
A White-Box Speck Implementation using
Self-Equivalence Encodings

Joachim Vandersmissen

Thesis voorgedragen tot het behalen
van de graad van Master of Science

in de ingenieurswetenschappen:
computerwetenschappen, hoofdoptie

Veilige software

Promotoren:
Prof. dr. ir. F. Piessens
Prof. dr. ir. B. Preneel

Assessor:
Dr. A. Rafique

Begeleider:
A. Ranea

Academiejaar 2020 – 2021

© Copyright KU Leuven

Without written permission of the thesis supervisors and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication
should be addressed to the Departement Computerwetenschappen, Celestijnenlaan
200A bus 2402, B-3001 Heverlee, +32-16-327700 or by email info@cs.kuleuven.be.

A written permission of the thesis supervisors is also required to use the meth-
ods, products, schematics and programmes described in this work for industrial or
commercial use, and for submitting this publication in scientific contests.

Zonder voorafgaande schriftelijke toestemming van zowel de promotoren als de auteur
is overnemen, kopiëren, gebruiken of realiseren van deze uitgave of gedeelten ervan
verboden. Voor aanvragen tot of informatie i.v.m. het overnemen en/of gebruik
en/of realisatie van gedeelten uit deze publicatie, wend u tot het Departement
Computerwetenschappen, Celestijnenlaan 200A bus 2402, B-3001 Heverlee, +32-16-
327700 of via e-mail info@cs.kuleuven.be.

Voorafgaande schriftelijke toestemming van de promotoren is eveneens vereist voor het
aanwenden van de in deze masterproef beschreven (originele) methoden, producten,
schakelingen en programma’s voor industrieel of commercieel nut en voor de inzending
van deze publicatie ter deelname aan wetenschappelijke prijzen of wedstrijden.

Preface

In the first place, I would like to thank my mentor, Adrián Ranea, for patiently
explaining all new concepts and answering my many questions. Even though the
circumstances were not ideal this year, I very much enjoyed discussing my work
during our video calls. On top of this, Adrián provided very valuable feedback on
this text. It would not have been possible to finish this thesis without his help.

I would also like to express my gratitude to professor Preneel, for giving me the
opportunity to discover this interesting topic, and to professor Piessens, for allowing
me to start this thesis under his supervision and helping me with practical difficulties.

Lastly, I would like thank to my parents for supporting me. Throughout the last
five years, they have always had my back.

Joachim Vandersmissen

i

Contents

Preface i
Abstract iii
Samenvatting iv
List of Figures and Tables v
1 Introduction 1
2 Preliminaries 3

2.1 Notation . 3
2.2 Speck . 4

3 White-box cryptography 7
3.1 The White-Box Attack Context . 7
3.2 The CEJO framework . 9
3.3 Further developments . 14

4 Self-equivalences 17
4.1 Definitions . 17
4.2 Self-equivalences and Speck . 18
4.3 Generating linear self-equivalences 21
4.4 Generating affine self-equivalences 22

5 Security analysis of white-box Speck 25
5.1 Introduction . 25
5.2 Speck key schedule inversion . 26
5.3 Security analysis of linear self-equivalences 27
5.4 Security analysis of affine self-equivalences 31

6 Implementation 35
6.1 Introduction . 35
6.2 Architecture . 36
6.3 Code generation strategies . 43
6.4 Comparison . 56
6.5 Conclusion . 60

7 Conclusion 63
Bibliography 65

ii

Abstract

White-box cryptography is used to protect cryptographic keys in implementations
against adversaries with full control over the environment in which they are executed.
In 2002, Chow et al. initiated the formal study of white-box cryptography and
introduced the CEJO framework. Since then, various other white-box designs have
been proposed. However, at the time of writing, there has been no public academic
research into white-box cryptography for add-rotate-xor (ARX) ciphers.

In this thesis, we introduce the first academic method to generate white-box
Speck implementations. Unlike the CEJO framework, which is based on small
random permutations, we use self-equivalences of the Speck substitution layer to
encode the round keys. If these self-equivalences are chosen at random, it should be
impossible to recover the keys without knowing the original self-equivalences. While
we focus on Speck in this text, our method could easily be adapted to protect other
ARX ciphers.

Then, we analyze the security of our method against key-recovery attacks. We
discover that, when only linear self-equivalences are used, only one round key bit
is hidden by the self-equivalence encoding. Furthermore, we propose an algebraic
attack to fully recover the linear self-equivalence encodings and external encodings
from a white-box Speck implementation. When affine self-equivalences are used, we
show that candidate round keys could be computed by guessing the values of two
key bits. However, we are not able to recover the external encodings when affine
self-equivalences are used. Still, the security of our method remains uncertain. We
hope that this work will spur additional research in self-equivalence encodings for
white-box cryptography.

Finally, we describe the architecture of a Python project implementing our
method. This implementation is publicly available at https://github.com/jvdsn/
white-box-speck. We explain various design decisions, and use this project to
compute the performance impact of our method. Moreover, we give an overview of
five additional strategies to generate output code. These strategies can be used to
improve the performance of the generated code, both in terms of disk space usage
and execution time. We compare these strategies and determine how to generate
the most performant white-box Speck code. Lastly, this project could be employed
to test and compare the efficiency of attacks on white-box implementations using
self-equivalence encodings. For example, we use this project to demonstrate our
attack on white-box Speck using only linear self-equivalences.

iii

https://github.com/jvdsn/white-box-speck
https://github.com/jvdsn/white-box-speck

Samenvatting

White-box cryptography wordt gebruikt om cryptografische sleutels in implementaties
te beschermen tegen aanvallers die complete controle hebben over de uitvoeringsom-
geving. In 2002 begonnen Chow et al. de formele studie van white-box cryptography
en introduceerden ze het CEJO raamwerk. Sindsdien zijn er ook verschillende andere
white-box ontwerpen voorgesteld. Echter is er, tot op heden, nog geen academisch
onderzoek naar white-box cryptografie voor add-rotate-xor (ARX) cijfers gevoerd.

In deze thesis introduceren we de eerste academische methode om white-box
Speck implementaties te genereren. In tegenstelling tot het CEJO raamwerk, dat
gebaseerd is op kleine willekeurige permutaties, gebruiken we self-equivalences van
de Speck substitutielaag om de ronde sleutels te coderen. Als deze self-equivalences
willekeurig gekozen worden, zou het onmogelijk moeten zijn om de sleutels zonder
voorkennis te achterhalen. Alhoewel we in deze tekst focussen op Speck, kan onze
methode makkelijk aangepast worden om ook andere ARX cijfers te beschermen.

Daarna analyseren we de veiligheid van onze methode tegen key-recovery aan-
vallen. We ontdekken dat, wanneer enkel lineaire self-equivalences gebruikt worden,
slechts één bit van de ronde sleutel verborgen wordt door de self-equivalence codering.
Daarbovenop stellen we een algebraïsche aanval voor om de lineaire self-equivalence
coderingen én externe coderingen te achterhalen uit een white-box Speck implemen-
tatie. Wanneer affiene self-equivalences gebruikt worden, tonen we dat kandidaat
ronde sleutels berekend kunnen worden door de waarde van twee bits te raden. We
waren echter niet in staat om in dit geval de externe coderingen achterhalen. Toch
blijft de veiligheid van onze methode onzeker. We hopen dat dit werk een aanzet is
naar meer onderzoek in self-equivalence coderingen voor white-box cryptografie.

Ten slotte beschrijven we de architectuur van een Python project dat onze methode
implementeert. Deze implementatie is publiek beschikbaar op https://github.com/
jvdsn/white-box-speck. We verklaren verschillende ontwerpkeuzes, en gebruiken
dit project om de prestatie-impact van onze methode te berekenen. Daarnaast geven
we een overzicht van vijf bijkomende strategieën om uitvoercode te genereren. Deze
strategieën kunnen gebruikt worden om de prestaties van de gegenereerde code, zowel
op vlak van schijfgebruik als uitvoeringstijd, te verbeteren. We vergelijken deze
strategieën en bepalen hoe de meest performante white-box Speck code gegenereerd
kan worden. Tot slot kan dit project aangewend worden om aanvallen op white-box
implementaties met self-equivalence coderingen te testen. We gebruiken dit project
bijvoorbeeld om onze aanval op white-box Speck implementaties met enkel lineaire
self-equivalence coderingen te demonstreren.

iv

https://github.com/jvdsn/white-box-speck
https://github.com/jvdsn/white-box-speck

List of Figures and Tables

List of Figures

2.1 Diagram of a Speck encryption round 5

3.1 Securing information using traditional symmetric cryptography 7
3.2 Securing information using symmetric cryptography in the white-box model 8
3.3 A single round of AES, implemented using lookup tables 11
3.4 A single round of AES, protected using mixing bijections 13

4.1 Diagram of a Speck encryption round 18
4.2 Diagram of two Speck encryption rounds, with affine layers indicated

using dotted lines . 19
4.3 Diagram of two Speck SPN encryption rounds, expressed using affine

layers and substitution layers . 20
4.4 Diagram of two Speck SPN encryption rounds encoded using

self-equivalences . 21

6.1 Diagram of two Speck encryption rounds 35
6.2 Diagram of two white-box Speck encryption rounds 36
6.3 Sequence diagram of the white-box Speck implementation generation . 37
6.4 Diagram of two Speck SPN encryption rounds, with affine layers

replaced by a matrix-vector product and vector addition 39
6.5 Diagram of two Speck SPN encryption rounds, with self-equivalences

applied to the rounds . 40
6.6 UML diagram of the classes responsible for generating self-equivalences 40
6.7 UML diagram of the classes responsible for code generation 41
6.8 Average number of nonzero entries in M (r) 44
6.9 Average number of nonzero entries in v(r) 46
6.10 Average disk space used by different Speck32/64 implementations . . . 57
6.11 Average execution time for different Speck32/64 implementations . . . 57
6.12 Average disk space used by different Speck64/128 implementations . . 58
6.13 Average execution time for different Speck64/128 implementations . . 59
6.14 Average disk space used by different Speck128/256 implementations . 59
6.15 Average execution time for different Speck128/256 implementations . . 60

v

List of Figures and Tables

List of Tables

2.1 Speck parameter sets . 4

6.1 Average number of nonzero entries, disk space usage, and disk space
saved using the sparse matrix representation 44

6.2 Average number of nonzero entries, disk space usage, and disk space
saved using the sparse vector representation 45

6.3 Average number of nonzero entries, disk space usage and disk space
saved using the inlined matrix-vector product 47

6.4 Average number of nonzero entries, disk space usage and disk space
saved using the inlined vector addition 48

6.5 Built-in parity functions provided by GCC 50
6.6 Average number of nonzero entries, disk space usage and disk space

saved using the bit-packed inlined matrix-vector product 52
6.7 SIMD intrinsic functions used in the matrix-vector product 54

vi

Chapter 1

Introduction

Traditionally, honest parties use cryptographic algorithms in combination with cryp-
tographic keys to encrypt or decrypt messages. However, there are situations in
which these keys must remain hidden, even from the party performing the encryption
or decryption. In this case, the adversary has full control over the execution environ-
ment. As such, the implementation is a “white box” to the adversary. White-box
cryptography is used to protect these implementations against key recovery attacks.
From an attacker’s perspective, reverse engineering and extracting a protected im-
plementation of a cipher is less convenient compared to simply redistributing the
keys. This implementation might also be restricted to a specific computing platform.
Consequently, white-box cryptography is a popular method to protect private keys
in the mobile banking industry and for digital rights management (DRM).

In 2002, Chow et al. initiated the formal study of white-box cryptography in their
seminal work [1]. They provided a formal definition of the white-box model, which
specifies the capabilities of an adversary with complete control of a cryptographic
implementation. On top of this, they introduced the first academic framework to
generate protected implementations in the white-box model, based on the AES block
cipher. Since then, many different constructions have been developed over the years.
Nevertheless, all of the block cipher implementations using the approach of Chow et
al. have been broken.

White-box cryptography is closely related to the fields of program obfuscation
in software development and cryptographic obfuscation. The goal of obfuscation is
to hide some information about the description of a program, without changing the
behavior of said program. In software development, this could be achieved by changing
variable names or introducing complicated control flow, whereas cryptographic
obfuscation is based on mathematical problems. In 2001, Barak et al. proved
that it is impossible to perfectly obfuscate all programs (black-box obfuscation)
[2]. Moreover, applying techniques from cryptographic obfuscation to complex
functions, such as block ciphers, is currently not practical. Still, research in black-box
obfuscation and other models, such as indistinguishability obfuscation, continues.

In this thesis, we will try to apply white-box protection to the Speck family of
block ciphers, based on add-rotate-xor (ARX) ciphers. At the time of writing this

1

1. Introduction

text, there is no public academic research on ARX ciphers in the context of white-box
cryptography. However, some commercial products, such as whiteCryption’s Secure
Key Box [3], do offer this possibility. Unfortunately, companies rarely publish their
methods for white-box cryptography, and the security of these implementations
depends on the secrecy of their design.

The goal of this thesis is threefold. Firstly, we want to introduce a method to
generate secure white-box implementations for Speck encryption. This method
will be based on self-equivalence encodings, introduced by McMillion et al. [4] and
recently picked up by Ranea et al. [5]. A self-equivalence of a function is a pair
of permutations which can be applied to the start and end of the function without
changing the original behavior. Random self-equivalences of the Speck substitution
layer could be applied to the start and end of each affine layer without changing the
Speck behavior. It should then be infeasible to recover the round keys embedded in
these encoded layers, without knowing the original self-equivalence encodings.

Secondly, we want to conduct a security analysis of our method in the white-box
model. One important question is whether the round keys are adequately masked by
the self-equivalence encodings. Additionally, we want to investigate whether it could
be possible to recover the original self-equivalence encodings from the encoded affine
layers. Recovering these encodings would allow an attacker to reverse the protection
and recover the embedded keys.

Finally, we want to create a functional implementation of this method, capable
of generating correct white-box Speck code. Most importantly, this would allow
us to compare the performance impact of our method to an unprotected Speck
implementation. As we expect this impact to be significant, we could extend the
program with strategies to generate more performant protected code. Moreover, a
working implementation would allow us to easily test any key recovery attacks found
during our security analysis of our method. Lastly, by publishing this project, we
encourage additional cryptanalysis of our method using techniques that might not
be covered in this thesis.

The rest of this thesis is structured as follows. In Chapter 2, we define some
preliminary notation and concepts that will be reused throughout this text. Further-
more, we give an overview of the Speck block cipher family and its parameter sets.
In Chapter 3, we take a closer look at the origins of white-box cryptography, the
white-box model, and the CEJO framework. We also describe the state of the art
in white-box attacks and countermeasures. Then, in Chapter 4, we introduce the
mathematical concept of self-equivalences, our approach to apply self-equivalence
encodings to Speck, and a method to efficiently generate these self-equivalences.
In Chapter 5, we will analyze the security of our white-box Speck implementation
using self-equivalence encodings. Finally, in Chapter 6, we give an overview of our
Python project to generate white-box Speck implementations using self-equivalence
encodings. This chapter also contains a comparison of five additional strategies to
improve the performance of the generated programs, both in terms of disk space
usage and execution time.

2

Chapter 2

Preliminaries

In this chapter, we introduce the most important notation and concepts used in this
thesis. We start with an overview of the notation and terminology in Section 2.1.
Afterwards, we introduce the Speck block cipher family in Section 2.2.

2.1 Notation
In general, lowercase symbols in this thesis refer to numbers and vectors, while
uppercase symbols are used to denote functions and matrices. In particular, E and
D will be used to denote encryption and decryption functions, respectively. On top
of this, we use Ek and Dk to refer to encryption and decryption functions with a
hard coded key, k.

Finite fields with q elements are written as Fq. We will only work with the finite
field over two elements, F2. Vectors over this field are called binary vectors, while
matrices over F2 are called binary matrices. More specifically, binary vectors in the
vector space Fn2 are called n-bit vectors. The addition in F2 is denoted using ⊕, and
we extend this to the addition of n-bit vectors by pairwise addition of each element.
Finally, as a shorthand, we will sometimes replace ⊕ c by ⊕c if c is a constant.

A function A : Fn2 7→ Fm2 is called an (n,m)-bit function. If n = m, then we simply
call these functions n-bit functions. We use ◦ to refer to the composition of functions
and || to refer to the concatenation of functions. For example, (A||B)(x, y) =
(A(x), B(y)).

We generally use calligraphic font to indicate sets, for example A. The cardinality
of A is denoted using |A|. We can also extend the function composition and function
concatenation operations to sets of functions as follows:

A ◦ B = {A ◦B : A ∈ A, B ∈ B}
A||B = {A||B : A ∈ A, B ∈ B}

Moreover, if A contains only a single element A, we simply write A ◦ B or A||B.
An important operation in this thesis is the modular addition, defined as the

addition of two numbers x and y, modulo some power of two. We use � to refer
to the modular addition, and � to refer to its inverse, the modular subtraction.

3

2. Preliminaries

Furthermore, x≫ α denotes a right bitwise circular shift of x by α positions and
x≪ β denotes a left bitwise circular shift of x by β positions. Finally, in some
places we borrow notation from the C programming language: x&y refers to the
bitwise AND operation of the numbers x and y.

2.2 Speck

Speck is a family of lightweight block ciphers proposed by the National Security
Agency in 2013 [6]. In particular, Speck was designed with a focus on performance
in software. In this thesis, we also use “the Speck (block) cipher” to refer to the
general design of the Speck family. As with many block ciphers, the Speck design
is based on iterated application of so-called round functions on some internal state.

The Speck family consists of ten different instances, depending on the block
size and key size parameters (Table 2.1). The block size refers to the size in bits
of the input, internal state, and output. These values always consist of two words,
x and y, with bit size n. The key size refers to the size in bits of the master key
k, which consists of m key words, with bit size n. We use the block size and key
size in a shorthand notation to refer to specific Speck instances. For example,
Speck128/256 refers to the Speck instance with block size 128 and key size 256.

