 2020.

129

[48] S. Datta, S. Dharur, V. Cartillier, R. Desai, M. Khanna, D. Batra, and D. Parikh.
Episodic memory question answering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19119–19128, 2022.

[49] D. DeTone, T. Malisiewicz, and A. Rabinovich. Toward geometric deep slam. arXiv
preprint arXiv:1707.07410, 2017.

[50] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-supervised interest
point detection and description. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 224–236, 2018.

[51] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

[52] T. v. Dijk and G. d. Croon. How do neural networks see depth in single images? In
ICCV, 2019.

[53] M. Dimiccoli, J. Marín, and E. Thomaz. Mitigating bystander privacy concerns in
egocentric activity recognition with deep learning and intentional image degradation.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
1(4):1–18, 2018.

[54] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[55] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt,
D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional networks. In
Proceedings of the IEEE international conference on computer vision, pages 2758–2766,
2015.

[56] D. Droeschel, D. Holz, and S. Behnke. Multi-frequency phase unwrapping for time-of-
flight cameras. In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1463–1469. IEEE, 2010.

[57] D. Droeschel, D. Holz, and S. Behnke. Probabilistic phase unwrapping for time-of-flight
cameras. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK
2010 (6th German Conference on Robotics), pages 1–7. VDE, 2010.

[58] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, S. K. Singh, and B. B. Chaudhuri.
diffgrad: An optimization method for convolutional neural networks. IEEE transactions
on neural networks and learning systems, 31(11):4500–4511, 2019.

[59] M. Dunnhofer, A. Furnari, G. M. Farinella, and C. Micheloni. Is first person vision
challenging for object tracking? In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2698–2710, 2021.

[60] M. Dunnhofer, A. Furnari, G. M. Farinella, and C. Micheloni. Visual object tracking in
first person vision. International Journal of Computer Vision, 131(1):259–283, 2023.

130

[61] D. Dwibedi, I. Misra, and M. Hebert. Cut, paste and learn: Surprisingly easy synthesis
for instance detection. In Proceedings of the IEEE international conference on computer
vision, pages 1301–1310, 2017.

[62] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture. In ICCV, 2015.

[63] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using
a multi-scale deep network. In Advances in Neural Information Processing Systems,
2014.

[64] J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, and J. Civera. Cam-convs:
camera-aware multi-scale convolutions for single-view depth. In CVPR, 2019.

[65] J. Fan, P. Zheng, and S. Li. Vision-based holistic scene understanding towards proac-
tive human–robot collaboration. Robotics and Computer-Integrated Manufacturing,
75:102304, 2022.

[66] Z. Fang, S. Kong, C. Fowlkes, and Y. Yang. Modularized textual grounding for
counterfactual resilience. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6378–6388, 2019.

[67] A. Fathi, J. K. Hodgins, and J. M. Rehg. Social interactions: A first-person perspective.
In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 1226–
1233. IEEE, 2012.

[68] B. Fernando and S. Herath. Anticipating human actions by correlating past with the
future with jaccard similarity measures. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 13224–13233, 2021.

[69] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.

[70] R. M. French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[71] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. Deep ordinal regression
network for monocular depth estimation. In CVPR, 2018.

[72] A. Furnari and G. M. Farinella. What would you expect? anticipating egocentric actions
with rolling-unrolling lstms and modality attention. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6252–6261, 2019.

[73] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as proxy for multi-object
tracking analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4340–4349, 2016.

131

[74] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation.
arXiv preprint arXiv:1409.7495, 2014.

[75] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pages 1180–1189. PMLR, 2015.

[76] M. Garon and J.-F. Lalonde. Deep 6-dof tracking. IEEE transactions on visualization
and computer graphics, 23(11):2410–2418, 2017.

[77] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and
K. Crawford. Datasheets for datasets. Communications of the ACM, 64(12):86–92,
2021.

[78] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

[79] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset.
The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[80] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In CVPR, 2012.

[81] G. Georgakis, M. A. Reza, A. Mousavian, P.-H. Le, and J. Kovsecká. Multiview rgb-d
dataset for object instance detection. In 2016 Fourth International Conference on 3D
Vision (3DV), pages 426–434. IEEE, 2016.

[82] G. Ghiasi, T.-Y. Lin, and Q. V. Le. Dropblock: A regularization method for con-
volutional networks. In Advances in Neural Information Processing Systems, pages
10727–10737, 2018.

[83] B. Girod and S. Scherock. Depth from defocus of structured light. In Optics, Illumina-
tion, and Image Sensing for Machine Vision IV, volume 1194, pages 209–215. SPIE,
1990.

[84] C. Godard, O. M. Aodha, M. Firman, and G. J. Brostow. Digging into self-supervised
monocular depth estimation. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3828–3838, 2019.

[85] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. In CVPR, 2017.

[86] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[87] M. Granados, K. I. Kim, J. Tompkin, J. Kautz, and C. Theobalt. Background inpainting
for videos with dynamic objects and a free-moving camera. In European Conference on
Computer Vision, pages 682–695. Springer, 2012.

132

[88] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger,
H. Jiang, M. Liu, X. Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric
video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18995–19012, 2022.

[89] E. J. Gumbel. Statistics of extremes. Courier Corporation, 2012.

[90] X. Guo, H. Li, S. Yi, J. Ren, and X. Wang. Learning monocular depth by distilling
cross-domain stereo networks. In ECCV, 2018.

[91] M. Hansard, S. Lee, O. Choi, and R. P. Horaud. Time-of-flight cameras: principles,
methods and applications. Springer Science & Business Media, 2012.

[92] Z. Hao, Y. Li, S. You, and F. Lu. Detail preserving depth estimation from a single
image using attention guided networks. In 2018 International Conference on 3D Vision
(3DV), pages 304–313. IEEE, 2018.

[93] K. G. Harding. High accuracy structured light profiler, Jan. 8 1991. US Patent
4,983,043.

[94] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge
university press, 2003.

[95] R. I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on pattern
analysis and machine intelligence, 19(6):580–593, 1997.

[96] R. I. Hartley and P. Sturm. Triangulation. Computer vision and image understanding,
68(2):146–157, 1997.

[97] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 2009.