Block size Key size Word size n Key words m Rounds nr α β

32 64 16 4 22 7 2
48 72 24 3 22 8 3
48 96 24 4 23 8 3
64 96 32 3 26 8 3
64 128 32 4 27 8 3
96 96 48 2 28 8 3
96 144 48 3 29 8 3
128 128 64 2 32 8 3
128 192 64 3 33 8 3
128 256 64 4 34 8 3

Table 2.1: Speck parameter sets

Algorithm 1 Speck encryption round function
x, y ← encryption round input
x← x≫ α
x← x� y
x← x⊕ k(r)

y ← y≪ β
y ← x⊕ y
return x, y

4

2.2. Speck

Let k(r) be the round key for round r, and α, β the parameters as defined in
Table 2.1. Then the algorithm to compute the round function E(r) for round r is
described in Algorithm 1.

Figure 2.1 shows a schematic representation of the Speck round function.

+>>> +x(r)

y(r)

k(r)

<<< +
x(r+1)

y(r+1)

Figure 2.1: Diagram of a Speck encryption round

The decryption round function, D(r), can be computed by simply inverting the
steps in Algorithm 1. In particular, the modular addition � must be replaced by the
modular subtraction �.

The round keys, k(r) for 1 ≤ r ≤ nr, are computed using the Speck key schedule.
The key schedule transforms the master key k into nr round keys using the encryption
round function. This allows Speck implementations to reuse this subroutine, thus
reducing code size. We start by writing k as a sequence of m key words (2 ≤ m ≤ 4):

k =
[
l(m−1) . . . l(1) k(1)

]
Then, l(r+m−1) and k(r+1) are computed using the Speck round function, but

with r as “round key”:

l(r+m−1) = (k(r) � (l(r) ≫ α))⊕ r
k(r+1) = (k(r) ≪ β)⊕ l(r+m−1)

5

Chapter 3

White-box cryptography

In this chapter, we give a brief overview of the field of white-box cryptography. We
start by introducing the white-box model and its main properties in Section 3.1. In
Section 3.2, we look at the CEJO framework, one of the most popular methods to
generate white-box implementations. Finally, we describe the state of the art in
white-box attacks and countermeasures in Section 3.3.

3.1 The White-Box Attack Context

Traditionally, the study of cryptography was mostly constrained to the protection
of communications between two honest parties. We call these parties Alice and
Bob. Alice and Bob can use cryptography to securely exchange information without
allowing an adversary to read or modify the message while it is transmitted over
an insecure channel. To accomplish this, they decide on a cryptographic scheme
and the cryptographic keys to use in advance. They can then use the scheme and
the keys to encrypt or decrypt some input messages to be transmitted over the
insecure channel. In this thesis we will only consider symmetric cryptography, which
implies the same key can be used to both encrypt and decrypt data. By Kerckhoffs’s
principle, the cryptographic scheme is publicly known. As a result, the problem of
securing communications is shifted to the exchange of the cryptographic keys.

Alice Bob

E D

k

m

k

m
c

Figure 3.1: Securing information using traditional symmetric cryptography

7

3. White-box cryptography

Figure 3.1 shows an example of this scenario. Firstly, Alice and Bob exchange
the key k using a secure channel. Then, Alice uses k and the encryption function
E to encrypt the message m. E takes a key k and m and produces a ciphertext c,
such that it is infeasible to recover m from c without k. The resulting ciphertext
can then be sent to Bob, who uses k and the decryption function D to recover the
original message m.

In the previous scenario, Alice and Bob are trusted parties to the cryptographic
scheme. There is no incentive to cheat this scheme, as their end goal is to protect their
private communications against external adversaries. However, this is not always the
case in real-world situations. For example, a credit card uses cryptography to enable
secure purchases, but also restricts the usage of the card by the customer. Similarly,
a video streaming platform might want to send some encrypted videos to a paying
customer, but simultaneously prevent this customer from decrypting other videos
without permission. The challenge here is to design a cryptographic scheme which is
secure against adversarial parties with complete control of the implementation of the
scheme.

Alice Bob

E Dk

k

m
mc

Figure 3.2: Securing information using symmetric cryptography in the white-box
model

An example of this scenario is illustrated in Figure 3.2. Alice has access to a
cryptographic key k and an encryption function E, and wants to securely send a
message m to Bob. However, she does not want Bob to recover k (for example, Alice
wants to prevent Bob from using k in a different decryption implementation). Alice
can send a white-box protected version of the decryption function called Dk, which
can decrypt ciphertexts without revealing k. Then, Bob simply uses Dk to decrypt c
from Alice and recover m. Crucially, Bob has full control over the environment in
which Dk is executed.

This scenario was formalized in 2002 by Chow et al. in their seminal work [1].
They introduced the White-Box Attack Context, also called the white-box model. The
white-box model has three main properties:

• The attacker is a privileged user on the same host as the cryptographic algo-
rithm, with complete access to the implementation.

• The attacker can dynamically execute the cryptographic algorithm.

• At any point before, during, or after the execution, the attacker is able to view
and modify the internal details of the implementation.

8

3.2. The CEJO framework

In this model, the goal of the attacker is generally to extract the cryptographic
keys from the algorithm implementation. This would allow the attacker to execute the
encryption or decryption algorithm independently, without relying on the provided
implementation. Chow et al. described two approaches to protect cryptographic
implementations.

The first approach is called the dynamic-key approach. The cryptographic keys
are encrypted or encoded in some way to prevent the attacker from recovering the
original values. Both the encoded keys and the input data are provided to the
protected algorithm. In other words, E accepts an encoded key k and m, and
produces the ciphertext c. Similarly, D takes the encoded key k and c to recover m.
This approach has seen less adoption, as it appears to be more difficult than the
second approach.

Alternatively, the cryptographic keys can be embedded in the implementation.
This is called the fixed-key approach. In this case, the keys are part of the algorithm,
and only one input is provided to the algorithm: the data to be encrypted or
decrypted. For example, Ek encrypts a message using the embedded key k, and
Dk decrypts a ciphertext using k. Of course, this reduces the flexibility of the
implementation, as the cryptographic key cannot be changed easily. After all, key
rotation is an important technique to maintain security in applied cryptography.
Nonetheless, Chow et al. argue that, in software, keys can still be reasonably rotated
by simply changing the entire implementation.

The fixed-key approach is a very popular way to implement white-box cryptog-
raphy in practice. Especially in industries such as mobile banking or digital rights
management (DRM), commercial applications often employ white-box cryptography
to protect cryptographic keys. Thales’ Sentinel [7], Irdeto’s Cloakware [8], and
whiteCryption’s Secure Key Box [3] are among the most prolific products offering
white-box protection to customers. However, the security of these implementations
mainly relies on the secrecy of their design. Consequently, the initiative to develop
secure and open methods for white-box cryptography must come from the (academic)
research community. In this thesis, we will propose a method using the fixed-key
approach.

3.2 The CEJO framework

In their work, Chow et al. also proposed the first academic white-box cryptographic
scheme, based on the AES block cipher [9]. Their scheme, also called the CEJO
framework, composes the round function with randomized input and output encodings.
To showcase the similarities between the CEJO framework and the self-equivalence
encodings used in this thesis, introduced in the next chapter, we briefly explain the
CEJO framework in this section. For more information, we refer to the original work
[1] and a simplified tutorial [10].

9

3. White-box cryptography

3.2.1 Lookup tables

The first step in the CEJO framework to protect an AES encryption function with
nr rounds, Ek = E(nr) ◦ · · · ◦E(2) ◦E(1), is implementing each encryption round E(r)

using only lookup tables. We start by writing E(r) as follows:

E(r) = MixColumns ◦ SubBytes ◦ AddRoundKeyk̂(r−1) ◦ ShiftRows

E(nr) = AddRoundKeyk(nr) ◦ SubBytes ◦ AddRoundKeyk̂(nr−1) ◦ ShiftRows

Here, SubBytes, ShiftRows, MixColumns, and AddRoundKey are the well-known
AES operations. Although this description is equivalent to the conventional descrip-
tion of the AES rounds, some notational changes have been made to easily construct
a white-box version of the cipher. Firstly, the order of the operations is changed,
with SubBytes and ShiftRows swapped. On top of this, AddRoundKey is placed after
the ShiftRows operation, by replacing the round key k(r) with k̂(r), which represents
the result of ShiftRows applied to the original round key. These changes allow us
to combine the AddRoundKey and SubBytes operations in new lookup tables, called
T-boxes.

Definition 1 (T-box). Let S be the AES S-box, and k̂(r−1)
i,j the byte of the round

key k̂(r−1) at index (i, j). Then T (r)
i,j is defined as follows:

T
(r)
i,j (x) = S(x⊕ k̂(r−1)

i,j)

T
(nr)
i,j (x) = S(x⊕ k̂(nr−1)

i,j)⊕ k̂(nr)
i,j

This results in 16nr T-boxes, which replace the AddRoundKey and SubBytes steps
in E(r).

The next step is to provide lookup tables for the MixColumns operation. Recall
that MixColumns can be implemented by multiplying a 4×4 matrix and a 4×1 vector
for each column in the AES state matrix. This multiplication can be decomposed
into four scalar products joined by three XOR operations:

y =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

x1
x2
x3
x4

 = x1

02
01
01
03

⊕ x2

03
02
01
01

⊕ x3

01
03
02
01

⊕ x4

01
01
03
02

These scalar products are then replaced by lookup tables, the so-called Tyi tables:

y = Ty1(x1)⊕ Ty2(x2)⊕ Ty3(x3)⊕ Ty4(x4)

Definition 2 (Tyi table). A Tyi table maps an 8-bit integer to a 32-bit integer,
defined as follows:

Ty1(x) = x · [02 01 01 03]ᵀ

Ty2(x) = x · [03 02 01 01]ᵀ

Ty3(x) = x · [01 03 02 01]ᵀ

Ty4(x) = x · [01 01 03 02]ᵀ

10

3.2. The CEJO framework

Four copies of each Tyi table are needed to complete a single MixColumns
operation. As a result, 16(nr−1) Tyi tables are needed for the entire AES encryption
function. To save space, the Tyi tables are composed with the T-boxes. However,
the resulting lookup tables only compute the intermediate yi results. To compute
all y values and fully replace MixColumns, an additional 12 XOR tables are needed,
which map two 32-bit integers to a 32-bit integer. In the CEJO framework, these
32-bit XOR tables are implemented by combining eight 4-bit XOR tables.

Definition 3 (XOR table). An XOR table maps two 4-bit integers to a 4-bit integer,
defined as follows:

XOR(x, y) = x⊕ y

In total, 96 4-bit XOR tables are needed to complete the MixColumns operation,
resulting in 96(nr − 1) XOR tables for all rounds.

Figure 3.3 shows a diagram of a single AES round, implemented using lookup
tables. For the sake of simplicity, the diagram combines the eight 4-bit XOR tables
into a 32-bit XOR table. Note that the ShiftRows step is implemented by simply
loading the shifted byte ai,j from the state matrix.

T1, 1 T2, 1 T4, 1T3, 1

Ty1 Ty2 Ty3 Ty4 Ty1 Ty2 Ty3 Ty4 Ty1 Ty2 Ty3 Ty4Ty1 Ty2 Ty3 Ty4

32-bit XOR 32-bit XOR

32-bit XOR

a1, 1 a2, 1 a3, 1 a4, 1 a1, 2 a2, 2 a3, 2 a4, 2 a1, 3 a2, 3 a3, 3 a4, 3 a1, 4 a2, 4 a3, 4 a4, 4

T1, 2 T2, 2 T4, 2T3, 2 T1, 3 T2, 3 T4, 3T3, 3 T1, 4 T2, 4 T4, 4T3, 4

32-bit XOR 32-bit XOR

32-bit XOR

32-bit XOR 32-bit XOR

32-bit XOR

32-bit XOR 32-bit XOR

32-bit XOR

a1, 1 a2, 1 a3, 1 a4, 1 a1, 2 a2, 2 a3, 2 a4, 2 a1, 3 a2, 3 a3, 3 a4, 3 a1, 4 a2, 4 a3, 4 a4, 4

Figure 3.3: A single round of AES, implemented using lookup tables

3.2.2 Encodings

Because the table-based implementation of AES is still trivially insecure against
attacks in the white-box model, more steps are needed to produce a protected version.
In the second step of the CEJO framework, random bijections called input and output
encodings are applied to every table T .

Definition 4 (Encodings). Let T be a table. Then T ′ = g ◦ T ◦ f−1 is an encoded
table, where f−1 and g are called the input and output encodings, respectively.

11

3. White-box cryptography

These input and output encodings are applied to the tables in a networked
manner. For example, if T2 ◦T1, then T ′1 = g ◦T2 ◦f−1 and T ′2 = h◦T2 ◦g−1. Clearly:

T ′2 ◦ T ′1 = (h ◦ T2 ◦ g−1) ◦ (g ◦ T1 ◦ f−1) = h ◦ T2 ◦ T1 ◦ f−1

This is equivalent to applying the encodings directly to T2 ◦ T1.
Because the input and output encodings are chosen at random, they are expected

to be nonlinear. The encodings are then applied at the inputs of the T-boxes, at the
outputs of the Tyi tables, and at all inputs and outputs of the XOR tables. For the
full details of the generation and application of these encodings, we refer to [1] and
[10].

3.2.3 Mixing bijections

The input and output encodings provide local security to the white-box implementa-
tion, that is, it is not feasible to extract information from a single protected table.
However, it might still be possible to recover the key when multiple tables from
multiple rounds are considered. To prevent this, Chow et al. introduced the concept
of mixing bijections.

Definition 5 (Mixing bijection). A mixing bijection is a linear bijection which
provides diffusion to disguise the operation of a white-box AES implementation.

Mixing bijections are applied at the inputs of each T-box and at the outputs
of each Tyi table, except for the T-box of the first round and the Tyi table of the
last round. Similar to the input and output encodings of Section 3.2.2, these mixing
bijections are applied in a networked manner. Assuming the 8-bit mixing bijection
Ki,j has been applied to the byte ai,j from the state matrix, the inverse of this
bijection, K−1

i,j , is composed with the input of the T-box T (r)
i,j :

Tyi ◦ T (r)
i,j ◦K

−1
i,j

Applying 32-bit mixing bijections to the outputs of the Tyi tables is more involved.
Suppose Ty1, Ty2, Ty3, and Ty4 are the Tyi tables composed with T (r)

1,j , T
(r)
2,j , T

(r)
3,j ,

and T (r)
4,j . To protect the outputs of these tables, a random 32-bit mixing bijection

MBj is generated. MBj can then be composed with the outputs of Tyi:

MBj ◦ Tyi ◦ T (r)
i,j ◦K

−1
i,j

Similar to the implementation of the MixColumns operation, the lookup tables
required to invert MBj can be computed by decomposing the multiplication of a
4× 4 matrix with a 4× 1 vector. In this case, the matrix vector product is applied
to each zi individually, joined by three XOR operations:

t = MB−1
j

z1
z2
z3
z4

 = MB−1
j

z1
0
0
0

⊕MB−1
j

0
z2
0
0

⊕MB−1
j

0
0
z3
0

⊕MB−1
j

0
0
0
z4

12

3.2. The CEJO framework

Once again, lookup tables are used to compute the result of the matrix-vector
product. The individual matrix-vector products are replaced by MB−1

i,j tables:

t = MB−1
1,j (z1)⊕MB−1

2,j (z2)⊕MB−1
3,j (z3)⊕MB−1

4,j (z4)

However, before computing the result of the XOR operations, the mixing bijections
to protect the T-boxes of the next round must be applied, taking into account the
result of the ShiftRows operation. Assuming Li,j is the 8-bit mixing bijection to
apply to the byte ai,j from the state matrix, this results in the following Lj tables,
which are composed with each of the MB−1

i,j lookup tables:

L1 = L1,1||L2,4||L3,3||L4,2

L2 = L1,2||L2,1||L3,4||L4,3

L3 = L1,3||L2,2||L3,1||L4,4

L3 = L1,4||L2,3||L3,2||L4,1

In total, 16 additional 8-bit to 32-bit lookup tables and 96 additional 4-bit XOR
tables are required to implement the mixing bijections for a single round. Figure 3.4
shows a diagram of a single AES round, protected using mixing bijections. The input
and output encodings introduced in Section 3.2.2 are not visible on this diagram.

T1, 1 T2, 1 T4, 1T3, 1

Ty1 Ty2 Ty3 Ty4 Ty1 Ty2 Ty3 Ty4 Ty1 Ty2 Ty3 Ty4Ty1 Ty2 Ty3 Ty4

32-bit XOR 32-bit XOR

32-bit XOR

a1, 1 a2, 1 a3, 1 a4, 1 a1, 2 a2, 2 a3, 2 a4, 2 a1, 3 a2, 3 a3, 3 a4, 3 a1, 4 a2, 4 a3, 4 a4, 4

T1, 2 T2, 2 T4, 2T3, 2 T1, 3 T2, 3 T4, 3T3, 3 T1, 4 T2, 4 T4, 4T3, 4

32-bit XOR 32-bit XOR

32-bit XOR

32-bit XOR 32-bit XOR

32-bit XOR

32-bit XOR 32-bit XOR

32-bit XOR

a1, 1 a2, 1 a3, 1 a4, 1 a1, 2 a2, 2 a3, 2 a4, 2 a1, 3 a2, 3 a3, 3 a4, 3 a1, 4 a2, 4 a3, 4 a4, 4

K-1
1, 1 K-1

2, 1 K-1
3, 1 K-1

4, 1 K-1
1, 2 K-1

2, 2 K-1
3, 2 K-1

4, 2 K-1
2, 3 K-1

2, 4K-1
4, 3 K-1

4, 4K-1
1, 3 K-1

3, 3 K-1
1, 4 K-1

3, 4

MB1 MB1 MB1 MB1 MB2 MB2 MB2 MB2 MB3 MB3 MB3 MB3 MB4 MB4 MB4 MB4

32-bit XOR 32-bit XOR

32-bit XOR

32-bit XOR 32-bit XOR

32-bit XOR

32-bit XOR 32-bit XOR

32-bit XOR

32-bit XOR 32-bit XOR

32-bit XOR

L1

MB-1
1, 1 MB-1

2, 1 MB-1
3, 1 MB-1

4, 1

L1 L1 L1 L2

MB-1
1, 2 MB-1

2, 2 MB-1
3, 2 MB-1

4, 2

L2 L2 L2 L3

MB-1
1, 3 MB-1

2, 3 MB-1
3, 3 MB-1

4, 3

L3 L3 L3 L4

MB-1
1, 4 MB-1

2, 4 MB-1
3, 4 MB-1

4, 4

L4 L4 L4

Figure 3.4: A single round of AES, protected using mixing bijections

3.2.4 External encodings

Finally, to increase the security of the white-box AES implementation, external
encodings are applied to the full encryption function Ek. This ensures that at no

13

3. White-box cryptography

point during encryption or decryption, an unencoded plaintext or ciphertext is visible.
In fact, a white-box implementation without external encodings is trivially insecure
[1]. Chow et al. recommend to use 128-bit mixing bijections, U−1 and V , as external
encodings. As a result, each AES encryption round protected using the CEJO
framework can be written as a composition of an input encoding, the original round
function, and an output encoding.

Definition 6 (Encoded round). Let E(r) be an AES encryption round. Then the
encoded round E(r) is defined as follows:

E(1) = O(1) ◦ E(1) ◦ U−1

E(r) = O(r) ◦ E(r) ◦ I(r)

E(nr) = V ◦ E(nr) ◦ I(nr)

with I(r+1) = (O(r))−1. Additionally, we also call I(r) and O(r) the internal encodings
of round E(r).

Because the internal encodings for a single encryption round are cancelled out, a
full AES encryption function protected using the CEJO framework, denoted with
Ek, can be written as follows:

Ek = E(nr) ◦ · · · ◦ E(1)

= V ◦ E(nr) ◦ I(nr) ◦ · · · ◦O(1) ◦ E(1) ◦ U−1

= V ◦ E(nr) ◦ · · · ◦ E(1) ◦ U−1

Although essential for the security of white-box implementations, external encod-
ings also represent its main disadvantage. A white-box encryption function using
external encodings will map the plaintext m to the ciphertext c′ = (V ◦Ek ◦U−1)(m),
as opposed to the ciphertext c = Ek(m) for an unprotected encryption function.
Because of this, white-box cryptography might not be possible in situations where
cryptographic standards, such as the AES FIPS 197 [11], must be strictly followed.

3.3 Further developments
Shortly after publishing their work on AES, Chow et al. also applied their method
to the protection of the DES block cipher [12]. Concurrently, a practical side-channel
attack on the white-box DES implementation was published by Jacob et al., using
Differential Fault Analysis [13]. However, this attack was not applicable to the
CEJO AES implementation. Still, it would take only two years for the initial AES
implementation to be broken. In 2004, Billet et al. designed a practical key recovery
attack by analyzing the composition of the AES lookup tables [14].

The publication of these papers sparked more interest in the topic of white-box
cryptography, with new constructions based on DES [15] and AES [16] [17] [18]
[19] [20] [21] appearing over the years. This also spurred research into entirely

14

3.3. Further developments

different types of constructions using modified cipher designs [22] or incompressible
white-box ciphers [23] [24]. Unfortunately, all block cipher implementations based
on the fixed-key approach have been broken, using both algebraic attacks [25] [26]
[27] [28] [29] [30] [31] [32] [33] and attacks based on side-channel analysis [34] [35]
[36]. With the exception of [22], [23], and [24], all of these designs improved upon
or were inspired by the CEJO framework. Consequently, this framework has been
analyzed extensively.

In 2016, McMillion et al. used a type of permutations called self-equivalences to
construct a toy white-box implementation of AES [4]. In the same work, they also
presented a practical attack recover the cryptographic key from such implementations.
Their work received little attention, and was only recently picked up by Ranea et al.
[5]. Ranea et al. analyzed the white-box security of substitution-permutation network
(SPN) ciphers protected using self-equivalence encodings. They proposed a generic
attack on such implementations, and proved that it is possible to recover the key of
traditional SPN ciphers if the S-box do not have differential and linear approximations
with probability one. As cryptographically strong S-boxes are designed to resist
differential [37] and linear [38] cryptanalysis, they showed that self-equivalence
encodings are unsuitable to protect this class of traditional SPN ciphers. On the
other hand, they also indicated that self-equivalence encodings might be of interest
to protect ciphers with a better self-equivalence structure.

Most research into white-box cryptography of block ciphers has been applied to the
AES and DES ciphers. As a result, round encoding techniques are mainly developed
for block ciphers employing S-boxes, used by AES and DES [9] [39]. However,
more modern ciphers are also based on the add-rotate-xor (ARX) operations, whose
rounds consist of the three basic operations the name implies: modular addition,
bitwise rotation, and bitwise XOR. Curiously, there does not seem to be any previous
academic research on applying white-box cryptography to ARX ciphers. One possible
reason is that, as described previously, the method introduced by Chow et al. uses
lookup tables to generate a white-box AES or DES implementation. For ARX
ciphers, it is not feasible to generate a lookup table implementation, as the modular
addition function is too big.

Because ARX ciphers do not rely on cryptographically strong S-boxes to provide
nonlinearity, they are not susceptible to the attack described by Ranea et al. Further-
more, in [40], it was found that the n-bit modular addition has an exponential number
of self-equivalences in n. As a result, ciphers employing the modular addition as their
only source of nonlinearity are a promising target for future white-box cryptography
research based on self-equivalence encodings. In this thesis, we aim to introduce
ARX ciphers to white-box cryptography, and encourage further academic research in
this direction.

Some examples of modern, well-known ARX ciphers include Salsa20, a family
of 256-bit stream ciphers designed by Daniel J. Bernstein in 2008 [41], ChaCha,
a variant of Salsa20 also designed by Bernstein [42], Threefish (2010) [43],
and Speck, a collection of block ciphers published by the NSA in 2013 [6]. Of
these possible ARX ciphers, Speck employs by far the simplest round function.
The Salsa20 and ChaCha quarter-round functions each consist of four modular

15

3. White-box cryptography

addition functions, resulting in sixteen modular additions for a single round. Similarly,
Threefish contains two modular additions per round. On the other hand, Speck
only requires one modular addition function in its round function. Furthermore,
Salsa20 and ChaCha are stream ciphers, whereas Speck has a block cipher
structure. This makes it easier for us to build on the previous work on self-equivalence
encodings by Ranea et al.

16

Chapter 4

Self-equivalences

In this chapter, we introduce the mathematical concept of self-equivalences, permu-
tations A and B such that F = B ◦ F ◦A. After introducing self-equivalences, we
look at how these permutations can be used to protect the round keys of Speck
implementations. Finally, the generation of random linear and affine self-equivalences
of the Speck modular addition is discussed in Section 4.3 and Section 4.4 of this
chapter.

4.1 Definitions

In this section we introduce the definitions of linear and affine self-equivalences.

Definition 7 (Linear self-equivalences). Let F be an (n,m)-bit function. Let A be
an n-bit linear permutation and B be an m-bit linear permutation. If F = B ◦ F ◦A,
we call the pair (A,B) a linear self-equivalence of F .

Because A and B are linear functions, they could be given in the form of n×n and
m×m matrices, respectively. In that case, we say (A,B) is a linear self-equivalence
of F in matrix form.

Definition 8 (Affine self-equivalences). Let F be an (n,m)-bit function. Let A be
an n-bit linear permutation, a an n-bit constant, B be an m-bit linear permutation,
and b an m-bit constant. Together, (A, a) and (B, b) describe affine permutations. If
F = (⊕b ◦B) ◦F ◦ (⊕a ◦A), we call the pair ((A, a), (B, b)) an affine self-equivalence
of F , or just a self-equivalence of F .

Similarly, A, a, B, and b could be given in the form of n×n and m×m matrices,
and vectors of length n and m, respectively. In that case, we say ((A, a), (B, b)) is an
(affine) self-equivalence of F in matrix-vector form. Of course, linear self-equivalences
are also affine self-equivalences, with a and b equal to 0.

During this thesis, we will mostly work with the matrix and matrix-vector forms
of self-equivalences. This allows us to precisely specify the self-equivalences we are
using, as well as manipulate these matrices and vectors using basic linear algebra.

17

4. Self-equivalences

4.2 Self-equivalences and Speck

In Section 2.2, we introduced the Feistel-like structure and encryption round function
of Speck. We briefly repeat the round function in Algorithm 2.

Algorithm 2 Speck encryption round function
x, y ← encryption round input
x← x≫ α
x← x� y
x← x⊕ k(r)

y ← y≪ β
y ← x⊕ y
return x, y

A schematic representation of the Speck round function is shown in Figure 4.1.

+>>> +x(r)

y(r)

k(r)

<<< +
x(r+1)

y(r+1)

Figure 4.1: Diagram of a Speck encryption round

To protect the round keys k(r) from key recovery attacks using self-equivalences,
we need to rewrite the Speck encryption function as a substitution-permutation
network (SPN). We start by defining the encryption function of an SPN.

Definition 9 (SPN encryption function). Let Ek be an encryption function which
takes a plaintext m and encrypts this plaintext using key k to produce ciphertext c.
Then Ek represents the encryption function of a substitution-permutation network if
Ek can be decomposed in affine layers AL and substitution layers SL as follows:

Ek = AL(nr) ◦ SL ◦ · · · ◦AL(2) ◦ SL ◦AL(1)

In addition, we call SL ◦AL(r) an SPN encryption round E(r).

We can now prove that the Speck encryption function can also be written as a
combination of SPN encryption rounds.

18

4.2. Self-equivalences and Speck

Theorem 1. Let Ek be the encryption function of the Speck cipher consisting of nr
rounds with word size n. Ek can be decomposed in affine layers AL and substitution
layers SL, Ek = AL(nr) ◦ SL ◦ · · · ◦AL(1) ◦ SL ◦AL(0), with:

SL(x, y) = (x� y, y)
AL(0)(x, y) = (x≫ α, y)
AL(r)(x, y) = ((x⊕ k(r))≫ α, (x⊕ k(r))⊕ (y≪ β)), for 1 ≤ r ≤ nr − 1
AL(nr)(x, y) = (x⊕ k(nr), (x⊕ k(nr))⊕ (y≪ β))

We prove this theorem by illustrating the transformations visually through
Figure 4.2. Here, two Speck rounds are shown in sequence, with the dotted lines
indicating the affine layers separated by modular additions. Evidently, this can be
extended to nr Speck rounds, resulting in nr + 1 affine layers, where layer 0 and nr
have a special structure.

+>>> +x(r)

y(r)

k(r)

<<< +
+>>> +
k(r+1)

<<< +
x(r+2)

y(r+2)

Figure 4.2: Diagram of two Speck encryption rounds, with affine layers indicated
using dotted lines

In the previous definitions of AL, the Speck state consists of two n-bit variables
x and y. However, the self-equivalences of SL are 2n-bit affine permutations, which
operate on vectors of length 2n with elements in F2. To be able to apply these
self-equivalences to AL, we need rewrite AL as 2n-bit affine permutations operating
on a 2n-bit state vector xy. Here, xy contains the bits of x and y in little-endian
order.

Definition 10 (AL as 2n-bit permutations).

AL(0) = Rα

AL(r) = Rα ◦X ◦ Lβ ◦ ⊕k′(r), for 1 ≤ r ≤ nr − 1
AL(nr) = X ◦ Lβ ◦ ⊕k′(nr)

where Rα represents a right bitwise rotation of x by α positions, Lβ represents a left
bitwise rotation of y by β positions, and X represents the bitwise XOR operation
such that y = x⊕ y. Finally, k′(r) is a vector of length 2n containing the key bits of
the round key k(r) in the first n positions and zero in the last n positions.

19

4. Self-equivalences

Figure 4.3 shows two Speck SPN encryption rounds in terms of AL and modular
additions. We will omit the details on adapting the modular addition to a state vector
xy, as this change mostly depends on the implementation, discussed in Chapter 6.

xy(r) xy(r+2)+ AL(r+1) +AL(r)

Figure 4.3: Diagram of two Speck SPN encryption rounds, expressed using affine
layers and substitution layers

Now that AL(r) are 2n-bit affine permutations, we can introduce the definition
of an encoded affine layer AL(r).

Definition 11 (Encoded affine layer). Let AL(r) be an affine layer of the Speck
cipher, with 1 ≤ r ≤ nr. Let ((O(r), o(r)), (I(r+1), i(r+1))) be a self-equivalence of the
Speck substitution layer SL. Then we call AL(r) an encoded affine layer, with:

AL(r) = (⊕o(r) ◦O(r)) ◦AL(r) ◦ (⊕i(r) ◦ I(r))

In addition, we call (I(r), i(r)) and (O(r), o(r)) the self-equivalence encodings of AL.

Note that AL(0) will not be encoded using self-equivalences: this affine layer does
not contain any key material, so it can be skipped.

If the self-equivalences composed with each AL(r) are sampled randomly from a
set of self-equivalences, the unencoded affine layer AL(r) can not be recovered without
knowledge of (I(r), i(r)) and (O(r), o(r)). This effectively hides the round keys inside
the affine layers, and is the basis of our method to protect Speck implementations
using self-equivalence encodings. Moreover, this process could easily be adapted to
other ARX ciphers, as long as there is a method to generate random self-equivalences
of the substitution layer.

We will describe methods to generate random linear and affine self-equivalences
in the following sections. However, we first need to introduce the external encodings,
which are essential to the security of white-box cryptographic implementations.

Definition 12 (External encodings). Let AL(1) and AL(nr) be the first, respectively
last, encoded affine layers of a Speck implementation with nr rounds. Then (⊕i(1) ◦
I(1)) and (⊕o(nr) ◦O(nr)) are random affine permutations, called the input and output
encoding, respectively. Together, we call these permutations the external encodings.

Definition 13 (Encoded encryption function). Let Ek be the encryption function of
the Speck cipher consisting of nr rounds with word size n. We call Ek an encoded
Speck encryption function, with:

Ek = AL(nr) ◦ SL ◦ · · · ◦AL(1) ◦ SL ◦AL(0)

Additionally, we call SL ◦AL(r) an encoded round E(r).

20

4.3. Generating linear self-equivalences

By applying the property of self-equivalences to AL(r) of an encoded Speck
encryption function Ek, we obtain:

Ek = AL(nr) ◦ SL ◦ · · · ◦AL(1) ◦ SL ◦AL(0)

= (⊕o(nr) ◦O(nr)) ◦AL(nr) ◦ SL ◦ · · · ◦AL(1) ◦ (⊕i(1) ◦ I(1)) ◦ SL ◦AL(0)

= (⊕o(nr) ◦O(nr)) ◦AL(nr) ◦ SL ◦ · · · ◦AL(1) ◦ SL ◦AL(0) ◦ (⊕i′(1) ◦ I ′(1))
= (⊕o(nr) ◦O(nr)) ◦ Ek ◦ (⊕i′(1) ◦ I ′(1))

Clearly, applying self-equivalence encodings to the affine layers does not change
the behavior of Ek, provided that the inputs and outputs are encoded using the
external encodings. This property is also illustrated on Figure 4.4, for two encryption
rounds. The dotted lines indicate the substitution layer SL surrounded by its
self-equivalence, which can simply be reduced to SL.

xy(r) xy(r+2)I(r) +
i(r)

O(r) +
o(r)

+ AL(r+1)I(r+1) +
i(r+1)

O(r+1) +
o(r+1)

+AL(r)

Figure 4.4: Diagram of two Speck SPN encryption rounds encoded using self-
equivalences

As an example, suppose Alice wants to securely receive a message m from Bob,
and Bob has access to an encoded encryption function Ek. Bob starts by using Ek
to encrypt m:

c = Ek(m)

Alice can then use her knowledge of the key k and the external encodings to decrypt
c by computing:

m = ((⊕i′(1) ◦ I ′(1))−1 ◦Dk ◦ (⊕o(nr) ◦O(nr))−1)(c)

= Ek
−1(Ek(m))

4.3 Generating linear self-equivalences
In this section, we introduce a method to generate linear self-equivalences for the
Speck substitution layer SL. This method was first described by Ranea in [40].
Given any word size n, we start by introducing n× n matrices Ai and Bi:

Ai =

1 0 . . . 0 0
0 1 0 0 0
... 0 . . . 0

...
0 0 0 1 0
ai,1 ai,2 . . . ai,n−1 1

 , Bi =

0 0 . . . 0 0
0 0 0 0 0
... 0 . . . 0

...
0 0 0 0 0
bi,1 bi,2 . . . bi,n−1 0

21

4. Self-equivalences

with b0,j = a0,j and b1,j = a0,j + a1,j for 2 ≤ j ≤ n− 1.
These matrices can be composed to construct the set A of 4n-bit linear functions,

represented as a block matrix:

A =

A0 B0 B0 0
B1 A1 A0 +A1 B0
B0 0 A0 B0

A0 +A1 B0 B1 A1

Because there are 2n free coefficients (a0,1, . . . , a0,n−1, a1,1, . . . , a1,n−1, b0,1, and b1,1)
in F2, |A| = 22n.

Finally, we need to introduce the 4n-bit linear permutation L, defined by the
following block matrix:

L =

0 In In 0
In In In 0
0 0 In 0
In 0 In In

Using A and L, we can generate 22n different linear self-equivalences of the

modular addition. Theorem 2, adapted from Proposition 1 from [40], describes the
final step in the generation method.

Theorem 2 (Proposition 1 from [40]). Let Â be the set of 4n-bit linear functions
given by L ◦ A ◦ L−1. Then, any function F ∈ Â is of the form F (x, y, x′, y′) =
M1(x, y)||M2(x′, y′) and (M1,M

−1
2) is a linear self-equivalence of SL, that is, M2 ◦

SL = SL ◦M1. In particular, the modular addition has at least 22n linear self-
equivalences.

We call the set of linear self-equivalences generated using this method SEL(SL),
that is, SEL(SL) = Â. As mentioned previously, |SEL(SL)| = 22n. This is important
for the security of our method to protect Speck implementations: the number of
self-equivalences should be as high as possible to prevent a simple brute-force key
recovery attack. For n = 64, the largest Speck word size, this would result in
2128 possibilities, enough to resist a naive brute-force attack. An extensive security
analysis of linear self-equivalence encodings can be found in Chapter 5.

4.4 Generating affine self-equivalences
In [40], Ranea also includes an algorithm to generate two different sets of of affine
self-equivalences for the Speck modular addition function SL. We will call these
sets the type 1 and type 2 affine self-equivalences.