[98] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[99] L. He, G. Wang, and Z. Hu. Learning depth from single images with deep neural
network embedding focal length. IEEE Transactions on Image Processing, 2018.

[100] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[101] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[102] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

[103] T. Hodavn, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina, S. N.
Sinha, and B. Guenter. Photorealistic image synthesis for object instance detection. In
2019 IEEE international conference on image processing (ICIP), pages 66–70. IEEE,
2019.

133

[104] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and
T. Darrell. Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint
arXiv:1711.03213, 2017.

[105] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. In ACM SIGGRAPH
2005 Papers, pages 577–584. 2005.

[106] J. Hu, M. Ozay, Y. Zhang, and T. Okatani. Revisiting single image depth estimation:
Toward higher resolution maps with accurate object boundaries. In 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), 2019.

[107] L. Huynh, P. Nguyen-Ha, J. Matas, E. Rahtu, and J. Heikkilä. Guiding monocular
depth estimation using depth-attention volume. In European Conference on Computer
Vision, pages 581–597. Springer, 2020.

[108] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent image
completion. ACM Transactions on Graphics (ToG), 36(4):1–14, 2017.

[109] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1125–1134, 2017.

[110] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations (ICLR), 2017.

[111] H. Jiang and K. Grauman. Seeing invisible poses: Estimating 3d body pose from
egocentric video. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3501–3509. IEEE, 2017.

[112] R. E. Kalman. A new approach to linear filtering and prediction problems. 1960.

[113] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen. Epic-fusion: Audio-visual
temporal binding for egocentric action recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5492–5501, 2019.

[114] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for real-time
6-dof camera relocalization. In ICCV, 2015.

[115] A. Kim, A. Ovsep, and L. Leal-Taixé. Eagermot: 3d multi-object tracking via sensor
fusion. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 11315–11321. IEEE, 2021.

[116] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[117] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

134

[118] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. White-
head, A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643,
2023.

[119] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

[120] S. Kong and C. Fowlkes. Pixel-wise attentional gating for scene parsing. In 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages 1024–1033.
IEEE, 2019.

[121] S. Kong and C. C. Fowlkes. Recurrent scene parsing with perspective understanding in
the loop. In CVPR, 2018.

[122] P. Krähenbühl. Free supervision from video games. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2955–2964, 2018.

[123] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, J.-K. Kamarainen,
H. J. Chang, M. Danelljan, L. vCehovin Zajc, A. Lukevzivc, O. Drbohlav, J. Bjorklund,
Y. Zhang, Z. Zhang, S. Yan, W. Yang, D. Cai, C. Mayer, and G. Fernandez. The tenth
visual object tracking vot2022 challenge results, 2022.

[124] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, R. Pflugfelder, J.-K. Kamarainen,
H. J. Chang, M. Danelljan, L. vCehovin Zajc, A. Lukevzivc, O. Drbohlav, J. Kapyla,
G. Hager, S. Yan, J. Yang, Z. Zhang, G. Fernandez, and et. al. The ninth visual object
tracking vot2021 challenge results, 2021.

[125] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems,
2012.

[126] J. N. Kundu, P. K. Uppala, A. Pahuja, and R. V. Babu. Adadepth: Unsupervised content
congruent adaptation for depth estimation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2656–2665, 2018.

[127] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of perspective. In CVPR, 2014.

[128] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper depth
prediction with fully convolutional residual networks. In 2016 Fourth international
conference on 3D vision (3DV), 2016.

[129] R. Lange and P. Seitz. Solid-state time-of-flight range camera. IEEE Journal of
quantum electronics, 37(3):390–397, 2001.

[130] K. Lasinger, R. Ranftl, K. Schindler, and V. Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset transfer. arXiv preprint
arXiv:1907.01341, 2019.

135

[131] J.-C. Latombe. Robot motion planning, volume 124. Springer Science & Business Media,
2012.

[132] C.-Y. Lee, V. Badrinarayanan, T. Malisiewicz, and A. Rabinovich. Roomnet: End-to-
end room layout estimation. In ICCV, 2017.

[133] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh. From big to small: Multi-scale local
planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326,
2019.

[134] K. Lee, H. Lee, K. Lee, and J. Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. arXiv preprint arXiv:1711.09325, 2017.

[135] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people and objects for
egocentric video summarization. In 2012 IEEE conference on computer vision and
pattern recognition, pages 1346–1353. IEEE, 2012.

[136] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, et al. Towards fully autonomous driving: Systems and
algorithms. In 2011 IEEE intelligent vehicles symposium (IV), pages 163–168. IEEE,
2011.

[137] C. Levy and T. Roosendaal. Sintel. In ACM SIGGRAPH ASIA 2010 Computer
Animation Festival, page 82. ACM, 2010.

[138] B. Li, C. Shen, Y. Dai, A. Van Den Hengel, and M. He. Depth and surface normal
estimation from monocular images using regression on deep features and hierarchical
crfs. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1119–1127, 2015.

[139] H. Li, Y. Cai, and W.-S. Zheng. Deep dual relation modeling for egocentric interaction
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7932–7941, 2019.

[140] J. Li, J. Jain, and H. Shi. Matting anything. arXiv: 2306.05399, 2023.

[141] W. Li, S. Saeedi, J. McCormac, R. Clark, D. Tzoumanikas, Q. Ye, Y. Huang, R. Tang,
and S. Leutenegger. Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes
dataset. arXiv preprint arXiv:1809.00716, 2018.

[142] Y. Li, Z. Cao, A. Liang, B. Liang, L. Chen, H. Zhao, and C. Feng. Egocentric prediction
of action target in 3d. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20971–20980. IEEE, 2022.

[143] Z. Li, T. Dekel, F. Cole, R. Tucker, N. Snavely, C. Liu, and W. T. Freeman. Learning the
depths of moving people by watching frozen people. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4521–4530, 2019.

136

[144] Z. Li and N. Snavely. Cgintrinsics: Better intrinsic image decomposition through
physically-based rendering. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 371–387, 2018.

[145] Z. Li and N. Snavely. Megadepth: Learning single-view depth prediction from internet
photos. In CVPR, 2018.

[146] S. Liang, Y. Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

[147] L. Liao, J. Xiao, Z. Wang, C.-W. Lin, and S. Satoh. Guidance and evaluation:
Semantic-aware image inpainting for mixed scenes. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII
16, pages 683–700. Springer, 2020.