Similar to the linear self-equivalences, we start by introducing the sets A1 and
A2, containing 4n-bit affine functions (with n the Speck word size). These sets are
used to generate type 1 and type 2 affine self-equivalences, respectively. By definition,
|A1| = 22n+7 and |A2| = 3× 22n+5. However, the exact definitions of these sets are
too long to be included in this section. We refer to the Python implementation part
of this thesis for more information on generating A1 and A2.

22

4.4. Generating affine self-equivalences

Now, we also define the 4n-bit linear permutations L1 and L2, defined by the
block matrices:

L1 =

In 0 In In
0 0 In In
0 0 In 0
0 In In 0

 , L2 =

In 0 In In
0 In In 0
0 0 In 0
0 0 In In

Theorem 3 describes the method to generate type 1 and type 2 affine self-

equivalences using A1, L1, A2, and L2. Note that, instead of writing ((A, a), (B, b))
to indicate an affine self-equivalence, we simply use the notation (A,B), with A and
B affine permutations.

Theorem 3 (Proposition 2 from [40]). Let Âi be the set of 4n-bit linear functions
given by Li ◦ Ai ◦ L−1

i , where i ∈ {1, 2}. Then, any function F ∈ Âi is of the form
F (x, y, x′, y′) = M1(x, y)||M2(x′, y′) and (M1,M

−1
2) is an affine self-equivalence of

SL, that is, M2 ◦ SL = SL ◦M1. Moreover, Â1 ◦ Â2) Â1 ∪ Â2, thus |Â1 ◦ Â2| >
max(|Â1|, |Â2|). In particular, the modular addition has more than 22n+7 affine
self-equivalences.

The set of type 1 affine self-equivalences of SL is called SE1(SL) = Â1 and the
set of type 2 affine self-equivalences of SL is called SE2(SL) = Â2. Because the
affine self-equivalences of SL form a group, they can easily be composed to construct
new affine self-equivalences. In the interest of maximizing the self-equivalence
search space, we would like to generate affine self-equivalences from SE1(SL) ◦
SE2(SL). Theorem 3 also states that combining SE1(SL) and SE2(SL) results in
more affine self-equivalences, although a specific bound is not given. Consequently,
when generating a random affine self-equivalence to protect a Speck implementation,
we generate one affine self-equivalence each from SE1(SL) and SE2(SL), and compose
these self-equivalences to obtain a new affine self-equivalence. For a word size n = 64,
this results in more than 2135 possibilities, more than sufficient to prevent a simple
brute-force attack.

23

Chapter 5

Security analysis of white-box
Speck

In this chapter, we analyze the security of our white-box Speck method. We start
by giving a short introduction to the attack model, attacker goals, and common
attacks on white-box implementations. In Section 5.2, we discuss the inversion of
the Speck key schedule, used to reconstruct the master key from round keys. In the
final two sections, Section 5.3 and Section 5.4, we take a closer look at the security
of implementations using linear and affine encodings, respectively.

5.1 Introduction

The security of white-box implementations can be expressed in many different ways.
Most commonly, the goal of the attacker is to extract the cryptographic key from a
provided implementation (key extraction). However, other security notions include
one-wayness and incompressibility. In the case of one-wayness, an attacker should be
unable to invert the functionality of the cipher, effectively transforming a secret-key
scheme into a public-key scheme. Incompressibility refers to the size of the white-box
implementation: an implementation is incompressible if the functionality of the
cipher is lost when parts of the implementation are removed or compressed. This
impedes the redistribution of white-box implementations with a very large size. A
detailed analysis of white-box cryptography security goals can be found in [44]. In
this thesis, we focus on the fundamental white-box security feature: resistance to
key recovery attacks.

In white-box cryptography, an attacker is much more powerful compared to
conventional cryptography. Recall that the white-box model has three main properties
(Section 3.1):

• The attacker is a privileged user on the same host as the cryptographic algo-
rithm, with complete access to the implementation.

• The attacker can dynamically execute the cryptographic algorithm.

25

5. Security analysis of white-box Speck

• At any point before, during, or after the execution, the attacker is able to view
and modify the internal details of the implementation.

There are many different approaches to exploit these capabilities in attacks
on white-box implementations. For example, one could try to attack the CEJO
framework by reducing the search space of possible round encodings. This would
enable a brute-force search on the encoded round to recover the round key [14].
Other popular techniques are based on side-channel analysis, such as differential
fault analysis (DFA) [45] and differential computation analysis (DCA) [34].

In our analysis, we will evaluate the security of our white-box Speck method
from an algebraic perspective. Although self-equivalence encodings are generated at
random, they are not completely random linear or affine transformations. We will try
to exploit this additional structure to reduce the brute-force search space of possible
self-equivalence encodings and recover key bits. Moreover, to fully compromise the
security, we will also need to recover the external encodings from the white-box
implementation. In the broader context of the white-box model, our approach is quite
simple: we only require access to the encoded affine layers of the implementation.

5.2 Speck key schedule inversion
Traditionally, block ciphers employ a key schedule to transform a user-provided
master key, k, into multiple round keys, k(r). An important goal of a key schedule
is to minimize the relations between these round keys, to prevent cryptographic
attacks such as slide attacks. As introduced in Section 2.2, Speck uses its own
round function to generate k(r) from k. We briefly repeat the description of the key
schedule here. Let n be the Speck word size, and m the number of key words, that
is, the key size divided by n [6]. Then k can be written as a sequence of m key words
(2 ≤ m ≤ 4):

k =
[
l(m−1) . . . l(1) k(1)

]
Now, l(r+m−1) and k(r+1) can be computed by applying the Speck round function:

l(r+m−1) = (k(r) � (l(r) ≫ α))⊕ r
k(r+1) = (k(r) ≪ β)⊕ l(r+m−1)

To perform a key recovery attack on the white-box Speck implementation, we
need to recover the master key k from the encoded implementation Ek. Unfortunately,
the encoded implementation only contains protected versions of the round keys, k(r).
As a result, recovering k directly is not possible, so computing k using some recovered
k(r) is a crucial part of a successful key recovery attack. Luckily, the Speck key
schedule is invertible, and k can be computed easily, using only the m first round
keys. Suppose k(1), . . . , k(m) are known, then compute:

l(r+m−1) = (k(r) ≪ β)⊕ k(r+1)

l(r) = ((l(r+m−1) ⊕ r)� k(r))≪ α

Combining l(m−1), . . . , l(1), and k(1), we obtain the master key k.

26

5.3. Security analysis of linear self-equivalences

Note that this approach could be extended to reconstruct k using any sequence
of m consecutive round keys. However, as the security analysis introduced in this
chapter is applicable to any encoded round, we will always choose to attack the m
first encoded rounds.

5.3 Security analysis of linear self-equivalences
We start the analysis of the white-box method for Speck by looking at a variant
where all encodings, both self-equivalence encodings and external encodings, are
linear. Although linear encodings are significantly weaker than affine encodings in
terms of security, they are also conceptually easier to understand. Furthermore, the
analysis of this weaker version might give us some initial insights in the security of a
more secure variant using affine encodings.

In this section, we will focus on a single affine layer of an encoded Speck
encryption function Ek. For the sake of convenience, we repeat the definition of an
encoded affine layer for round r (see Definition 11) here:

AL(r) = (⊕o(r) ◦O(r)) ◦AL(r) ◦ (⊕i(r) ◦ I(r))

Because we only consider linear encodings in this section, i(r) and o(r) are zero
vectors. As a result, the definition can be simplified to:

AL(r) = O(r) ◦AL(r) ◦ I(r)

Generally, this encoded affine layer will be stored as a combination of an encoded
matrix M (r) and an encoded vector v(r). For each round r, M (r) represents the
known linear operations of the affine layer, while v(r) is the constant of the affine
layer. However, as v(0) does not contain any key material, this round is not protected
using self-equivalences and we will not consider it in our analysis:

M (0) = M (0)

v(0) = v(0)

M (r) = O(r)M (r)I(r), for 1 ≤ r ≤ nr
v(r) = O(r)v(r), for 1 ≤ r ≤ nr

Armed with these definitions, we identify two main approaches to attempt a key
recovery attack on our white-box Speck method.

Firstly, we might try to recover key bits from v(r) directly. While O(r) is generated
at random from the set of possible self-equivalences of SL, there is no guarantee that
every entry in the matrix is random too. Consequently, the matrix-vector product
might not hide all elements of v(r). This could lead to some key bits being recovered.
However, it is not possible to obtain the external encodings using this approach.

Secondly, we could attempt to recover I(r) or O(r) from M (r) or v(r). If any of
these self-equivalence encodings could be computed, the security of the round is
completely compromised and all the key bits could be recovered easily. Additionally,
external encodings I(1) and O(nr) could be computed from M (1) and M (nr) if O(1)

and I(nr) are known.

27

5. Security analysis of white-box Speck

5.3.1 Recovering key bits from v(r)

In Section 4.3, we introduced a method to generate linear self-equivalences of the
modular addition. Given a word size n and 2n free coefficients, 22n different linear
self-equivalences can be generated using this method. Let c(r)

i , with 1 ≤ i ≤ 2n,
be the coefficients used to generate the linear self-equivalence (O(r), I(r+1)). These
coefficients should be generated at random and are unknown to the attacker, similar
to a random seed. The shape of O(r) and I(r+1) as 2n× 2n matrices is given by:

1 0 . . . 0 0 0 0 0 . . . 0 0 0
0 1 0 0 0 0 0 0 . . . 0 0 0
... 0 . . . 0

...
...

...
...

...
...

0 0 0 1 0 0 0 0 . . . 0 0 0
0 0 . . . 0 1 0 0 0 . . . 0 0 0
0 0 . . . 0 0 1 c c . . . c c c

0 0 . . . 0 0 0 1 0 . . . 0 0 0
0 0 . . . 0 0 0 0 1 0 0 0 0
...

...
...

...
... 0 . . . 0

...
...

0 0 . . . 0 0 0 0 0 0 1 0 0
0 0 . . . 0 0 0 0 0 . . . 0 1 0
c 0 . . . 0 0 0 c c . . . c c 1

Here, c denotes a symbolic value which depends on one or more coefficients c(r)

i .
Furthermore, each c(r)

i is present at least once in both O(r) and I(r+1).
Clearly these linear transformations are far from random: only 2n of the 4n2

entries in the matrix actually depend on the coefficients used to generate the self-
equivalences. On top of this, the matrices are also very sparse, containing only
4n nonzero entries. These properties are disastrous for the security of linear self-
equivalence encodings. Indeed, computing the matrix-vector product in a symbolic
way, v(r) simplifies to:

v(r) = O(r)v(r)

=
[
v

(r)
1 . . . v

(r)
n−1 v(r)

n v
(r)
n+1 . . . v

(r)
2n−1 v(r)2n

]
Only two of the 2n elements of v(r), and one of the n bits of k(r), are protected

by the secret coefficients c(r)
i . This allows the attacker to compute candidate round

keys by only guessing the value of a single bit. Candidate master keys could simply
be enumerated by guessing 2m values (in the worst case) for m consecutive round
keys, compared to a theoretical 2mn guesses required without additional information
(where m depends on the original key size).

Fortunately, this approach does not reveal the external encodings I(1) and O(nr)

to the attacker. As the attacker is unable to use or verify a candidate master key
without the external encodings, the impact of this vulnerability is low if external
encodings are used and randomly generated. However, this vulnerability does show

28

5.3. Security analysis of linear self-equivalences

that the white-box Speck variant using only linear self-equivalence encodings is
trivially insecure, if external encodings are not used.

5.3.2 Recovering encodings

Recall that M (r) is computed as the matrix product of O(r), M (r), and I(r). Conse-
quently, M (r) contains all coefficients used to generate I(r) and O(r), that is, c(r−1)

i

and c(r)
i with 1 ≤ i ≤ 2n. To ensure the security of the white-box Speck implemen-

tation, it is crucial that these coefficients are not easily extracted from M (r). After
all, if these coefficients could be recovered, an attacker could simply reuse them to
compute the self-equivalences and recover the round keys.

Unfortunately, we know that I(r) and O(r) are very sparse matrices. When
the matrix product of O(r)M (r) and I(r) is computed, the many zeroes in I(r) will
partially erase the intermediate results, and leave the coefficients of I(r) open to
extraction. This weakness will be exploited in our second approach to recover the
external encodings and round keys of a white-box Speck implementation.

We first describe an algorithm to recover the coefficients c(r−1)
i from M (r) (Algo-

rithm 3). These are the coefficients used to generate the self-equivalence (O(r−1), I(r)).
Notably, this algorithm does not involve any brute-force search: many coefficients are
trivially extracted from M (r), and only limited computation is necessary to obtain
the rest.

Algorithm 3 Recovering c(r−1)
i from M (r)

j ← 1
for j < n− 1 do

c
(r−1)
2n−j ←M (r)

n−α,n+1+j

c
(r−1)
n+1−j ←M (r)

n+β,n+1+j + c
(r−1)
2n−j

j ← j + 1
end for
c

(r−1)
2 ←M (r)

n−α,n+1

c
(r−1)
n+1 ←M (r)

n+β,n+1 + c
(r−1)
2

c
(r−1)
2n ←M (r)

n−α,1 + c
(r−1)
2

c
(r−1)
1 ←M (r)

n+β,1 + c
(r−1)
n+1 + c

(r−1)
2n

return c
(r−1)
i

By executing Algorithm 3 on M (2), an attacker can recover c(1)
i and generate the

self-equivalence (O(1), I(2)) using the method described in Section 4.3. Because M (1)

is always publicly known, the attacker can compute

(O(1)M (1))−1M (1) = (O(1)M (1))−1O(1)M (1)I(1)

= I(1)

to obtain the input external encoding I(1).

29

5. Security analysis of white-box Speck

Recovering the output external encoding, O(nr), requires more effort. As O(nr)

is generated uniformly at random, it is not possible to apply Algorithm 3 to M (nr)

and recover c(nr−1). One possible alternative approach is to try to recover c(nr−1)

from M (nr−1), use this to generate the self-equivalence (O(nr−1), I(nr)), and obtain
O(nr) analogous to I(1). However, we found that the coefficients c(r) are significantly
harder to extract from M (r) compared to c(r−1).

Instead, the attacker starts by executing Algorithm 3 on M (nr−1) to recover
(O(nr−2), I(nr−1)). Then, the attacker computes

M (nr−1)(M (nr−1)I(nr−1))−1 = O(nr−1)M (nr−1)I(nr−1)(M (nr−1)I(nr−1))−1

= O(nr−1)

to obtain O(nr−1).
We now describe a second algorithm to extract the coefficients c(r)

i from O(r)

(Algorithm 4). As discussed previously, we know that all c(r)
i will be present in O(r)

and I(r+1). Once again, no brute-force search is required to extract the coefficients.

Algorithm 4 Recovering c(r)
i from O(r)

j ← 1
for j < n− 1 do

c
(r)
n+1−j ← O

(r)
n,n+1+j

c
(r)
2n−j ← O

(r)
2n,n+1+j + c

(r)
n+1−j

j ← j + 1
end for
c

(r)
n+1 ← O

(r)
n,1 +O

(r)
n,n+1

c
(r)
2 ← O

(r)
2n,1 +O

(r)
2n,n+1 + c

(r)
n+1

c
(r)
1 ← O

(r)
n,n+1 + c

(r)
2

c
(r)
2n ← O

(r)
2n,n+1 +O

(r)
n,n+1

return c
(r)
i

Algorithm 4 can then be used to generate the self-equivalence (O(nr−1), I(nr))
from O(nr−1). The output external encoding O(nr) can be obtained analogously to
I(1).

Alternatively, the attacker could use the self-equivalence property of O(nr−1) and
I(nr) to compute I(nr). By the definition of a self-equivalence (Definition 7):

I(nr) = SL ◦O(nr−1) ◦ SL−1

Computing SL ◦ O(nr−1) ◦ SL−1 for 2n independent input vectors of length 2n is
enough to fully reconstruct the matrix representation of I(nr).

Finally, the attacker can compute O(r) for 1 ≤ r ≤ m using Algorithm 3 on
M (r+1). This allows the attacker to recover the first m round keys from v(r), and
compute the master key k. Having recovered the master key and the external

30

5.4. Security analysis of affine self-equivalences

encodings, the attacker can encrypt or decrypt any value, without using the encoded
implementation Ek.

This attack shows that, even with relatively limited capabilities, a white-box
Speck implementation using only linear encodings is insecure against key recovery
attacks. In particular, it is not necessary to inspect or modify the execution of the
white-box implementation. Furthermore, recovering the encodings is possible using
only the information revealed by a single encoded affine layer.

After considering this disappointing result, one might wonder if linear self-
equivalences could still be securely applied to ARX ciphers with different affine
layers. Perhaps, if M (r) would be shaped differently, this attack could be prevented.
However, after randomly generating invertible matrices M (r), and computing the
encoded version M (r) = O(r)M (r)I(r), we found that coefficients of the input self-
equivalence encoding could still be extracted from M (r) without additional effort.
Evidently, this vulnerability is inherent to the shape of the linear self-equivalences of
the modular addition.

5.4 Security analysis of affine self-equivalences

Knowing that a white-box Speck implementation using only linear encodings is
insecure, we can try to extend these attacks to the variant using affine encodings.
We start by updating the equations for M (r) and v(r) with affine self-equivalence
encodings (I(r), i(r)) and (O(r), o(r)):

M (0) = M (0)

v(0) = v(0)

M (r) = O(r)M (r)I(r), for 1 ≤ r ≤ nr
v(r) = O(r)(v(r) ⊕M (r)i(r))⊕ o(r), for 1 ≤ r ≤ nr

Once again, there are two approaches to recover the round key from v(r).
We previously showed that just a single key bit from k(r) is hidden when only

linear encodings are used. However, with the introduction of affine self-equivalences,
the definition of v(r) also includes addition with constants i(r) and o(r). As a result,
one might expect that recovery of k(r) will be more difficult.

On the other hand, there are no explicit changes to the definition of M (r), though
we know that the security of M (r) depends on the shape and density of I(r) and O(r).
The shape of these matrices will be discussed in the next section.

5.4.1 Recovering key bits from v(r)

As mentioned in Section 4.4, affine self-equivalences are generated by composing
so-called type 1 and type 2 affine self-equivalences. This increases the size of the affine
self-equivalence search space, thus improving the resistance to brute-force search.
For a word size n, the methods to generate type 1 or type 2 affine self-equivalences

31

5. Security analysis of white-box Speck

both require 2n+ 7 free coefficients. For the sake of simplicity, we will consider the
shape of type 1 and type 2 affine self-equivalences separately.

Let ((O(r)
1 , o

(r)
1), (I(r+1)

1 , i
(r+1)
1)) be a type 1 affine self-equivalence, generated using

the secret coefficients c(r)
1,i , with 1 ≤ i ≤ 2n+ 7. The shape of this self-equivalence,

as 2n× 2n matrices and vectors of length 2n, is given by:

O
(r)
1 =

1 0 . . . 0 0 0 0 0 . . . 0 0 0
c 1 0 0 0 0 c 0 . . . 0 0 0
... 0 . . . 0

...
...

...
...

...
...

c 0 0 1 0 0 c 0 . . . 0 0 0
c 0 . . . 0 1 0 c 0 . . . 0 0 0
c 0 . . . 0 c 1 c c . . . c c c

0 0 . . . 0 0 0 1 0 . . . 0 0 0
c 0 . . . 0 0 0 c 1 0 0 0 0
...

...
...

...
... 0 . . . 0

...
...

c 0 . . . 0 0 0 c 0 0 1 0 0
c 0 . . . 0 0 0 c 0 . . . 0 1 0
c 0 . . . 0 0 0 c c . . . c c 1

o
(r)
1 =

[
c c . . . c c c c c . . . c c c

]

I
(r+1)
1 =

1 0 . . . 0 0 0 0 0 . . . 0 0 0
c 1 0 0 0 0 c 0 . . . 0 0 0
... 0 . . . 0

...
...

...
...

...
...

c 0 0 1 0 0 c 0 . . . 0 0 0
c 0 . . . 0 1 0 c 0 . . . 0 0 0
c 0 . . . 0 c c c c . . . c c c

0 0 . . . 0 0 0 1 0 . . . 0 0 0
c 0 . . . 0 0 0 c 1 0 0 0 0
...

...
...

...
... 0 . . . 0

...
...

c 0 . . . 0 0 0 c 0 0 1 0 0
c 0 . . . 0 0 0 c 0 . . . 0 1 0
c 0 . . . 0 c 0 c c . . . c c c

i
(r+1)
1 =

[
c c . . . c c c c c . . . c c c

]
Here, c denotes a symbolic value which depends on one or more coefficients c(r)

1,i .
O

(r)
1 and I(r+1)

1 each contain 2n+ 4 coefficients, while o(r)
1 contains only 8 coefficients

and i(r+1)
1 contains all 2n+ 7. Furthermore, the coefficients c(r)

1,1 and c(r)
1,2 only occur

in the constant vectors. As an immediate result, not all 2n+ 7 coefficients c(r)
1,i will

be present in an encoded matrix M (r).

32

5.4. Security analysis of affine self-equivalences

Now, let ((O(r)
2 , o

(r)
2), (I(r+1)

2 , i
(r+1)
2)) be a type 2 affine self-equivalence, generated

using the secret coefficients c(r)
2,i , with 1 ≤ i ≤ 2n+7. The shape of this self-equivalence,

as 2n× 2n matrices and vectors of length 2n, is given by:

O
(r)
2 =

c 0 . . . 0 0 0 c 0 . . . 0 0 0
0 1 0 0 0 0 0 0 . . . 0 0 0
... 0 . . . 0

...
...

...
...

...
...

0 0 0 1 0 0 0 0 . . . 0 0 0
0 0 . . . 0 1 0 0 0 . . . 0 0 0
c 0 . . . 0 c 1 c c . . . c c c

c 0 . . . 0 0 0 c 0 . . . 0 0 0
0 0 . . . 0 0 0 0 1 0 0 0 0
...

...
...

...
... 0 . . . 0

...
...

0 0 . . . 0 0 0 0 0 0 1 0 0
0 0 . . . 0 0 0 0 0 . . . 0 1 0
c 0 . . . 0 0 0 c c . . . c c 1

o

(r)
2 =

[
c 0 . . . 0 c c c 0 . . . 0 c c

]

I
(r+1)
2 =

c 0 . . . 0 0 0 c 0 . . . 0 0 0
0 1 0 0 0 0 0 0 . . . 0 0 0
... 0 . . . 0

...
...

...
...

...
...

0 0 0 1 0 0 0 0 . . . 0 0 0
0 0 . . . 0 1 0 0 0 . . . 0 0 0
c 0 . . . 0 c c c c . . . c c c

c 0 . . . 0 0 0 c 0 . . . 0 0 0
0 0 . . . 0 0 0 0 1 0 0 0 0
...

...
...

...
... 0 . . . 0

...
...

0 0 . . . 0 0 0 0 0 0 1 0 0
0 0 . . . 0 0 0 0 0 . . . 0 1 0
c 0 . . . 0 0 0 c c . . . c c c

i
(r+1)
2 =

[
c 0 . . . 0 c c c 0 . . . 0 c c

]
Once again, c denotes a symbolic value which depends on one or more coefficients

c
(r)
2,i . O

(r)
1 and I(r+1)

1 contain 2n+ 4 and 2n+ 3 coefficients respectively, while o(r)
1

and i(r+1)
1 contain only 8 and 10 coefficients. This also means that not all 2n + 7

coefficients c(r)
2,i will be present in an encoded matrix M (r).

Individually, the matrices for type 1 and type 2 affine self-equivalences are still
very sparse. On top of this, the constant vectors for type 2 affine self-equivalences
also contain many zero entries. Although the self-equivalences are composed before
v(r) is encoded, the security of k(r) might still be compromised.

33

5. Security analysis of white-box Speck

By computing the symbolic equations of each element in v(r) and performing
Gaussian elimination on this set, we found that candidate round keys could be
computed by guessing the values of only two bits. An attacker could extend this to
candidate master keys by guessing 22m values for m consecutive round keys. While
this is a modest increase in security compared to the linear encodings, this is still
substantially less than the 2mn guesses required without additional information. For
example, computing all candidate master keys for Speck128/256 requires guessing
at most 28 values, down from 2256.

Clearly, using (composed) affine self-equivalences to encoded constant vectors
suffers from the same weakness as using linear self-equivalences. Even though the
external encodings are not recoverable using this method, candidate master keys can
be computed with limited effort. For this reason, we conclude that our white-box
Speck method is insecure if external encodings are not used.

5.4.2 Recovering encodings

For our final approach, we aim to recover the secret coefficients, used to generate
I(r) and O(r), from the encoded matrix M (r). Because affine self-equivalences are
constructed by composing type 1 and type 2 affine self-equivalences, 2 × (2n + 7)
coefficients are necessary to regenerate these encodings. However, as mentioned
previously, not all 2n + 7 coefficients used to generate a type 1 or type 2 affine
self-equivalence are contained in the input and output encodings.

To simplify our analysis, without increasing the capabilities of an attacker, we
consider the scenario where M (r−1), M (r), and M (r+1) are known. The goal is
to recover either c(r−1)

1,i and c
(r−1)
2,i , or c(r)

1,i and c
(r)
2,i , for all 1 ≤ i ≤ 2n + 7. This

would allow an attacker to regenerate the self-equivalence encodings for (I(r), i(r)) or
(O(r), o(r)), recover the round key, and compute the external encodings.

We computed the symbolic equations of every element in M (r−1), M (r), and
M (r+1), and performed Gaussian elimination on this set of equations. We found that
(I(r), i(r)) or (O(r), o(r)) could be recovered by guessing the values of 2n+ 12 bits. In
other words, at most 22n+12 guesses would be required to break the security of the
implementation, using this approach. For Speck word sizes of n = 32, n = 48, and
n = 64, this quickly becomes infeasible.

It seems that composing type 1 and type 2 affine self-equivalences leads to a
resistance against this algebraic approach. Although the brute-force search space is
halved, the search space was already doubled by introducing 2n+ 7 coefficients for
both types. Consequently, a white-box Speck implementation using affine encodings
and external encodings might be secure against key recovery attacks. Still, it is not
impossible to imagine a more sophisticated approach, which reduces the brute-force
search space to a more manageable level.

34

Chapter 6

Implementation

In previous chapters, we discussed the theoretical foundations of our method to
construct white-box Speck implementations. To research the practical viability of
this method, we also implemented a program to generate white-box Speck code.
This implementation is publicly available in our GitHub repository1. In Section 6.2,
we will introduce the architecture of this project and explain various design decisions.
Then, in Section 6.3, we will examine some alternative strategies to generate the
white-box Speck code. Finally, we end with a performance-based comparison of
these different strategies in Section 6.4.

6.1 Introduction

Creating a functional implementation of a proposed method to construct white-box
cryptographic implementations has multiple important advantages. For example, it
encourages further cryptanalysis of the method. Theoretical white-box attacks on the
method can easily be implemented and tested in a real-world setting. Furthermore,
even if the method is eventually broken using algebraic or side-channel attacks, the
implementation can still be useful to test more efficient key recovery attacks and
investigate their applicability to other white-box implementations.

+>>> +x(r)

y(r)

k(r)

<<< +
+>>> +
k(r+1)

<<< +
x(r+2)

y(r+2)

Figure 6.1: Diagram of two Speck encryption rounds

1https://github.com/jvdsn/white-box-speck

35

https://github.com/jvdsn/white-box-speck

6. Implementation

A functional protected implementation also provides a way to compare the
protected implementation with its unprotected counterpart and benchmark the
performance impact of the white-box protection. This property in particular is the
main motivation behind the implementation of our method.

A diagram of the Speck encryption function can be found on Figure 6.1. The
dotted boxes indicate the affine layers of the Speck rounds, consisting of bitwise
XOR operations and bitwise circular shifts. These operations can be performed
very quickly, commonly consuming 1 CPU cycle or less [46]. However, as mentioned
in Section 4.2, a protected version of Speck is constructed by viewing the cipher
as a substitution-permutation network (SPN) and encoding the affine layers using
self-equivalences. Because of this, x and y are replaced by a vector of little-endian
bits (xy) and the affine layers are implemented using a matrix-vector product and
vector addition (Figure 6.2).

xy(r) M(r) +
v(r)

+ M(r+1) +
v(r+1)

+ xy(r+2)

Figure 6.2: Diagram of two white-box Speck encryption rounds

It is reasonable to assume these differences will cause a significant overhead, both
in terms of execution time and disk space usage, compared to an unprotected Speck
implementation. By creating a functional protected implementation, this overhead
can be quantified. Furthermore, different strategies for the storage of matrices and
vectors, as well as the execution of the matrix-vector product and vector addition,
can mitigate this overhead. The impact of these mitigations can then be compared
to the standard white-box implementation.

As mentioned in Chapter 4, this technique could in fact be applied to protect
any add-rotate-xor (ARX) cipher. The affine part of a round can simply be replaced
by a single matrix and a single vector, while the modular addition is composed with
the appropriate self-equivalences. As a result, the strategies to save disk space and
improve execution time described in this chapter could be used to optimize white-box
implementations of other ARX ciphers.

6.2 Architecture

Our program to generate white-box Speck implementations2 is written in Python,
a free and open source programming language [47]. We chose Python because its

2Our implementation currently only supports the generation of white-box Speck encryption
code. However, the existing project could easily be modified to also protect and generate a protected
Speck decryption implementation. When discussing protected code in this chapter, we always refer
to Speck encryption.

36

6.2. Architecture

source code is completely portable across platforms, programming in Python is
comparatively simple, and it is possible to interact with SageMath using a language
interface [48]. SageMath is a free and open source mathematics package, which is
used extensively for mathematical computations throughout the project.

The entire process to generate a protected implementation, excluding external
encodings, consists of two major steps across three different components (Figure 6.3).

random_self_equivalence

main

execution

WhiteBoxSpeck

matrices, vectors

affine_layers

SelfEquivalenceProvider

O, o, I, i

loop For each affine layer

CodeGenerator

generate_code

code

Figure 6.3: Sequence diagram of the white-box Speck implementation generation

Firstly, the encoded affine layers, consisting of matrices M (r) and vectors v(r),
are computed by the WhiteBoxSpeck class. This step, discussed in Section 6.2.1,
supports all Speck variants. A SelfEquivalenceProvider implementation can be
provided to generate specific types of self-equivalences when required to protect
the affine layers. The different SelfEquivalenceProvider implementations are
described in Section 6.2.2.

After M (r) and v(r) are generated, they can be used to create a protected Speck
implementation. This is done by an implementation of the CodeGenerator class,
which is described in detail in Section 6.2.3. Most implementations can generate
code for any Speck variant, however SIMD code (Section 6.3.5) only supports block
sizes 32, 64, and 128.

6.2.1 Computing affine layers

The WhiteBoxSpeck class performs basic operations related to the Speck cipher:
determining α, β, and the amount of rounds nr required for the word size n and
the key size, perform key expansion to obtain the round keys, and generate the

37

6. Implementation

matrices and vectors representing the Speck affine layers. These matrices and vectors
manipulate the state vector xy using the matrix-vector product and (element-wise)
vector addition, performed in F2. We briefly repeat the definitions for the Speck
affine layers as 2n-bit permutations on xy (Definition 10):

AL(0)(xy) = Rα(xy)
AL(r)(xy) = Rα(X(Lβ(xy ⊕ k′(r)), for 1 ≤ r ≤ nr − 1
AL(nr)(xy) = X(Lβ(xy ⊕ k′(nr)))

Here Rα represents a right bitwise rotation of x by α positions, Lβ represents a
left bitwise rotation of y by β positions, and X represents the bitwise XOR operation
such that y = x⊕ y.

Because these functions are linear, the corresponding 2n× 2n matrices can be
constructed easily. Note that these matrices all operate on the little-endian bits of x
and y in the state vector xy.

Rα =

0 . . . 0 1 0 0 0 . . . 0 0 . . . 0
... 0 . . . 0

...
...

0 . . . 0 0 0 1 0 . . . 0 0 . . . 0
1 0 0 0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0
...

...
...

0 0 1 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 1 0 0 0 . . . 0
...

... 0 . . . 0
...

0 . . . 0 0 . . . 0 0 0 1 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 1 0 0
...

...
... 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 0 0 1

n− α

α

n

Lβ =

1 0 0 0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0
...

...
...

0 0 1 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 1 0 0 0 . . . 0 0 . . . 0
... 0 . . . 0

...
...

0 . . . 0 0 0 1 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 1 0 0
...

...
... 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 0 0 1
0 . . . 0 0 . . . 0 1 0 0 0 . . . 0
...

... 0 . . . 0
...

0 . . . 0 0 . . . 0 0 0 1 0 . . . 0

n

β

n− β

38

6.2. Architecture

X =

1 0 0 0 . . . 0

0 . . . 0
...

0 0 1 0 . . . 0
1 0 0 1 0 0

0 . . . 0 0 . . . 0
0 0 1 0 0 1

n

n

Finally, k′(r) is a vector of length 2n containing the key bits of the round key k(r)

at the first n positions:

k′(r) =
[
k

(r)
1 . . . k

(r)
n 0 . . . 0

]
For efficiency reasons, we would like to protect and store a single matrix and

vector for each affine layer (Figure 6.4). We define M (r) and v(r) as follows:

M (0) = Rα v(0) = [0 . . . 0]
M (r) = RαXLβ, for 1 ≤ r ≤ nr − 1 v(r) = M (r)k′(r), for 1 ≤ r ≤ nr − 1
M (nr) = XLβ v(nr) = M (nr)k′(nr)

The equations for the affine layers can then simply be written as:
AL(r)(xy) = M (r)xy ⊕ v(r), for 0 ≤ r ≤ nr

xy(r) M(r) +
v(r)

+ M(r+1) +
v(r+1)

+ xy(r+2)

Figure 6.4: Diagram of two Speck SPN encryption rounds, with affine layers
replaced by a matrix-vector product and vector addition

In Section 4.2, we introduced the definition of an affine layer protected using
self-equivalence encodings:

AL(r) = (⊕o(r) ◦O(r)) ◦AL(r) ◦ (⊕i(r) ◦ I(r))

We can apply this definition to obtain the protected matrices M (r) and vectors
v(r). However, because AL(0) does not contain any key material (v(0) = [0 . . . 0]) we
can skip this layer. Instead, we start the protection at AL(1):

M (0) = M (0)

v(0) = v(0)

M (r) = O(r)M (r)I(r), for 1 ≤ r ≤ nr
v(r) = O(r)(v(r) ⊕M (r)i(r))⊕ o(r), for 1 ≤ r ≤ nr

39

6. Implementation

xy(r) xy(r+2)I(r) +
i(r)

O(r) +
o(r)

+ M(r+1) +
v(r+1)

I(r+1) +
i(r+1)

O(r+1) +
o(r+1)

+M(r) +
v(r)

Figure 6.5: Diagram of two Speck SPN encryption rounds, with self-equivalences
applied to the rounds

Note that (I(1), i(1)) and (O(nr), o(nr)) are the external encodings. These encodings
are simply generated by sampling random invertible matrices and vectors, and output
alongside the protected Speck implementation.

We now have all information required to compute the protected matrices and vec-
tors representing the Speck affine layers. In our implementation, the affine_layers
function in WhiteBoxSpeck takes the external encodings and an instance of the
SelfEquivalenceProvider, computes the matrices M (r) and vectors v(r), and then
applies a random self-equivalence from the SelfEquivalenceProvider for each ma-
trix and vector when necessary. In the next subsection, we explain how these random
self-equivalence encodings are generated.

6.2.2 Generating self-equivalences

In our project, the SelfEquivalenceProvider class has four subclasses which contain
the random_self_equivalence function to generate self-equivalences (Figure 6.6).
This function returns a tuple (A, a,B, b) such that ((A, a), (B, b)) is a self-equivalence
for the modular addition (see Section 4.1).

Figure 6.6: UML diagram of the classes responsible for generating self-equivalences

LinearSelfEquivalenceProvider generates linear self-equivalences using the method
described in Section 4.3. As a result, the a and b vectors returned by
random_self_equivalence will always be zero vectors.