[148] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from single monocular images
using deep convolutional neural fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2015.

[149] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro. Image inpainting
for irregular holes using partial convolutions. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 85–100, 2018.

[150] M. Liu, S. Tang, Y. Li, and J. M. Rehg. Forecasting human-object interaction: joint
prediction of motor attention and actions in first person video. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I 16, pages 704–721. Springer, 2020.

[151] Y. Liu, Y. Liu, C. Jiang, K. Lyu, W. Wan, H. Shen, B. Liang, Z. Fu, H. Wang, and
L. Yi. Hoi4d: A 4d egocentric dataset for category-level human-object interaction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 21013–21022, 2022.

[152] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu. Large-scale long-tailed
recognition in an open world. In CVPR, 2019.

[153] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. L. Rus, and S. Han. Bevfusion:
Multi-task multi-sensor fusion with unified bird’s-eye view representation. In 2023
IEEE International Conference on Robotics and Automation (ICRA), pages 2774–2781.
IEEE, 2023.

[154] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep
adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

[155] M. Long, G. Ding, J. Wang, J. Sun, Y. Guo, and P. S. Yu. Transfer sparse coding for
robust image representation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 407–414, 2013.

137

[156] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293(5828):133–135, 1981.

[157] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the
seventh IEEE international conference on computer vision, volume 2, pages 1150–1157.
Ieee, 1999.

[158] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[159] G. Luo, Y. Zhu, Z. Weng, and Z. Li. A disocclusion inpainting framework for depth-
based view synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2019.

[160] H. Ma, L. Chen, D. Kong, Z. Wang, X. Liu, H. Tang, X. Yan, Y. Xie, S.-Y. Lin, and
X. Xie. Transfusion: Cross-view fusion with transformer for 3d human pose estimation.
arXiv preprint arXiv:2110.09554, 2021.

[161] L. Ma, S. Georgoulis, X. Jia, and L. Van Gool. Fov-net: Field-of-view extrapolation
using self-attention and uncertainty. IEEE Robotics and Automation Letters, 6(3):4321–
4328, 2021.

[162] W. Ma, M. Zheng, W. Ma, S. Xu, and X. Zhang. Learning across views for stereo
image completion. IET Computer Vision, 14(7):482–492, 2020.

[163] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[164] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th annual international conference on machine learning,
pages 689–696. ACM, 2009.

[165] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and C. Xu. Voxel transformer
for 3d object detection. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 3164–3173, 2021.

[166] S. Masnou and J.-M. Morel. Level lines based disocclusion. In Proceedings 1998
International Conference on Image Processing, 1998.

[167] C. Mayer, M. Danelljan, G. Bhat, M. Paul, D. P. Paudel, F. Yu, and L. Van Gool.
Transforming model prediction for tracking. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 8731–8740, 2022.

[168] K. Nazeri, E. Ng, T. Joseph, F. Z. Qureshi, and M. Ebrahimi. Edgeconnect: Generative
image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212, 2019.

[169] E. Ng, D. Xiang, H. Joo, and K. Grauman. You2me: Inferring body pose in egocentric
video via first and second person interactions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9890–9900, 2020.

138

[170] K. Nguyen and H. Daumé III. Help, anna! visual navigation with natural multimodal
assistance via retrospective curiosity-encouraging imitation learning. arXiv preprint
arXiv:1909.01871, 2019.

[171] P. Nguyen, T. Liu, G. Prasad, and B. Han. Weakly supervised action localization by
sparse temporal pooling network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6752–6761, 2018.

[172] M. Niemeyer and A. Geiger. Giraffe: Representing scenes as compositional generative
neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11453–11464, 2021.

[173] C. Northcutt, S. Zha, S. Lovegrove, and R. Newcombe. Egocom: A multi-person multi-
modal egocentric communications dataset. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020.

[174] S. W. Oh, S. Lee, J.-Y. Lee, and S. J. Kim. Onion-peel networks for deep video
completion. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4403–4412, 2019.

[175] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. Haziza, F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features
without supervision. arXiv preprint arXiv:2304.07193, 2023.

[176] R. Or-El, X. Luo, M. Shan, E. Shechtman, J. J. Park, and I. Kemelmacher-Shlizerman.
Stylesdf: High-resolution 3d-consistent image and geometry generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13503–13513, 2022.

[177] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

[178] X. Pan, N. Charron, Y. Yang, S. Peters, T. Whelan, C. Kong, O. Parkhi, R. Newcombe,
and Y. C. Ren. Aria digital twin: A new benchmark dataset for egocentric 3d machine
perception. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 20133–20143, 2023.

[179] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg. Transformation-grounded
image generation network for novel 3d view synthesis. In CVPR, 2017.

[180] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[181] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:8026–8037,
2019.

139

[182] H. A. Patel and D. G. Thakore. Moving object tracking using kalman filter. International
Journal of Computer Science and Mobile Computing, 2(4):326–332, 2013.

[183] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders:
Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2536–2544, 2016.

[184] K. A. Patwardhan, G. Sapiro, and M. Bertalmio. Video inpainting of occluding
and occluded objects. In IEEE International Conference on Image Processing 2005,
volume 2, pages II–69. IEEE, 2005.

[185] H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person
camera views. In 2012 IEEE conference on computer vision and pattern recognition,
pages 2847–2854. IEEE, 2012.

[186] C. Plizzari, M. Planamente, G. Goletto, M. Cannici, E. Gusso, M. Matteucci, and
B. Caputo. E2 (go) motion: Motion augmented event stream for egocentric action
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19935–19947, 2022.

[187] R. Possas, S. P. Caceres, and F. Ramos. Egocentric activity recognition on a budget. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
5967–5976, 2018.

[188] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[189] V. Raghavan, P. Bollmann, and G. S. Jung. A critical investigation of recall and precision
as measures of retrieval system performance. ACM Transactions on Information Systems
(TOIS), 7(3):205–229, 1989.

[190] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense prediction. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
12179–12188, 2021.

[191] R. Ranftl and V. Koltun. Deep fundamental matrix estimation. In Proceedings of the
European conference on computer vision (ECCV), pages 284–299, 2018.

[192] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE
transactions on pattern analysis and machine intelligence, 44(3):1623–1637, 2020.

[193] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson, and G. Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501, 2020.

140

[194] Y. Ren, X. Yu, R. Zhang, T. H. Li, S. Liu, and G. Li. Structureflow: Image inpainting
via structure-aware appearance flow. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 181–190, 2019.

[195] N. Rhinehart and K. M. Kitani. First-person activity forecasting with online inverse re-
inforcement learning. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3696–3705, 2017.

[196] G. Rogez, J. S. Supancic, and D. Ramanan. First-person pose recognition using
egocentric workspaces. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4325–4333, 2015.

[197] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to
sift or surf. In 2011 International conference on computer vision, pages 2564–2571. Ieee,
2011.

[198] M. Ryoo, B. Rothrock, C. Fleming, and H. J. Yang. Privacy-preserving human activity
recognition from extreme low resolution. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

[199] M. S. Ryoo and L. Matthies. First-person activity recognition: What are they doing to
me? In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2730–2737, 2013.

[200] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4938–4947, 2020.

[201] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu,
V. Koltun, J. Malik, et al. Habitat: A platform for embodied ai research. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9339–9347, 2019.

[202] A. Saxena, S. H. Chung, and A. Y. Ng. 3-d depth reconstruction from a single still
image. International Journal of Computer Vision, 76(1):53–69, 2008.

[203] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d scene structure from a single
still image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008.

[204] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International journal of computer vision, 47:7–42, 2002.

[205] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4104–4113,
2016.

[206] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

141

[207] S. Schuon, C. Theobalt, J. Davis, and S. Thrun. High-quality scanning using time-of-
flight depth superresolution. In 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, pages 1–7. IEEE, 2008.

[208] S. Shafique, B. Kong, S. Kong, and C. Fowlkes. Creating a forensic database of
shoeprints from online shoe-tread photos. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 858–868, 2023.

[209] S. Shafique, S. Kong, and C. Fowlkes. Crisp: Leveraging tread depth maps for enhanced
crime-scene shoeprint matching. arXiv preprint arXiv:2404.16972, 2024.

[210] Q. Shen, Y. Zhao, N. Kwon, J. Kim, Y. Li, and S. Kong. A high-resolution dataset for
instance detection with multi-view object capture. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

[211] R. R. Shetty, M. Fritz, and B. Schiele. Adversarial scene editing: Automatic object
removal from weak supervision. In Advances in Neural Information Processing Systems,
pages 7706–7716, 2018.

[212] H. Shi, L. Ball, G. Thattai, D. Zhang, L. Hu, Q. Gao, S. Shakiah, X. Gao, A. Pad-
makumar, B. Yang, et al. Alexa, play with robot: Introducing the first alexa prize
simbot challenge on embodied ai. arXiv preprint arXiv:2308.05221, 2023.

[213] D. Shin, Z. Ren, E. B. Sudderth, and C. C. Fowlkes. 3d scene reconstruction with
multi-layer depth and epipolar transformers. In ICCV, 2019.

[214] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support
inference from rgbd images. In European Conference on Computer Vision, pages
746–760. Springer, 2012.

[215] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[216] I. Skorokhodov, A. Siarohin, Y. Xu, J. Ren, H.-Y. Lee, P. Wonka, and S. Tulyakov.
3d generation on imagenet. In International Conference on Learning Representations,
2023.

[217] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in
3d. In ACM Siggraph 2006 Papers, pages 835–846. 2006.

[218] S. Song and J. Xiao. Deep sliding shapes for amodal 3d object detection in rgb-d images.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 808–816, 2016.

[219] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic scene
completion from a single depth image. In CVPR, 2017.

[220] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic
scene completion from a single depth image. Proceedings of 30th IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

142

[221] Y. Song, C. Yang, Y. Shen, P. Wang, Q. Huang, and C.-C. J. Kuo. Spg-net: Seg-
mentation prediction and guidance network for image inpainting. arXiv preprint
arXiv:1805.03356, 2018.

[222] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 573–580. IEEE, 2012.

[223] Y.-C. Su and K. Grauman. Detecting engagement in egocentric video. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part V 14, pages 454–471. Springer, 2016.

[224] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation.
In European Conference on Computer Vision, pages 443–450. Springer, 2016.

[225] Y. Sun and R. Fisher. Object-based visual attention for computer vision. Artificial
intelligence, 146(1):77–123, 2003.

[226] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre,
M. Mukadam, D. S. Chaplot, O. Maksymets, et al. Habitat 2.0: Training home
assistants to rearrange their habitat. Advances in Neural Information Processing
Systems, 34:251–266, 2021.

[227] H. Tang, K. Liang, K. Grauman, M. Feiszli, and W. Wang. Egotracks: A long-term
egocentric visual object tracking dataset. arXiv preprint arXiv:2301.03213, 2023.

[228] H. Tao, H. S. Sawhney, and R. Kumar. A global matching framework for stereo
computation. In Proceedings Eighth IEEE International Conference on Computer
Vision. ICCV 2001, volume 1, pages 532–539. IEEE, 2001.

[229] D. Thapar, A. Nigam, and C. Arora. Anonymizing egocentric videos. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 2320–2329, 2021.

[230] T. Thonat, E. Shechtman, S. Paris, and G. Drettakis. Multi-view inpainting for image-
based scene editing and rendering. In 2016 Fourth International Conference on 3D
Vision (3DV), pages 351–359. IEEE, 2016.

[231] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker.
Learning to adapt structured output space for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7472–7481,
2018.

[232] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4068–4076, 2015.

[233] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7167–7176, 2017.

143

[234] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[235] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox.
Demon: Depth and motion network for learning monocular stereo. In CVPR, 2017.

[236] D. Ungureanu, F. Bogo, S. Galliani, P. Sama, X. Duan, C. Meekhof, J. Stühmer, T. J.
Cashman, B. Tekin, J. L. Schönberger, et al. Hololens 2 research mode as a tool for
computer vision research. arXiv preprint arXiv:2008.11239, 2020.

[237] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and C. Schmid.
Learning from synthetic humans. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 109–117, 2017.

[238] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[239] A. Veit and S. Belongie. Convolutional networks with adaptive inference graphs. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 3–18,
2018.