Type1AffineSelfEquivalenceProvider generates type 1 affine self-equivalences,
as described in Section 4.4.

Type2AffineSelfEquivalenceProvider generates type 2 affine self-equivalences,
as described in Section 4.4.

40

6.2. Architecture

CombinedSelfEquivalenceProvider contains a collection of delegate self-equivalence
providers. When the random_self_equivalence function is called, the self-
equivalences generated by each of the delegates are composed to increase the
self-equivalence search space.

6.2.3 Code generation

Code generation is handled by the generate_code function in implementations
of the abstract CodeGenerator class. In total, we implemented 6 CodeGenerator
subclasses, one of which corresponds to a default implementation, and 5 others
providing different code generation strategies (detailed in Section 6.3). Figure 6.7
contains an overview of the CodeGenerator subclasses. In this section we will focus
on the code generated by the DefaultCodeGenerator.

Our CodeGenerator implementations exclusively generate C source code. We
chose the C programming language because it is widely used, provides fast low-level
memory control, and contains a convenient interface for single instruction, multiple
data (SIMD) functions (Section 6.3.5). Of course, any subclass of CodeGenerator
can freely choose to return source or compiled code for other programming languages.

Figure 6.7: UML diagram of the classes responsible for code generation

The generated C code to perform white-box Speck encryption follows the same
intuitive pattern as simple SPN cipher implementations. For each round, a modular
addition and affine transformation is performed, except for the final round, which
consists only of the affine transformation. Of course, the white-box Speck encryption
algorithm operates on vectors of bits instead of integers, so the input x and y should
be converted to bits first. Similarly, xy should be converted back to integers after
encryption. No key expansion is necessary, as the round keys k(r) are implicitly
stored in the vectors v(r).

Algorithm 5 relies on five subroutines: functions to convert to and from bits,
a function to perform the modular addition on xy, a function to perform the
matrix-vector product, and a function to perform the vector addition. As we
consider the conversion to and from binary to be trivial, we will not elaborate on
the implementation of these functions.

The other three functions use a standard textbook implementation. For example,
the modular addition simply performs the addition with carry algorithm on each

41

6. Implementation

Algorithm 5 White-box Speck encryption
xy ← input plaintext x, y converted to bits
r ← 0
for r < nr do

Multiply xy by the round matrix M (r)

Add the round vector v(r) to xy
Perform the modular addition on xy
r ← r + 1

end for
Multiply xy by the final round matrix M (nr)

Add the final round vector v(nr) to xy
return bits xy converted to output ciphertext

individual bit, ignoring the final carry to perform the modular reduction. The
generated C code for this function can be found in Listing 6.1.

void modular_addition (uint8_t xy [BLOCK_SIZE]) {
uint8_t car ry = 0 ;
f o r (s i z e_t i = 0 ; i < WORD_SIZE; i++) {

xy [i] = xy [i] + xy [WORD_SIZE + i] + carry ;
car ry = xy [i] > 1 ;
xy [i] &= 1 ;

}
}

Listing 6.1: Generated C code to compute the modular addition

In the case of the matrix-vector product, two for loops are used to compute the
resulting vector (Listing 6.2).

void matrix_vector_product (uint8_t matrix [BLOCK_SIZE] [BLOCK_SIZE] ,
↪→ uint8_t xy [BLOCK_SIZE] , uint8_t r e s [BLOCK_SIZE]) {
f o r (s i z e_t i = 0 ; i < BLOCK_SIZE; i++) {

f o r (s i z e_t j = 0 ; j < BLOCK_SIZE; j++) {
r e s [i] ^= matrix [i] [j] ∗ xy [j] ;

}
}

}

Listing 6.2: Generated C code to compute the matrix-vector product

For the vector addition, the generated code performs an XOR operation for each
bit in the vector (Listing 6.3).

Finally, apart from the definitions and implementations of these subroutines,
the required data (matrices M (r) and vectors v(r)) will also have to be stored in
the C source code. A straightforward way of storing a matrix in C is to use a

42

6.3. Code generation strategies

void vector_addi t ion (uint8_t vec to r [BLOCK_SIZE] , uint8_t xy [
↪→ BLOCK_SIZE]) {
f o r (s i z e_t i = 0 ; i < BLOCK_SIZE; i++) {

xy [i] ^= vecto r [i] ;
}

}

Listing 6.3: Generated C code to compute the vector addition

two-dimensional array: storing each row as an array of the elements in an enclosing
array to represent the full matrix. A vector can be stored by simply using a single
one-dimensional array. In total, nr + 1 matrices and nr + 1 are generated by the
DefaultCodeGenerator.

6.3 Code generation strategies
Although the method described in the previous section generates correct and func-
tional C code, this code is far from optimal. In this section we will introduce and
compare different techniques to improve the efficiency of the generated C code in
four different metrics: the disk space used to store the matrices M (r), the disk space
used to store the vectors v(r), the execution time of the matrix-vector product, and
the execution time of the vector addition. When quantifying the required disk space
or execution time in this section, we will always denote the Speck word size as n,
unless otherwise indicated.

The smallest supported integer type in the C programming language has a size of
8 bits (1 byte) [49, p. 20]. Consequently, storing a matrix M (r) as a two-dimensional
array requires at least (2n)2 bytes of disk space. Similarly, storing a vector v(r) as a
one-dimensional array will take 2n bytes of disk space.

Furthermore, the standard implementation of the matrix-vector product consists
of two for loops of 2n entries, bringing the total number of iterations to (2n)2.
The vector addition requires only one for loop of 2n entries, resulting in only 2n
iterations.

6.3.1 Sparse matrix code generation

Because the entries of M (r) are in F2, one could consider storing only the nonzero
entries to save disk space. The other entries are then implicitly known to be 0. We
formalize this by introducing the sparse matrix representation.

Definition 14 (Sparse matrix representation). The sparse matrix representation of
the 2n× 2n matrix M (r) is a list of coordinate pairs (i, j), with 1 ≤ i, j ≤ 2n, such
that M (r)

i,j = 1.

Storing M (r) as a sparse matrix requires 2m bytes of disk space, where m is the
number of nonzero entries, assuming coordinate pair (i, j) can be stored in 2 bytes.

43

6. Implementation

Because the largest Speck word size is 64, the matrix will contain at most 128× 128
entries, so 0 ≤ i, j < 128, within the limit of 2 bytes. As mentioned before, storing
this matrix as a two-dimensional array requires (2n)2 bytes of disk space. From this,
we can derive that using the sparse matrix representation will be the better choice if
m < (2n)2

2 .
Because not all affine layers contain key material, not all matrices M (r) are

encoded using self-equivalences:

M (0) = M (0)

M (r) = O(r)M (r)I(r), for 1 ≤ r ≤ nr

However, a large majority of the matrices will follow the form for M (r) =
O(r)M (r)I(r), so computing m for these matrices will provide the most information.
We generated 10,000 matrices of this form for each Speck word size, to determine
the average number of nonzero entries. Figure 6.8 plots the results, as well as a linear
regression on this data, which indicates that m is linearly related to the word size n.

15 20 25 30 35 40 45 50 55 60 65

200

400

600

n

Av
er
ag

e
m

9.72 · x− 14.01

Figure 6.8: Average number of nonzero entries in M (r)

n = 16 n = 24 n = 32 n = 48 n = 64
Average m 142 220 296 452 609

Disk space usage (bytes) 284 440 592 904 1218
Disk space saved 72.27% 80.90% 85.55% 90.19% 92.57%

Table 6.1: Average number of nonzero entries, disk space usage, and disk space
saved using the sparse matrix representation

From m we can now compute the disk space usage and saved disk space using
the sparse matrix representation (Table 6.1). As shown by the experimental results,
using the sparse matrix representation to storeM (r) is beneficial for all word sizes, on

44

6.3. Code generation strategies

average. Furthermore, because of the linear relation between m and n, the percentage
of saved disk space increases quadratically as the word size increases, saving up to
92.57% in disk space on average.

In addition to reducing the disk space used by the generated C code, using the
sparse matrix representation also simplifies the matrix-vector product. The sparse
matrix representation only contains the nonzero entries of M (r), exactly the entries
needed to compute the matrix-vector product. As a result, instead of (2n)2 iterations,
only m iterations of a for loop are necessary. Listing 6.4 contains the generated C
code.

void matrix_vector_product (uint8_t sparse_matrix [] [2] , uint16_t
↪→ sparse_matr ix_entr ies , uint8_t xy [BLOCK_SIZE] , uint8_t r e s [
↪→ BLOCK_SIZE]) {
f o r (uint16_t i = 0 ; i < sparse_matr ix_entr ie s ; i++) {

r e s [sparse_matrix [i] [0]] ^= xy [sparse_matrix [i] [1]] ;
}

}

Listing 6.4: Generated C code to compute the matrix-vector product using the
sparse matrix representation

Similar to the sparse matrix representation, we can also introduce the sparse
vector representation for the vectors v(r).

Definition 15 (Sparse vector representation). The sparse vector representation of
the vector v(r) of length 2n is a list of coordinates i, with 1 ≤ i ≤ 2n, such that
v(r)

i = 1.

In this case, storing v(r) using the sparse vector representation requires m bytes of
disk space, with m the number of nonzero entries in the vector. As before, the vector
will contain at most 128 entries, so coordinates will always fit in a byte. Because
storing the vector as a one-dimensional array requires 2n bytes of disk space, and
by definition m ≤ 2n, the sparse vector representation will always be more efficient
than storing the entire vector.

To determine the efficiency of the sparse vector representation compared to
storing a one-dimensional array, we generated 10,000 vectors for each Speck word
size (Figure 6.9). As with the sparse matrix representation, the relationship between
m and n seems to be linear.

n = 16 n = 24 n = 32 n = 48 n = 64
Average m 14 21 26 39 48

Disk space usage (bytes) 14 21 26 39 48
Disk space saved 56.25% 56.25% 59.38% 59.38% 62.50%

Table 6.2: Average number of nonzero entries, disk space usage, and disk space
saved using the sparse vector representation

45

6. Implementation

15 20 25 30 35 40 45 50 55 60 65

20

40

60

80

n

Av
er
ag

e
m

0.71 · x+ 3.39

Figure 6.9: Average number of nonzero entries in v(r)

However, because the disk space used by a one-dimensional array is also linearly
related to n, the percentage of saved disk space increases only slightly as the word
size grows (Table 6.2). For n = 64, on average only 62.50% in disk space is saved,
indicating a smaller positive impact compared to the sparse matrix representation.

The vector addition can also be modified to take advantage of the sparse vector
representation. Instead of looping over every entry in the vector, only the nonzero
entries have to be considered. This reduces the amount of iterations from 2n to m.
The generated C code is shown in Listing 6.5.

void vector_addi t ion (uint8_t sparse_vector [] , uint8_t
↪→ sparse_vector_entr i e s , uint8_t xy [BLOCK_SIZE]) {
f o r (uint8_t i = 0 ; i < spar se_vecto r_ent r i e s ; i++) {

xy [sparse_vector [i]] ^= 1 ;
}

}

Listing 6.5: Generated C code to compute the vector addition using the sparse
vector representation

6.3.2 Inlined code generation

In previous examples of the generated C code, the affine operations are always
separated in two distinct parts. On one hand is the immutable stored data, being
the matrices M (r) and the vectors v(r). On the other hand, we have the generic
functions for the matrix-vector product or the vector addition.

However, because the contents of M (r) and v(r) are known before the C code is
generated, it is possible to combine these two parts by generating nr + 1 different
functions for the matrix-vector product and for the vector addition. In the case of

46

6.3. Code generation strategies

the matrix-vector products, these functions will only contain the array operations for
the nonzero entries in the matrix. Similarly, the functions for the vector additions
only modify the positions for the nonzero entries in the vector. In this way, the data
is inlined in the function implementations.

A short, incomplete example of an inlined matrix-vector product for round 2 can
be found in Listing 6.6. Note that the function only accepts two parameters, the
input array and the output array, compared to the three parameters in the default
implementation (Listing 6.2).

void matrix_vector_product_2 (uint8_t xy [BLOCK_SIZE] , uint8_t r e s [
↪→ BLOCK_SIZE]) {
r e s [0] ^= xy [0] ^ xy [8] ^ xy [6 4] ;
r e s [1] ^= xy [0] ^ xy [9] ^ xy [1 2 5] ;
r e s [2] ^= xy [0] ^ xy [1 0] ^ xy [1 2 5] ;
. . .

}

Listing 6.6: Generated C code to compute the matrix vector product using inlining

In general, one xor instruction is needed for each nonzero entry of M (r). Ad-
ditionally, one movzx instruction is required for each modification of the xy array.
A movzx and a xor instruction take up 4 and 3 bytes of disk space, respectively.
Assuming each of the 2n entries in xy is modified, the implicit storage of M (r) in
the function implementation would require 4(2n) + 3m bytes, with m the number of
nonzero entries in the matrix.

Using the values for m from Table 6.1, we can try to calculate the disk space
usage and saved disk space for this code generation strategy.

n = 16 n = 24 n = 32 n = 48 n = 64
Average m 142 220 296 452 609

Disk space usage (bytes) 554 852 1144 1740 2339
Disk space saved 45.90% 63.02% 72.07% 81.12% 85.72%

Table 6.3: Average number of nonzero entries, disk space usage and disk space
saved using the inlined matrix-vector product

The results in Table 6.3 indicate that inlining M (r) in a function implementation
for the matrix-vector product saves disk space for all word sizes, on average. The
percentage of saved disk space increases as the word size increases, with up to 85.72%
saved on average for n = 64.

The inlined implementation of a vector addition function is even simpler compared
to the matrix-vector product. As shown in Listing 6.7, a simple bitwise XOR operation
is performed for each nonzero entry in v(r).

Once again, a single xor instruction is needed to perform the bitwise XOR
operations, which takes up 3 bytes of disk space. Storing v(r) in the inlined function
requires 3m bytes, with m the number of nonzero entries in the vector. However,

47

6. Implementation

void vector_addit ion_2 (uint8_t xy [BLOCK_SIZE]) {
xy [0] ^= 1 ;
xy [2] ^= 1 ;
xy [3] ^= 1 ;
. . .

}

Listing 6.7: Generated C code to compute the vector addition using inlining

the disk space required to store the vector in a one-dimensional array is 2n bytes,
so the inlined function might be less efficient in terms of storage compared to the
default implementation.

Indeed, the results in Table 6.4 (with m taken from Table 6.2) show that inlining
the vectors in the vector addition functions does not save disk space for any of the
Speck word sizes.

n = 16 n = 24 n = 32 n = 48 n = 64
Average m 14 21 26 39 48

Disk space usage (bytes) 45 63 78 117 141
Disk space saved -31.25% -31.25% -21.88% -21.88% -12.50%

Table 6.4: Average number of nonzero entries, disk space usage and disk space
saved using the inlined vector addition

Although this strategy has mixed results in terms of disk space, its main advantage
is the absence of loops in the matrix-vector product and vector addition functions.
Because all necessary xor instructions are explicitly defined in these functions,
no (conditional) jumps are needed. This allows the processor to avoid branch
mispredictions and exploit instruction-level parallelism, potentially improving the
execution speed of these functions. A detailed comparison of the performance impact
can be found in Section 6.4.

6.3.3 Bit-packed code generation

The C standard library contains data types to store 16-bit, 32-bit, and 64-bit unsigned
integers. Instead of storing the bits individually in an integer data type, we can use
these larger data types to store multiple bits simultaneously, bit-packing n bits in an
n-bit unsigned integer. This will greatly reduce the disk space usage and improve
the execution time of the generated C code. When n = 24 or n = 48, the data must
be stored in 32-bit or 64-bit unsigned integers, respectively.

We first illustrate the bit-packing for the state vector xy. By default, xy is a
vector consisting of 2n bits, stored as 8-bit integers:

xy =
[
xy1 . . . xyn xyn+1 . . . xy2n

]
As mentioned previously, [xy1 . . . xyn] and [xyn+1 . . . xy2n] represent the bits in

little-endian order of x and y, respectively. When these bits are packed in n-bit

48

6.3. Code generation strategies

integers x and y, the resulting array xy only contains 2 entries and the required disk
space is reduced substantially:

xy =
[

x y
]

We can extend this technique to the matrices M (r). To simplify the implementa-
tion of the matrix-vector product, we decide to divide each row in M (r) in two equal
parts of n bits: the x part and the y part:

M (r) =

M (r)1,1 . . . M (r)1,n M (r)1,n+1 . . . M (r)1,2n

...
...

M (r)2n,1 . . . M (r)2n,n M (r)2n,n+1 . . . M (r)2,2n

Then, similar to the bit-packing of xy, each row can be transformed to an array

containing 2 n-bit integers, resulting in a bit-packed matrix M(r):

M(r) =

M(r)1,x M(r)1,y

...
...

M(r)2n,x M(r)2n,y

Finally, the vectors v(r) are also divided in x and y parts consisting of n bits:

v(r) =
[
v(r)1 . . . v(r)

n v(r)
n+1 . . . v(r)2n

]
Analogous to the bit-packing of xy, v(r) becomes a bit-packed array v(r), con-

taining 2 n-bit integers representing the x and y parts of v(r).

v(r) =
[

v(r)
x v(r)

y

]
For n = 16, n = 32, and n = 64, the bit-packing method reduces the required

disk space by a factor of 8, or 87.50%, a substantial change only matched by the
sparse matrix representation from Section 6.3.1. Moreover, this reduction is present
in the storage of both M (r) and v(r). When n = 24 or n = 48, the disk space is
reduced by a factor of 6, or 83.33%.

Bit-packing xy, M (r), and v(r) requires us to modify the code to compute the
matrix-vector product and vector addition. It is possible to simply generate code
to convert the bit-packed integers to bits, perform the operations on these bits
using the default implementation, and convert the bits back to bit-packed integers.
Presumably, this method would be very inefficient. Instead, we can work directly
with the bit-packed integers.

We first have to introduce the parity function, which will be used to simplify the
result.