[240] C. Wang, H. Huang, X. Han, and J. Wang. Video inpainting by jointly learning
temporal structure and spatial details. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 5232–5239, 2019.

[241] G. Wang, C. Luo, X. Sun, Z. Xiong, and W. Zeng. Tracking by instance detection:
A meta-learning approach. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 6288–6297, 2020.

[242] J. Wang, L. Liu, W. Xu, K. Sarkar, D. Luvizon, and C. Theobalt. Estimating egocentric
3d human pose in the wild with external weak supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13157–
13166, 2022.

[243] J. Wang, Y. Zhong, Y. Dai, S. Birchfield, K. Zhang, N. Smolyanskiy, and H. Li. Deep
two-view structure-from-motion revisited. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8953–8962, 2021.

[244] L. Wang, H. Jin, R. Yang, and M. Gong. Stereoscopic inpainting: Joint color and depth
completion from stereo images. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8. IEEE, 2008.

[245] X. Wei, Y. Bai, Y. Zheng, D. Shi, and Y. Gong. Autoregressive visual tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9697–9706, 2023.

144

[246] S.-K. Weng, C.-M. Kuo, and S.-K. Tu. Video object tracking using adaptive kalman
filter. Journal of Visual Communication and Image Representation, 17(6):1190–1208,
2006.

[247] X. Weng, J. Wang, D. Held, and K. Kitani. 3d multi-object tracking: A baseline and
new evaluation metrics. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 10359–10366. IEEE, 2020.

[248] L. Westover. Footprint evaluation for volume rendering. In Proceedings of the 17th
annual conference on Computer graphics and interactive techniques, pages 367–376,
1990.

[249] Y. Wexler, E. Shechtman, and M. Irani. Space-time video completion. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., volume 1, pages I–I. IEEE, 2004.

[250] Y. Wexler, E. Shechtman, and M. Irani. Space-time completion of video. IEEE
Transactions on pattern analysis and machine intelligence, 29(3):463–476, 2007.

[251] S. Workman, M. Zhai, and N. Jacobs. Horizon lines in the wild. arXiv preprint
arXiv:1604.02129, 2016.

[252] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz,
and T. Funkhouser. Tidybot: Personalized robot assistance with large language models.
arXiv preprint arXiv:2305.05658, 2023.

[253] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2411–2418,
2013.

[254] W. Xian, Z. Li, M. Fisher, J. Eisenmann, E. Shechtman, and N. Snavely. Uprightnet:
geometry-aware camera orientation estimation from single images. In ICCV, 2019.

[255] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations
for deep neural networks. In CVPR, pages 1492–1500, 2017.

[256] W. Xiong, J. Yu, Z. Lin, J. Yang, X. Lu, C. Barnes, and J. Luo. Foreground-aware
image inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5840–5848, 2019.

[257] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe. Multi-scale continuous crfs as
sequential deep networks for monocular depth estimation. In CVPR, 2017.

[258] D. Xu, W. Wang, H. Tang, H. Liu, N. Sebe, and E. Ricci. Structured attention guided
convolutional neural fields for monocular depth estimation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3917–3925, 2018.

[259] B. Yan, H. Peng, J. Fu, D. Wang, and H. Lu. Learning spatio-temporal transformer for
visual tracking. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 10448–10457, 2021.

145

[260] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li. High-resolution image in-
painting using multi-scale neural patch synthesis. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 6721–6729, 2017.

[261] N. Yang, R. Wang, J. Stückler, and D. Cremers. Deep virtual stereo odometry:
Leveraging deep depth prediction for monocular direct sparse odometry. In ECCV,
2018.

[262] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi. Deep learning for person
re-identification: A survey and outlook. IEEE transactions on pattern analysis and
machine intelligence, 44(6):2872–2893, 2021.

[263] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. Lift: Learned invariant feature transform.
In European conference on computer vision, pages 467–483. Springer, 2016.

[264] Z. Yi, Q. Tang, S. Azizi, D. Jang, and Z. Xu. Contextual residual aggregation for
ultra high-resolution image inpainting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7508–7517, 2020.

[265] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm computing surveys
(CSUR), 38(4):13–es, 2006.

[266] T. Yin, X. Zhou, and P. Krahenbuhl. Center-based 3d object detection and tracking. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11784–11793, 2021.

[267] W. Yin, Y. Liu, C. Shen, and Y. Yan. Enforcing geometric constraints of virtual normal
for depth prediction. In ICCV, 2019.

[268] R. Yonetani, K. M. Kitani, and Y. Sato. Recognizing micro-actions and reactions from
paired egocentric videos. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2629–2638, 2016.

[269] Y. You, Y. Wang, W.-L. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell, and K. Q.
Weinberger. Pseudo-lidar++: Accurate depth for 3d object detection in autonomous
driving. arXiv preprint arXiv:1906.06310, 2019.

[270] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image inpainting
with contextual attention. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5505–5514, 2018.

[271] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form image inpainting
with gated convolution. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4471–4480, 2019.

[272] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous driving:
Common practices and emerging technologies. IEEE access, 8:58443–58469, 2020.

146

[273] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese. Taskonomy: Dis-
entangling task transfer learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3712–3722, 2018.

[274] Y. Zeng, J. Fu, and H. Chao. Learning joint spatial-temporal transformations for
video inpainting. In The Proceedings of the European Conference on Computer Vision
(ECCV), 2020.

[275] Y. Zeng, Z. Lin, J. Yang, J. Zhang, E. Shechtman, and H. Lu. High-resolution image
inpainting with iterative confidence feedback and guided upsampling. In European
Conference on Computer Vision, pages 1–17. Springer, 2020.

[276] J. Zhang, D. Sun, Z. Luo, A. Yao, L. Zhou, T. Shen, Y. Chen, L. Quan, and H. Liao.
Learning two-view correspondences and geometry using order-aware network. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
5845–5854, 2019.

[277] J. Zhang, K. Sunkavalli, Y. Hold-Geoffroy, S. Hadap, J. Eisenman, and J.-F. Lalonde. All-
weather deep outdoor lighting estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10158–10166, 2019.

[278] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.

[279] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[280] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and T. Funkhouser.
Physically-based rendering for indoor scene understanding using convolutional neural
networks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[281] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and T. Funkhouser.
Physically-based rendering for indoor scene understanding using convolutional neural
networks. In CVPR, 2017.