Definition 16 (Parity function). The parity function p computes the parity of an
integer. The parity is equal to 0 if the binary representation of the integer contains
an even number of ones, otherwise the parity is equal to 1:

p(x) =
n⊕
i=1

bi with bi the i’th bit of x

49

6. Implementation

Starting with the standard definition of the matrix-vector product, the result at
index i is calculated as follows:

resi =
2n⊕
j=1

(M (r)
j,1 × xyj)

=
n⊕
j=1

(M (r)
j,1 × xyj)⊕

n⊕
j=1

(M (r)
n+j,1 × xyn+j)

Because the entries in M (r) and xy are bits, the element-wise multiplication is
equivalent to the bitwise AND operation on the bit-packed counterparts M(r) and
xy. Furthermore, the parity function p can be used in place of the bitwise XOR
operations on the bits. This results in:

resi = p(M(r)
i,x & x)⊕ p(M(r)

i,y & y)

= p((M(r)
i,x & x)⊕ (M(r)

i,y & y))

Unfortunately, there is no operator or function in the C programming language
to compute the parity of an integer. However, compilers often have built-in functions
for frequently used operations such as the parity function. We use the GNU Compiler
Collection (GCC), which provides 3 built-in functions [50], listed in Table 6.5.
Although these functions do not provide the same performance as a dedicated
instruction, they are considerably faster compared to an implementation written in
C.

n Function
16 __builtin_parity
24 and 32 __builtin_parityl
48 and 64 __builtin_parityll

Table 6.5: Built-in parity functions provided by GCC

Using the appropriate built-in function, we can translate the definition of the
matrix-vector product to C code (Listing 6.8). Instead of (2n)2 iterations, the
bit-packed version consists of one for loop with n iterations (but with simultaneous
modification of the x and y part of xy).

The vector addition can be performed by computing the bitwise XOR operation
on the two bit-packed integers, equivalent to computing the XOR operation on the
individual bits. This results in only two bitwise XOR operations, compared to the
2n iterations (and XOR operations) in the default implementation. The generated C
code can be found in Listing 6.9.

Finally, the usage of xy instead of xy also simplifies the general structure of the
generated C code. Because the rounds operate on 2 n-bit integers instead of 2n bits,

50

6.3. Code generation strategies

void matrix_vector_product (WORD_TYPE matrix [BLOCK_SIZE] [2] ,
↪→ WORD_TYPE xy [2] , WORD_TYPE re s [2]) {
f o r (s i z e_t i = WORD_SIZE; i−− > 0 ;) {

r e s [0] = (r e s [0] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ ((matrix [i] [0] & xy [0]) ^ (matrix [i] [1] & xy [1]))) ;

r e s [1] = (r e s [1] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ ((matrix [WORD_SIZE + i] [0] & xy [0]) ^ (matrix [
↪→ WORD_SIZE + i] [1] & xy [1]))) ;

}
}

Listing 6.8: Generated C code to compute the matrix-vector product using bit-
packing

void vector_addi t ion (WORD_TYPE vector [2] , WORD_TYPE xy [2]) {
xy [0] ^= vecto r [0] ;
xy [1] ^= vecto r [1] ;

}

Listing 6.9: Generated C code to compute the vector addition using bit-packing

it is no longer necessary to convert to and from bits, before and after the encryption.
On top of this, the modular addition (Listing 6.10) can be implemented by simply
using the C addition operator and a bitmask: any overflow will automatically result
in a modular reduction [49, p. 35]. Together, these changes result in compact and
conceptually simple code, comparable to an unprotected Speck implementation.

void modular_addition (WORD_TYPE xy [2]) {
xy [0] = (xy [0] + xy [1]) & WORD_MASK;

}

Listing 6.10: Generated C code to compute the modular addition using bit-packing

6.3.4 Inlined bit-packed code generation

In Section 6.3.2 we introduced the inlined code generation strategy, which generates
different matrix-vector product and vector addition functions by implicitly storing
M (r) and v(r) in the function implementation. One might wonder if it could be
possible to combine this technique with the bit-packing method from the previous
section. In the inlined bit-packed code generation strategy, the state vector xy is
bit-packed as described previously, but M (r) and v(r) are not stored explicitly in the
source code.

In the inlined implementation of the matrix-vector product (Listing 6.11), bits
are extracted from the bit-packed vector, and added together to compute entry i in
the result vector. This entry is then bit-packed again to obtain the bit-packed result.

51

6. Implementation

void matrix_vector_product_2 (WORD_TYPE xy [2] , WORD_TYPE re s [2]) {
r e s [0] |= (((xy [0] >> 0) & 1) ^ ((xy [0] >> 8) & 1) ^ ((xy [1]

↪→ >> 0) & 1)) << 0 ;
r e s [0] |= (((xy [0] >> 0) & 1) ^ ((xy [0] >> 9) & 1) ^ ((xy [1]

↪→ >> 61) & 1)) << 1 ;
r e s [0] |= (((xy [0] >> 0) & 1) ^ ((xy [0] >> 10) & 1) ^ ((xy [1]

↪→ >> 61) & 1)) << 2 ;
. . .

}

Listing 6.11: Generated C code to compute the matrix vector product using inlined
bit-packing

Evidently, this inlining introduces additional instruction overhead compared to both
the original inlined code generation and the bit-packed code generation.

In general, one mov instruction (3 bytes on average), one shr instruction (4 bytes),
and one xor (3 bytes) are required for each nonzero entry in M (r). Furthermore,
one shl (4 bytes), one and (3 bytes on average), one or (3 bytes), and one mov
instruction are also needed for each modification of the result vector. Assuming
each row in the result vector is modified, the implicit storage of M (r) would require
13(2n) + 10m bytes, where m is the number of nonzero entries in the matrix.

n = 16 n = 24 n = 32 n = 48 n = 64
Average m 142 220 296 452 609

Disk space usage (bytes) 1836 2824 3792 5768 7754
Disk space saved -79.30% -22.57% 7.42% 37.41% 52.67%

Table 6.6: Average number of nonzero entries, disk space usage and disk space
saved using the bit-packed inlined matrix-vector product

Table 6.6 shows the amount of disk space that could be saved by using this
technique, compared to the default implementation. Again, we used the average
number of nonzero entries from Section 6.3.1. Although the required disk space for
inlined bit-packed is linear in n, the constants are too large to save any disk space
compared to the quadratic growth, (2n)2, of the default implementation for smaller
word sizes. Only starting at n = 32 does this strategy have a positive impact on
storage, and the best average gains are modest compared to previous strategies. For
n = 64, the inlined code generation saves 85.72%, and the bit-packing method saves
87.50%, compared to only 52.67% saved in this case.

Inlining the vector addition results in the bit-packed vector constants being
stored inside the function implementation (Listing 6.12). Consequently, this method
does not change the disk space used to store the vectors v(r). At best, some array
load instructions can be avoided. However, depending on the word size and target
platform, these constants will have to be stored in the assembly data segment, similar
to array contents. In this case, there is no technical difference with the bit-packed

52

6.3. Code generation strategies

code from Listing 6.9. For this reason, we do not expect any significant disk space or
execution time impact caused by inlining the vector addition.

void vector_addit ion_2 (WORD_TYPE xy [2]) {
xy [0] ^= WORD_CONSTANT_TYPE(8577346029146923773) ;
xy [1] ^= WORD_CONSTANT_TYPE(17808705383533708044) ;

}

Listing 6.12: Generated C code to compute the vector addition using inlined
bit-packing

While this strategy has mixed results compared to the default implementation,
and does not improve on the inlined or the bit-packing strategy, in terms of disk
space savings, we believe this strategy can still have a positive impact on execution
time. Compared to the inlined strategy, this method has the advantage of the state
vector xy being bit-packed. This simplifies the modular addition and vector addition
functions. Compared to the bit-packing method, we might expect a performance
improvement as a result of the loop unrolling. Experimental results on inlined
bit-packed code generation are discussed in Section 6.4.

6.3.5 SIMD code generation

In the previous code generation strategies, we addressed inefficiencies directly in-
troduced by the white-box protection of a Speck implementation. However, our
final code generation strategy is more generic and could potentially be combined
with any of the previous strategies. We extend the bit-packed code generation from
Section 6.3.3 with instructions from the Advanced Vector Extensions (AVX) and
Advanced Vector Extensions 2 (AVX2) instruction sets. For the sake of simplicity,
we do not consider n = 24 and n = 32 in this section.

Single instruction, multiple data (SIMD) allows algorithms to operate on multiple
pieces of data, called vectors, at the same time. For example, 16 16-bit integers
could be combined into a 256-bit SIMD vector, which could then be manipulated
using SIMD instructions. In this section, we will always work with the 256-bit SIMD
vector provided by AVX. We also define m to be the amount of packed n-bit integers
in a 256-bit SIMD vector. For n = 16, n = 32, and n = 64, this value is equal to 16,
8, and 4, respectively.

SIMD instructions are particularly useful to optimize algorithms where the results
can be calculated in parallel. Clearly, this is the case for the matrix-vector product,
where an entry i in the result vector res is computed as follows:

resi = p((M(r)
i,x & x)⊕ (M(r)

i,y & y))

To fully parallelize this definition, we would require SIMD instructions for three
operations: bitwise AND, bitwise XOR, and the parity function p. Unfortunately,
there is no such instruction for the parity function. A possible solution to this
problem is to parallelly compute an intermediate result, interi:

interi = (M(r)
i,x & x)⊕ (M(r)

i,y & y)

53

6. Implementation

Function Description
_mm256_set1_epi16 Broadcast a 16-bit integer to the entire 256-bit vector
_mm256_set1_epi32 Broadcast a 32-bit integer to the entire 256-bit vector
_mm256_set1_epi64x Broadcast a 64-bit integer to the entire 256-bit vector
_mm256_and_si256 Compute the bitwise AND of two 256-bit vectors
_mm256_xor_si256 Compute the bitwise XOR of two 256-bit vectors

Table 6.7: SIMD intrinsic functions used in the matrix-vector product

After the parallel computation, the individual intermediate results can be ex-
tracted from the SIMD vector. The final step is then to execute the parity function
p on each interi to obtain resi. Although this solution is not optimal, it still allows
us to partially exploit data parallelism for the matrix-vector product using SIMD.
To implement this solution, we require 5 SIMD intrinsic functions from the standard
library, listed in Table 6.7 [51].

Because these SIMD functions will take SIMD vectors as parameters, we also
have to change how M(r) is stored in the C source code. Instead of storing each row
individually, m rows of bit-packed integers should be stored together in two SIMD
vectors: the x part and the y part:

M(r) =

M(r)1,x M(r)1,y
...

...
M(r)

m,x M(r)
m,y

M(r)
m+1,x M(r)

m+1,y
...

...
M(r)2m,x M(r)2m,y

...
...

M(r)2n−m+1,x M(r)2n−m+1,y
...

...
M(r)2n,x M(r)

m,y

Unfortunately, there is no straightforward way to store M(r) as a two-dimensional

array of constant SIMD vectors in C source code. As an alternative, we could store the
bit-packed integers of M(r) and construct the SIMD matrix when the program starts,
however this might result in some runtime overhead. Instead, we utilize technique
known as type punning, and create a union called simd_union (Listing 6.13). This
union allows us to freely convert between an array of m bit-packed integers and the
SIMD vector. As a result, creating a constant SIMD vector is equivalent to storing
the array of m bit-packed integers, and a bit-packed integer can easily be extracted
from the SIMD vector using array indexing.

We can now introduce the SIMD implementation of the matrix-vector product. In
Listing 6.14, this implementation is illustrated for n = 64 (m = 4). The function first
constructs two SIMD vectors consisting of copies of the bit-packed input vectors x and

54

6.3. Code generation strategies

typede f union simd_union {
WORD_TYPE words [SIMD_PACKED_COUNT] ;
SIMD_TYPE simd ;

} simd_union ;

Listing 6.13: Type punning using union

void matrix_vector_product (simd_union matrix [BLOCK_SIZE /
↪→ SIMD_PACKED_COUNT] [2] , WORD_TYPE xy [2] , WORD_TYPE re s [2]) {
SIMD_TYPE xy0 = SIMD_SET1(xy [0]) ;
SIMD_TYPE xy1 = SIMD_SET1(xy [1]) ;
f o r (s i z e_t i = WORD_SIZE / SIMD_PACKED_COUNT; i−− > 0 ;) {

simd_union i n t e r 0 = { . simd = SIMD_XOR(SIMD_AND(matrix [i
↪→] [0] . simd , xy0) , SIMD_AND(matrix [i] [1] . simd , xy1)) } ;

r e s [0] = (r e s [0] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 0 . words [3])) ;

r e s [0] = (r e s [0] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 0 . words [2])) ;

r e s [0] = (r e s [0] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 0 . words [1])) ;

r e s [0] = (r e s [0] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 0 . words [0])) ;

simd_union i n t e r 1 = { . simd = SIMD_XOR(SIMD_AND(matrix [(
↪→ WORD_SIZE / SIMD_PACKED_COUNT) + i] [0] . simd , xy0) ,
↪→ SIMD_AND(matrix [(WORD_SIZE / SIMD_PACKED_COUNT) + i
↪→] [1] . simd , xy1)) } ;

r e s [1] = (r e s [1] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 1 . words [3])) ;

r e s [1] = (r e s [1] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 1 . words [2])) ;

r e s [1] = (r e s [1] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 1 . words [1])) ;

r e s [1] = (r e s [1] << 1) | ((WORD_TYPE) WORD_PARITY_FUNCTION
↪→ (i n t e r 1 . words [0])) ;

}
}

Listing 6.14: Generated C code to compute the matrix-vector product using SIMD
functions (n = 64)

y. After this, vector0 and vector1 are used to parallelly compute the intermediate
result (M(r)

j,x & x)⊕ (M(r)
j,y & y) for i ≤ j ≤ i+m, using SIMD bitwise AND and

bitwise XOR instructions. The individual intermediate results can then be extracted
from the resulting SIMD vector, and the parity function p is applied to obtain m
entries for the x part of the output vector. This process is repeated in a similar
manner to compute m entries for the y part of the output vector.

In general, 2m entries in the result vector are computed in one iteration of the
for loop, reducing the required number of iterations to n

m . As a result, for n = 16,

55

6. Implementation

only a single iteration of the for loop is performed. For n = 32 and n = 64, the
number of iterations is 4 and 16 respectively. This partial unrolling might have a
similar positive effect on execution time as the inlining from Section 6.3.2. However,
potential overhead from the SIMD operations might limit the efficiency gains.

6.4 Comparison

To provide a comprehensive comparison of the Speck encryption performance for
the unprotected and protected implementations, we tested three different variants:
Speck32/64, Speck64/128, and Speck128/256. We did not test the block sizes
48 and 96, as these parameters are not supported by all code generation strategies.
For every variant, we used the keys from the original Speck test vectors to perform
the encryptions [6]. However, the choice and length of key should not have an impact
on the performance of the protected implementations. Furthermore, to ensure a fair
comparison, the same self-equivalence encodings were used when generating C code
using different strategies. For simplicity reasons, no external encodings were applied
to the generated output. Once again, this decision has a negligible impact on the
performance of the white-box Speck implementations.

As mentioned before, we use the GNU Compiler Collection (GCC), version 10.2.0,
to compile the C code to executable files. Each Speck implementation was compiled
using the following compiler flags: -Ofast, -march=native, -pipe, and -s. After
compilation, disk space usage was measured using the du -b command. Finally,
the perf stat command was used to measure the execution time of the compiled
program. These programs were executed using a single core on a laptop with an AMD
Ryzen 7 PRO 3700U CPU, running Linux 5.10.14.

In total, this process of generating white-box Speck implementations, compiling
the C code, and benchmarking the results, was iterated 100 times for every variant
to account for variability in disk space usage and execution times. Although the
disk space usage only varies for the sparse matrix, inlined, and inlined bit-packed
code generation strategies, we will compare the average of these iterations for all
implementations.

6.4.1 Speck32/64

Of all variants we analyzed, Speck32/64 is the most even in terms of disk space
usage (Figure 6.10). The unprotected reference implementation takes up 14, 432
bytes of disk space, with the most efficient protected implementations using 17, 496
bytes of disk space. A surprising result in this data is the exact tie between the disk
space usage of bit-packed and SIMD implementations. The code structure of these
implementations differs substantially, so we assume this tie is a coincidence.

The graph also clearly shows the impact of using the sparse matrix representation,
being the third-most efficient code generation strategy in terms of disk space usage. As
conjectured in Section 6.3.4, the inlined bit-packed code takes up more disk space than
the default implementation. In environments where disk space is tightly constrained,

56

6.4. Comparison

unprotected default sparse mat. inlined bit-packed inl. b-p. SIMD
0

1

2

3

4

5

·104

14,432

38,744

21,888.64

29,127.04

17,496

48,419.2

17,496

D
isk

sp
ac
e
us
ag

e
(b
yt
es
)

Figure 6.10: Average disk space used by different Speck32/64 implementations

the comparatively simple bit-packed code generation strategy is presumably preferable
to more complex SIMD code.

unprotected default sparse mat. inlined bit-packed inl. b-p. SIMD
0

10

20

30

0.42

27.51
31.44

10.36
6.48

8.97
7.19

Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

Figure 6.11: Average execution time for different Speck32/64 implementations

In the Speck32/64 implementations, 10, 000, 000 random encryptions were
performed upon execution of the program (Figure 6.11). The unprotected imple-
mentation finished this in 0.42 seconds, on average, reaching an encryption speed
of 761.90 megabytes per second. The most efficient protected implementation is
considerably slower, taking on average 6.48 seconds, which results in an encryption
speed of only 49.38 megabytes per second. For this block size, the sparse matrix
representation seems to have a negative impact on the execution time, which might
be explained by the more unpredictable array accesses. Clearly, when encryption
speed is the most important factor, bit-packing is also the best code generation

57

6. Implementation

strategy for Speck32/64.

6.4.2 Speck64/128

Because unprotected implementations do not store matrices and vectors which
depend on the block size, the required disk space for the unprotected Speck64/128
implementation stays the same. Once again, the code generated using the bit-packed
and SIMD strategies is the most efficient in terms of disk space usage, taking about
double the disk space of an unprotected implementation. However, the sparse matrix
strategy is a close second best option for this block size. This is also the first block
size we tested where code generated using the inlined bit-packed strategy requires
less disk space than the default protected implementation. Full results can be found
in Figure 6.12.

unprotected default sparse mat. inlined bit-packed inl. b-p. SIMD
0

0.5

1

·105

14,432

130,936

32,429.12
47,549.12

29,016

97,643.2

29,016

D
isk

sp
ac
e
us
ag

e
(b
yt
es
)

Figure 6.12: Average disk space used by different Speck64/128 implementations

For a block size of 64, 3, 000, 000 encryptions were executed, which results in an
average execution time of 0.1 seconds for the unprotected implementation. This is
equivalent to an encryption speed of 1920 megabytes per second. Still, the bit-packed
strategy produces the fastest code (3.8 seconds, 50.53 megabytes per second), however
SIMD code is only slightly behind (3.87 seconds). Although the sparse matrix code
generation strategy has a large positive impact on disk space usage, it is still less
efficient than the default protected implementation in terms of execution time.

58

6.4. Comparison

unprotected default sparse mat. inlined bit-packed inl. b-p. SIMD
0

10

20

30

0.1

25.91 27.17

7.68

3.8
6.28

3.87Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

Figure 6.13: Average execution time for different Speck64/128 implementations

6.4.3 Speck128/256

unprotected default sparse mat. inlined bit-packed inl. b-p. SIMD
0

2

4

6

·105

14,432

592,376

59,100.16
98,951.04 86,712

284,581.76

86,712D
isk

sp
ac
e
us
ag

e
(b
yt
es
)

Figure 6.14: Average disk space used by different Speck128/256 implementations

The final disk space usage graph (Figure 6.14) shows us that for block size 128,
the sparse matrix representation requires less disk space on average compared to the
bit-packed or SIMD implementations. While code generated using these strategies
still takes up four times the amount of disk space of an unprotected implementation,
it still improves on the default implementation with a reduction of 90%, as was
theoretically predicted in Section 6.3.1. For this block size, the inlined bit-packed
strategy also extends its lead on the default implementation, but it does not improve
on the inlined or bit-packed code generation strategies.

For Speck128/256 implementations, the number of random encryption iterations

59

6. Implementation

unprotected default sparse mat. inlined bit-packed inl. b-p. SIMD
0

10

20

30

40

0.06

36.97

24.42

6.59
3.33

5.65
2.96Ex

ec
ut
io
n
tim

e
(s
ec
on

ds
)

Figure 6.15: Average execution time for different Speck128/256 implementations

was set to 1, 000, 000. A graph of the execution times can be found in Figure 6.15).
The experimental results show an average encryption speed of 2133.33 megabytes per
second for the unprotected implementation. For this block size, the SIMD code is the
most performant protected implementation, narrowly beating the bit-packed code
generation strategy by 0.37 seconds. The SIMD code reaches an encryption speed
of 43.24 megabytes per second, on average. However, if no SIMD instruction set is
available on the target platform, then bit-packed code could be a viable alternative,
with a slightly lower average encryption speed: 38.43 megabytes per second.

6.5 Conclusion

In this chapter we introduced the Python project we created to generate realistic
white-box Speck implementations. This program can generate protected encryption
code for any Speck variant. Although the decryption function is currently not
supported, all required building blocks are present. In addition to the general
architecture of our project, we also described in detail the computation of the
protected affine layers, the generation of self-equivalences and external encodings,
and the generation of output code.

Furthermore, we discussed five additional strategies to generate protected C code.
While some of these strategies only support 32, 64, and 128 bit block sizes, this
could easily be modified without too much effort. We showed that for all of these
strategies, some performance improvements compared to the default implementation
can be expected. Moreover, the techniques introduced in this chapter could also
be applied to other mathematical computations relying on the storage of matrices
and the computation of a matrix-vector product. In particular, these improvements
could be applied to white-box implementations based on self-equivalences of other
ARX ciphers.

Finally, we compared an unprotected, reference Speck implementation, a default

60

6.5. Conclusion

white-box Speck implementation, and the code generated by the different code
generation strategies for three Speck variants: Speck32/64, Speck64/128, and
128/256. These code generation strategies all improve on the default white-box
implementation in varying degrees.

These comparisons also show that the bit-packed code generation strategy provides
the most efficient code, both in terms of disk space usage and execution time, for
Speck32/64 and Speck64/128. For Speck128/256, the sparse matrix code
generation strategy requires the least disk space, and the SIMD code generation
strategy results in the fastest encryption speeds. However, the bit-packed code
generation strategy is still a close second best in both metrics. Clearly, when all
Speck variants are considered, this strategy is the most efficient method to generate
white-box Speck code, with a sixfold increase in disk space and a factor 55.5 increase
in execution time (Speck128/256).

61

Chapter 7

Conclusion

White-box cryptography is a young but ambitious field, aiming to protect crypto-
graphic keys against attackers with full access to the implementation. Although
white-box cryptography is used extensively in industry, there is currently no public
research on white-box implementations of ARX ciphers. To accomplish our first
goal, we introduced the first academic method to protect a Speck encryption imple-
mentation. For this method, we considered both linear and affine self-equivalence
encodings. We showed that these encodings can be applied to Speck rounds without
changing the functionality. However, this method is not restricted to Speck. Similar
techniques could be used to protect other ARX ciphers, such as Salsa20, ChaCha,
or Threefish.

Furthermore, we achieved our second goal by analyzing the security of our method.
We discovered that, when only linear self-equivalence encodings are used, only one of
the round key bits is adequately masked by the encodings. Moreover, we presented a
practical attack to fully recover the linear self-equivalence encodings and external
encodings of a protected implementation. This showed that our method is completely
insecure when only linear self-equivalences are used. When affine encodings are used,
we found that candidate round keys could be computed by guessing the values of
only two key bits. However, we were unable to mount an attack to fully recover
affine self-equivalence encodings from an encoded round.

Our final goal was to create a functional implementation of our method. We
succeeded by creating a Python project to generate white-box Speck code. This
implementation can be found in our GitHub repository at https://github.com/
jvdsn/white-box-speck. We used this project to calculate the impact of our
method on the performance of Speck. Furthermore, we were able to compare five
additional strategies to generate protected code, and determined an overall optimal
strategy: bit-packed code generation. Lastly, we successfully tested our attack to
recover linear self-equivalence encodings from a protected implementation using this
project.

Clearly, our method to generate white-box Speck implementations has some
serious disadvantages. Most importantly, its security against key recovery attacks is
uncertain at best, and fully broken in the worst case, when only linear self-equivalences

63

https://github.com/jvdsn/white-box-speck
https://github.com/jvdsn/white-box-speck

7. Conclusion

are used. On top of this, our method has a considerable impact on the performance
of the generated code. In the case of Speck128/256, the most efficient protected
implementation was still six times larger and 55.5 times slower than an unprotected
implementation.

One possible area for future research is the generation of self-equivalences. In this
thesis, we were only able to use two subsets of affine self-equivalences, type 1 and
type 2 affine self-equivalences. By composing these self-equivalences, we were able to
generate a larger subset of possible encodings. Nevertheless, this subset only covers
a fraction of all possible affine self-equivalences. As our implementation framework is
modular, it could easily be adapted to utilize a larger subset, or even the full set, of
affine self-equivalences. This could result in more secure white-box implementations.

Alternatively, the security of our current method could be analyzed using different
approaches in the white-box model. In particular, we did not consider popular
techniques based on side-channel analysis, such as differential fault analysis and
differential computation analysis. Our Python project could be used to test and
compare the efficiency of many different attacks on white-box implementations using
self-equivalence encodings.

Finally, there might be other methods to improve the performance of protected
Speck implementations. Further research in the storage of binary vectors and
matrices, or innovative approaches to speed up the matrix-vector product, could
result in better code generation strategies. These strategies could be applied to any
white-box implementation using self-equivalence encodings.

64

Bibliography

[1] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot. “White-
box cryptography and an AES implementation”. In: International Workshop
on Selected Areas in Cryptography. Springer. 2002, pp. 250–270.

[2] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. “On the (im) possibility of obfuscating programs”.
In: Annual international cryptology conference. Springer. 2001, pp. 1–18.

[3] Encryption Key Management | Secure Key Box | Intertrust Technologies. In-
tertrust Technologies Corporation. url: https://www.intertrust.com/
products/application-protection/secure-key-box/ (visited on Mar. 21,
2021).

[4] Brendan McMillion and Nick Sullivan. “Attacking White-Box AES Construc-
tions”. In: Proceedings of the 2016 ACM Workshop on Software PROtection.
2016, pp. 85–90.

[5] Adrián Ranea and Bart Preneel. “On Self-Equivalence Encodings in White-Box
Implementations”. In: International Workshop on Selected Areas in Cryptogra-
phy. Springer. 2020.

[6] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. “The SIMON and SPECK Families of Lightweight
Block Ciphers.” In: IACR Cryptol. ePrint Arch. 2013 (2013), p. 404.

[7] White Box Cryptography | Essential Encryption | Thales. Thales. url: https://
cpl.thalesgroup.com/software-monetization/white-box-cryptography
(visited on Mar. 21, 2021).

[8] Whitebox Cryptography - Irdeto. Irdeto. url: https://irdeto.com/whitebox-
cryptography/ (visited on Mar. 21, 2021).

[9] Joan Daemen and Vincent Rijmen. The design of Rijndael. Vol. 2. Springer,
2002.

[10] James A Muir. “A tutorial on white-box AES”. In: Advances in network analysis
and its applications (2012), pp. 209–229.

[11] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham,
E. Roback, and James Dray. Advanced Encryption Standard (AES). en. Nov. 26,
2001. doi: https://doi.org/10.6028/NIST.FIPS.197.

65

https://www.intertrust.com/products/application-protection/secure-key-box/
https://www.intertrust.com/products/application-protection/secure-key-box/
https://cpl.thalesgroup.com/software-monetization/white-box-cryptography
https://cpl.thalesgroup.com/software-monetization/white-box-cryptography
https://irdeto.com/whitebox-cryptography/
https://irdeto.com/whitebox-cryptography/
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197

Bibliography

[12] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C Van Oorschot. “A
white-box DES implementation for DRM applications”. In: ACM Workshop on
Digital Rights Management. Springer. 2002, pp. 1–15.

[13] Matthias Jacob, Dan Boneh, and Edward Felten. “Attacking an obfuscated
cipher by injecting faults”. In: ACM workshop on digital rights management.
Springer. 2002, pp. 16–31.

[14] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. “Cryptanalysis of a white
box AES implementation”. In: International workshop on selected areas in
cryptography. Springer. 2004, pp. 227–240.

[15] Hamilton E Link and William D Neumann. “Clarifying obfuscation: improving
the security of white-box DES”. In: International Conference on Information
Technology: Coding and Computing (ITCC’05)-Volume II. Vol. 1. IEEE. 2005,
pp. 679–684.

[16] Yaying Xiao and Xuejia Lai. “A secure implementation of white-box AES”. In:
2009 2nd International Conference on Computer Science and its Applications.
IEEE. 2009, pp. 1–6.

[17] Mohamed Karroumi. “Protecting white-box AES with dual ciphers”. In: In-
ternational conference on information security and cryptology. Springer. 2010,
pp. 278–291.

[18] Jaesung Yoo, Hanjae Jeong, and Dongho Won. “A method for secure and
efficient block cipher using white-box cryptography”. In: Proceedings of the
6th International Conference on Ubiquitous Information Management and
Communication. 2012, pp. 1–8.

[19] Seungkwang Lee, Dooho Choi, and Yong-Je Choi. “Conditional Re-encoding
Method for Cryptanalysis-Resistant White-Box AES”. In: ETRI Journal 37.5
(2015), pp. 1012–1022.

[20] Chung Hun Baek, Jung Hee Cheon, and Hyunsook Hong. “White-box AES
implementation revisited”. In: Journal of Communications and Networks 18.3
(2016), pp. 273–287.

[21] Seungkwang Lee, Taesung Kim, and Yousung Kang. “A masked white-box
cryptographic implementation for protecting against differential computation
analysis”. In: IEEE Transactions on Information Forensics and Security 13.10
(2018), pp. 2602–2615.

[22] Julien Bringer, Hervé Chabanne, Emmanuelle Dottax, et al. “White Box
Cryptography: Another Attempt.” In: IACR Cryptol. ePrint Arch. 2006 (2006),
p. 468.

[23] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. “Cryptographic
schemes based on the ASASA structure: Black-box, white-box, and public-key”.
In: International conference on the theory and application of cryptology and
information security. Springer. 2014, pp. 63–84.

66

Bibliography

[24] Andrey Bogdanov and Takanori Isobe. “White-box cryptography revisited:
Space-hard ciphers”. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 2015, pp. 1058–1069.

[25] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. “Cryptanal-
ysis of white-box DES implementations with arbitrary external encodings”.
In: International workshop on selected areas in cryptography. Springer. 2007,
pp. 264–277.

[26] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. “Cryptanalysis
of white box DES implementations”. In: International workshop on selected
areas in cryptography. Springer. 2007, pp. 278–295.

[27] Wil Michiels, Paul Gorissen, and Henk DL Hollmann. “Cryptanalysis of a
generic class of white-box implementations”. In: International workshop on
selected areas in cryptography. Springer. 2008, pp. 414–428.

[28] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. “Cryptanalysis of a per-
turbated white-box AES implementation”. In: International Conference on
Cryptology in India. Springer. 2010, pp. 292–310.

[29] Yoni De Mulder, Peter Roelse, and Bart Preneel. “Cryptanalysis of the Xiao–
Lai white-box AES implementation”. In: International conference on selected
areas in cryptography. Springer. 2012, pp. 34–49.

[30] Ludo Tolhuizen. “Improved cryptanalysis of an AES implementation”. In:
Proceedings of the 33rd WIC Symposium on Information Theory in the Benelux.
2012, pp. 68–71.

[31] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. “Two attacks on a white-box AES implementation”. In: International
conference on selected areas in cryptography. Springer. 2013, pp. 265–285.

[32] Brice Minaud, Patrick Derbez, Pierre-Alain Fouque, and Pierre Karpman.
“Key-recovery attacks on ASASA”. In: Journal of Cryptology 31.3 (2018),
pp. 845–884.

[33] Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, and Brice Minaud. “On
recovering affine encodings in white-box implementations”. In: IACR Trans-
actions on Cryptographic Hardware and Embedded Systems (2018), pp. 121–
149.

[34] Joppe W Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. “Differen-
tial computation analysis: Hiding your white-box designs is not enough”. In:
International Conference on Cryptographic Hardware and Embedded Systems.
Springer. 2016, pp. 215–236.

[35] Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels, and Alexander Treff. “On
the ineffectiveness of internal encodings-revisiting the DCA attack on white-
box cryptography”. In: International Conference on Applied Cryptography and
Network Security. Springer. 2018, pp. 103–120.

67

Bibliography

[36] Estuardo Alpirez Bock, Joppe W Bos, Chris Brzuska, Charles Hubain, Wil
Michiels, Cristofaro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen, and Alexan-
der Treff. “White-box cryptography: don’t forget about grey-box attacks”. In:
Journal of Cryptology 32.4 (2019), pp. 1095–1143.

[37] Eli Biham and Adi Shamir. “Differential cryptanalysis of the full 16-round
DES”. In: Annual International Cryptology Conference. Springer. 1992, pp. 487–
496.

[38] Mitsuru Matsui. “Linear cryptanalysis method for DES cipher”. In: Workshop
on the Theory and Application of of Cryptographic Techniques. Springer. 1993,
pp. 386–397.

[39] Data Encryption Standard et al. “Data encryption standard”. In: Federal
Information Processing Standards Publication (1999), p. 112.

[40] Adrián Ranea. “Self-Equivalences of the Permuted Modular Addition”. In:
2021.

[41] Daniel J Bernstein. “The Salsa20 family of stream ciphers”. In: New stream
cipher designs. Springer, 2008, pp. 84–97.

[42] Daniel J Bernstein. “ChaCha, a variant of Salsa20”. In: Workshop Record of
SASC. Vol. 8. 2008, pp. 3–5.

[43] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. “The Skein hash function
family”. In: Submission to NIST (round 3) 7.7.5 (2010), p. 3.

[44] Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil Michiels.
“On the security goals of white-box cryptography”. In: IACR Transactions on
Cryptographic Hardware and Embedded Systems (2020), pp. 327–357.

[45] Eloi Sanfelix, Cristofaro Mune, and Job de Haas. “Unboxing the white-box”.
In: Black Hat EU 2015. 2015.

[46] Agner Fog. Instruction tables. Technical University of Denmark. Oct. 11, 2020.
url: https://www.agner.org/optimize/instruction_tables.pdf (visited
on Jan. 16, 2021).

[47] Welcome to Python.org. Python Software Foundation. url: https://www.
python.org/ (visited on Feb. 14, 2021).

[48] SageMath - Open-Source Mathematical Software System. url: https://www.
sagemath.org/ (visited on Feb. 14, 2021).

[49] Information technology – Programming languages – C. Standard. Geneva, CH:
International Organization for Standardization, June 2018.

[50] 6.59 Other Built-in Functions Provided by GCC. Free Software Foundation,
Inc. url: https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
(visited on Feb. 7, 2021).

[51] Intel Intrinsics Guide. Intel Corporation. Oct. 19, 2020. url: https : / /
software.intel.com/sites/landingpage/IntrinsicsGuide/ (visited on
Feb. 13, 2021).

68

https://www.agner.org/optimize/instruction_tables.pdf
https://www.python.org/
https://www.python.org/
https://www.sagemath.org/
https://www.sagemath.org/
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

	Preface
	Abstract
	Samenvatting
	List of Figures and Tables
	Introduction
	Preliminaries
	Notation
	Speck

	White-box cryptography
	The White-Box Attack Context
	The CEJO framework
	Further developments

	Self-equivalences
	Definitions
	Self-equivalences and Speck
	Generating linear self-equivalences
	Generating affine self-equivalences

	Security analysis of white-box Speck
	Introduction
	Speck key schedule inversion
	Security analysis of linear self-equivalences
	Security analysis of affine self-equivalences

	Implementation
	Introduction
	Architecture
	Code generation strategies
	Comparison
	Conclusion

	Conclusion
	Bibliography