[282] Z. Zhang, Z. Cui, C. Xu, Y. Yan, N. Sebe, and J. Yang. Pattern-affinitive propagation
across depth, surface normal and semantic segmentation. In CVPR, 2019.

[283] S. Zhao, J. Cui, Y. Sheng, Y. Dong, X. Liang, E. I. Chang, and Y. Xu. Large scale
image completion via co-modulated generative adversarial networks. arXiv preprint
arXiv:2103.10428, 2021.

[284] S. Zhao, H. Fu, M. Gong, and D. Tao. Geometry-aware symmetric domain adaptation
for monocular depth estimation. In CVPR, 2019.

147

[285] W. Zhao, S. Liu, Y. Shu, and Y.-J. Liu. Towards better generalization: Joint depth-pose
learning without posenet. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9151–9161, 2020.

[286] Y. Zhao, C. Barnes, Y. Zhou, E. Shechtman, S. Amirghodsi, and C. Fowlkes. Geofill:
Reference-based image inpainting with better geometric understanding. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
1776–1786, 2023.

[287] Y. Zhao, S. Kong, and C. Fowlkes. Camera pose matters: Improving depth prediction
by mitigating pose distribution bias. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 15759–15768, 2021.

[288] Y. Zhao, S. Kong, D. Shin, and C. Fowlkes. Domain decluttering: Simplifying images
to mitigate synthetic-real domain shift and improve depth estimation. In CVPR, 2020.

[289] Y. Zhao, H. Ma, S. Kong, and C. Fowlkes. Instance tracking in 3d scenes from egocentric
videos. arXiv preprint arXiv:2312.04117, 2023.

[290] Y. Zhao, Y. Tian, C. Fowlkes, W. Shen, and A. Yuille. Resisting large data variations
via introspective transformation network. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 3080–3089, 2020.

[291] C. Zheng, T.-J. Cham, and J. Cai. T2net: Synthetic-to-realistic translation for solving
single-image depth estimation tasks. In ECCV, 2018.

[292] C. Zheng, T.-J. Cham, and J. Cai. Pluralistic image completion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1438–1447,
2019.

[293] L. Zheng, Y. Yang, and A. G. Hauptmann. Person re-identification: Past, present and
future. arXiv preprint arXiv:1610.02984, 2016.

[294] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million
image database for scene recognition. IEEE transactions on pattern analysis and
machine intelligence, 40(6):1452–1464, 2017.

[295] C. Zhou, Z. Luo, Y. Luo, T. Liu, L. Pan, Z. Cai, H. Zhao, and S. Lu. Pttr: Relational
3d point cloud object tracking with transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8531–8540, 2022.

[296] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and
ego-motion from video. In CVPR, 2017.

[297] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint arXiv:1805.09817, 2018.

[298] X. Zhou, D. Wang, and P. Krähenbühl. Objects as points. arXiv preprint
arXiv:1904.07850, 2019.

148

[299] Y. Zhou, C. Barnes, E. Shechtman, and S. Amirghodsi. Transfill: Reference-guided
image inpainting by merging multiple color and spatial transformations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2266–2276, 2021.

[300] J. Zhu, S. Lai, X. Chen, D. Wang, and H. Lu. Visual prompt multi-modal tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9516–9526, 2023.

[301] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, 2017.

[302] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman.
Toward multimodal image-to-image translation. In Advances in Neural Information
Processing Systems, pages 465–476, 2017.

[303] S. Zhu, C. Li, C. Change Loy, and X. Tang. Face alignment by coarse-to-fine shape
searching. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4998–5006, 2015.

[304] X. Zhu, D. Anguelov, and D. Ramanan. Capturing long-tail distributions of object
subcategories. In CVPR, 2014.

[305] C. Zou, A. Colburn, Q. Shan, and D. Hoiem. Layoutnet: Reconstructing the 3d room
layout from a single rgb image. In CVPR, 2018.

149

Appendix A

Chapter 2 Supplemental Material

This document supplements Chapter 2 with detailed training diagrams of how we initial-

ize/pretrain the inpainting module I and attention module A in our modular coordinate

descent algorithm.

A.1 Detailed Training Diagrams of A and I

To provide a clear idea of how we (pre)train our modules, we present two diagrams, the

attention module A and inpainting module I. For others, we train the real-to-synthetic style

translator T by simply using the CycleGAN pipeline [301]. To train the depth predictor

module D, we train it simply using depth regression loss.

The training diagram of our attention module A is presented in Fig. A.1. Note that A only

appears in the left panel Fig. A.1 (a), which means A only learns where to mask out in real

images. We do not apply this to synthetic data, as synthetically rendered images are clean

without clutters.

150

S2R SynR2SReal

Attention Module A Real-to-Synthetic Translator Gr2s

Synthetic-to-Real Translator Gs2r

R2S RealS2RSyn

Synthetic-to-Real Translator Gs2r

Real-to-Synthetic Translator Gr2s

Dsyn Dreal

(b)(a)

Dreal Dsyn

KL loss

Depth Loss

Figure A.1: Detailed training diagram of our attention module A. Note that A only shows
in the real-to-synthetic cycle, e.g., the part (a) in the diagram. The intuition behind two
asymmetric cycles is that A should remove clutters in real samples instead of clean synthetic
images.

Our detailed training diagram of module I is shown in Fig. A.2. The attention module A

and the style translator T are pretrained models and we color them in red for the purpose

of indication. Note that the output of I is the intermediate inpainting results and our final

reconstructed images still follow Eqn. 2.3 in Chapter 2.

Real Inpainted Img

Attention Module A

Inpainting Module I

Discriminator loss

Real-to-Synthetic Translator T

R2S

Perceptual loss

Figure A.2: Detailed training diagram of our inpainting module I. Red blocks in the figure
indicates that they are pretrained modules, i.e., the attention module A and style translator
T .

151

Appendix B

Chapter 3 Supplemental Material

This document supplements Chapter 3 with additional details in experiments, including RGB

and depth preprocessing steps, training the camera pose prediction models, our evaluation

protocol, and the ScanNet camera pose distribution.

B.1 Additional Details in Experiments

B.1.1 Image and Depth Preprocessing

All input RGB images are first normalized to the range of [−1.0, 1.0] and then resized to

240× 320 before feeding into CNNs. Note that resizing images to 240× 320 does not change

their original aspect ratios. For better training, as a preprocessing step on the depth [21, 85],

we apply the following operation to rescale depth maps y to get a normalized map y′:

y′ = (
y − Emin

Emax − Emin

− 0.5) ∗ 2.0, (B.1)

152

Figure B.1: Distribution of pitch, roll and camera height for three subsets of images from ScanNet.
From the Natural subset, we observe the ScanNet dataset also has a naturally biased distribution in
both pitch, roll and camera height. Please refer to Section 3.5 in Chapter 3 on how we construct
these three subsets.

where Emin = 1.0 and Emax = 10.0 are the minimum and maximum evaluation values,

respective. The above operation is a map from [1.0, 10.0] to [−1.0, 1.0]. In the literature, it is

reported the model can be trained better in this scale range [291, 284]. We only compute the

loss for pixels that have depth values between 1.0 and 10.0 meters. We evaluate the depth

prediction on the original depth scale. To do so, we apply an inverse operation of Eq. B.1

to the predicted depth maps. Moreover, we also only evaluate the depth that lies in [1, 10]

meters.

B.1.2 Pose Prediction Network

When camera poses are not available during testing, we train a camera pose predictor that

predicts camera pitch θ, roll ω and height h for CPP encoding (i.e., the CPPpred model).

We build the pose predictor over ResNet18 structure with a new top layer that outputs a

3-dim vector to regress pitch, roll, and camera height. During training, we load the ImageNet

pretrained weights and finetune the weights for pose predictions with L1 loss.

153

B.1.3 Evaluation Protocol

The depth evaluation range in this work is from 1.0m to 10.0m for both InteriorNet and

ScanNet. For each method, we save a checkpoint every 10 epochs and select the checkpoint

that produces the smallest average L1 loss on the validation set to report the performance.

B.1.4 ScanNet Camera Pose Distribution

The camera pose distribution of subsets in ScanNet is shown in Fig. B.1. While it is hard to

sample a subset with exactly uniform distribution w.r.t to all attributes (i.e., pitch, roll, and

camera height), we sample the Uniform subset with the priority of pitch, roll, height from

high to low. As these subsets differ a lot in terms of camera pose distribution, they serve our

study w.r.t camera distribution bias.

154

Appendix C

Chapter 4 Supplemental Material

This document supplements Chapter 4 with additional details, including convergence criteria

of our optimization and average running time of each step in GeoFill.

C.1 Convergence Criteria

The convergence criteria define when the optimization should stop. Our optimization halts

the loop at a given scale and continues to the next scale if the following condition is met or

the predefined maximum number of iteration is achieved. The formula below measures the

objective function value changes within the last m iterations.

ϵi =
|
∑i

i−(m/2)−1 li −
∑i−m−1

i−(m/2) li|∑i
i−(m/2)−1 li

, (C.1)

where i represents the ith iteration. If ϵi is smaller than a predefined ϵopt, we assume the

objective function has converged. Since we adopt a coarse-to-fine optimization strategy, we

check the same condition at every level of the pyramid. In other words, we move to the finer

155

scale level only if Eqn. C.1 is met or maximum number of iterations at the current level is

reached. We also keep track of the optimal parameters at each level and use them as the

initialization in the next level. In practice, we set the convergence threshold ϵopt to 10−6 for

all levels. The number of loss values to track in computing convergence criteria is m = 10.

C.2 Average Running Time of GeoFill

We randomly sampled 50 images at 1280x720 pixels and compute the average time of each

step. Monocular depth estimation takes 3.83s, sparse correspondence estimation takes 0.596s,

triangulation takes 0.0009s, initial relative pose takes 0.0052s, joint optimization takes 58.2s,

mesh rendering takes 1.03s, refinement and merging step takes 2.53s. The reported time uses

default parameters described in the experiment section. Although the joint optimization step

takes up the vast majority of the time, its current implementation is naive and not optimized.

If desired, various engineering optimizations could be made such as using a custom kernel

with proper low-level optimizations such as fusion for the renderer instead of a naive pure

PyTorch implementation, using FP16 mode, using only the sparse edge map pixels during

optimization (these are quite sparse so significant acceleration should be possible), using

second-order optimization techniques that could potentially converge in fewer steps, carefully

tuning input resolution, number of pyramid levels, iteration limits, break thresholds, etc. We

considered these to be lower-level engineering details that we did not focus on in our current

implementation, since we were focusing more on research aspects.

156

Appendix D

Chapter 5 Supplemental Material

This document supplements Chapter 5 with dataset documentation and intended uses.

D.1 Datasheet

We follow the datasheet proposed in [77] for documenting our benchmark dataset.

Motivation

For what purpose was the dataset created?

This dataset was created to study the problem of instance tracking in 3D from egocentric

videos. We find current egocentric sensor data from AR/VR devices cannot support the

study of our benchmark problem.

Composition

What do the instances that comprise the dataset represent?

Raw egocentric video sequences, object enrollments for each object instance, and annotation

157

files.

How many instances are there in total?

There are 50 video sequences with an average length of over 10K frames, 220 unique object

instances with two types of enrollment information, and three types of annotations.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of

instances from a larger set?

Yes.

What data does each instance consist of?

Please check Section 5.3.2 in Chapter 5 for details.

Is there a label or target associated with each instance?

Yes. Please check Section 5.3.2 in Chapter 5 for details.

Is any information missing from individual instances?

No.

Are relationships between individual instances made explicit?

Videos captured in the same scene share a similar surrounding environment but different

activities. Object instances are related to the task performed in the video. No explicit

relationships between different object instances in the same video.

Are there recommended data splits?

Yes. The entire benchmark dataset focuses on evaluation only. Models should be pretrained

on other data sources. Please check Section 5.3.1 in Chapter 5 for details.

Are there any errors, sources of noise, or redundancies in the dataset?

Yes. There are noises in camera poses and depth maps. The source of camera pose noise is

from the camera localization from HoloLens2, especially under large head motion. The depth

158

map noises are from phase wrapping. But this noise can be easily recovered with rendered

depth using mesh or exploring existing unwrapping algorithms.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,

websites, tweets, other datasets)?

Yes. The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is

protected by legal privilege or by doctor-patient confidentiality, data that includes the content

of individuals’ non-public communications)?

No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,

or might otherwise cause anxiety?

No.

Does the dataset identify any subpopulations (e.g., by age, gender)?

No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or

indirectly (i.e., in combination with other data) from the dataset?

No. We have carefully examined the data and ensure no personally identifiable information

is included.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that

reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or

union memberships, or locations; financial or health data; biometric or genetic data; forms of

government identification, such as social security numbers; criminal history)?

No..

Any other comments?

159

N/A

Collection Process

How was the data associated with each instance acquired?

The raw video sequences are collected with HoloLens2. The pre-enrollment information is

captured with the iPhone 13 Pro. The rest data, i.e, annotations and online enrollment

information, are acquired from human annotators.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or

sensor, manual human curation, software program, software API)?

The dataset is collected with open-source hl2ss [1] using HoloLens2. The pre-enrollment

images are captured with the iPhone 13 Pro. For more details please check Section 5.3 in

Chapter 5.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,

probabilistic with specific sampling probabilities)?

N/A

Does the dataset relate to people?

Yes. The dataset includes video sequences of the first-person view of individuals performing

the daily activity.

Were any ethical review processes conducted (e.g., by an institutional review board)?

Yes. Data collection protocol was registered with the appropriate institutional review board

(IRB).

Did you collect the data from the individuals in question directly, or obtain it via third

parties or other sources (e.g., websites)?

The raw video sequences are collected when the camera wearer performs the daily task.

160

Were the individuals in question notified about the data collection?

Yes.

Did the individuals in question consent to the collection and use of their data?

Yes.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke

their consent in the future or for certain uses?

No.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a

data protection impact analysis) been conducted?

No. All annotations are on objective world states with no subjective opinions or arguments

involved.

Any other comments?

N/A

Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,

tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing

of missing values)?

No.

Was the "raw" data saved in addition to the preprocessed/cleaned/labeled data (e.g., to

support unanticipated future uses)?

Yes. We will provide both the raw data and annotations.

Is the software used to preprocess/clean/label the instances available?

No.

161

Any other comments?

N/A

Uses

Has the dataset been used for any tasks already?

No.

What (other) tasks could the dataset be used for?

Our benchmark dataset also supports the study of other 3D scene understanding problems

from egocentric videos, such as SLAM, depth estimation, and camera localization.

Is there anything about the composition of the dataset or the way it was collected and

preprocessed/cleaned/labeled that might impact future uses?

No.

Are there tasks for which the dataset should not be used?

The usage of this dataset should be limited to the scope of instance tracking in 3D and

geometric scene understanding from egocentric videos.

Any other comments?

N/A

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,

organization) on behalf of which the dataset was created?

Yes. The dataset will be made publicly available and third parties are allowed to distribute

the dataset.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?

162

The dataset will be publicly available on both Github repo and the website and stored on

the cloud store, e.g., Google drive or Amazon S3.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,

and/or under applicable terms of use (ToU)?

We release our benchmark dataset and code under MIT license.

Have any third parties imposed IP-based or other restrictions on the data associated with

the instances?

No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual

instances?

No.

Any other comments?

N/A

Maintenance

Is there an erratum?

No. When errors are confirmed, we will announce erratum on the platform where dataset is

publicly hosted, i.e., either the Github repo or the website.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete

instances’)?

Yes. We hope to bring more diversity to the dataset, such as more object instance and scenes.

If the dataset relates to people, are there applicable limits on the retention of the data

associated with the instances (e.g., were individuals in question told that their data would be

retained for a fixed period of time and then deleted)?

163

No.

Will older versions of the dataset continue to be supported/hosted/maintained?

Yes. All versions of the dataset will be publicly available.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism

for them to do so?

Please email us if you are interested in extending or contributing to the dataset.

Any other comments?

N/A

164

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	3D Scene Perception Applications
	Classic Vision Tasks
	Emerging Tasks

	Depth Estimation
	Sensing Techniques
	Learning-based Depth Estimators

	Contributions
	Thesis Organization

	Bridging high-level domain gaps in monocular depth predictions
	Background
	Related Work
	Attend, Remove, Complete (ARC)
	Attention Module A
	Inpainting Module I
	Style Translator Module T
	Depth Predictor D
	Training by Modular Coordinate Descent

	Experiments
	Implementation Details
	Indoor Scene Depth with NYUv2 & PBRS
	Outdoor Scene Depth with Kitti & vKitti
	Ablation Study and Qualitative Visualization

	Conclusion and Future Work

	Mitigating camera pose distribution shift in depth predictions
	Background
	Related Work
	Perspective-aware Data Augmentation
	Depth Prediction with Camera Pose Prior
	Experiments
	Within & Cross-Distribution Evaluation
	Out-of-Distribution Evaluation
	Applicability to Other Predictor Networks
	Synthetic-to-Real Generalization
	Further Discussion and Ablation Study

	Conclusion

	Reference-based image inpainting leveraging depth maps
	Background
	Related Work
	Method
	Initialization Stage
	Joint Optimization Stage
	Rendering and Postprocessing Stage

	Experiments
	Quantitative Results
	Qualitative Results
	Ablation Study

	Discussion, Limitations, and Conclusion

	Instance tracking in 3D scenes with RGBD egocentric videos
	Background
	Related Work
	IT3DEgo: Protocol and Dataset
	Benchmarking Protocol
	Dataset

	Methodology
	Baseline: Re-purposed SOT Trackers
	Improved Baseline

	Experiments
	Benchmark Results
	Further Analysis and Ablation Study

	Discussion
	Conclusion

	Concluding Remarks
	Summary of Contributions
	Future Directions

	Bibliography
	Appendix Chapter 2 Supplemental Material
	Detailed Training Diagrams of A and I

	Appendix Chapter 3 Supplemental Material
	Additional Details in Experiments
	Image and Depth Preprocessing
	Pose Prediction Network
	Evaluation Protocol
	ScanNet Camera Pose Distribution

	Appendix Chapter 4 Supplemental Material
	Convergence Criteria
	Average Running Time of GeoFill

	Appendix Chapter 5 Supplemental Material
	Datasheet

