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Abstract. Using previously generated machine learning models under changing 
sensor hardware with nearly the same performance is a desirable goal. This 
constitutes a model transfer problem. We compare a Radial Basis Function Network 
adapted for transfer learning to a classical data alignment approach. This approach 
to transfer machine-learning models is tested on a task of material classification 
using hyperspectral imaging recorded with different camera systems and the aim to 
make camera systems interchangeable. The results show that a machine-learning 
based algorithm outperforms a state-of-the-art hyperspectral data alignment 
algorithm.  

1 Introduction 

Hyperspectral imaging is increasingly establishing itself as an important and powerful 
instrument through its non-invasive evaluation method in different fields of application, 
such as quality control, forensics, remote sensing and much more. For example, the 
technology is used on crop plants to estimate the health and nutrition status as well as 
estimating parameters like the maturity of fruits. As another example, it is applied in 
sorting systems to distinguish between different types of coffee. However, all fields of 
application have the common property to require methods that converts the spectral 
information into the desired target measurement as described above. This relationship 
between reflectance spectrum and target values is often not easily describable in closed 
mathematical form. Therefore, data-driven methods derived from the area of machine 
learning are increasingly used to fill this gap. Due to the high computational demand 
and processing time needed to generate a suitable machine-learning model, it is 
desirable to generate these base models just once. In addition, data acquisition can be 
expensive and, particularly in a biological context, is often not easily repeatable. 
Unfortunately, these base models can lose their stability and robustness over time, for 
example, through an aging sensor, using a new camera system or changing 
environmental conditions. Therefore, measures have to be taken to ensure a constant 
performance of the base model trained from reference data. 
 In this paper, we suggest a new method of transferring machine-learning based 
models using transfer learning and test its performance applied on Radial Basis 
Functions Networks. To compare the results, a reference method for calibration transfer 
based on Alternating Trilinear Decomposition (ATLD) algorithm [1] has been used to 
eliminate spectral offsets between different instruments. This method has only been 
tested in combination with a PLS regression models [1]. 
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2 Datasets 

We created two different types of datasets with several hyperspectral camera systems 
to obtain the results in this paper. These datasets are characterized by uniformity 
regarding their materials and by diversity regarding their classification difficulty. 

2.1 Coffee 

It has already been proven in [2], that the classification of different coffee types is easily 
possible with hyperspectral imaging. With Arabica, Robusta and immature Arabica, 
three different coffee types have been used forming a 3-class problem with 10,000 
spectra per class. This provides a sufficient database for the machine-learning task. 
Furthermore, in order to achieve constant conditions, each set of coffee beans is 
identical for each camera recording. 

2.2 Sugar 

As already introduced in [3], a dataset with 9 varieties of sugar has been used again. 
The special property of this dataset is the fact that all sugar types have the same 
empirical formula but the molecule structure differs. Therefore, the individual sugars 
are particularly hard to distinguish by visual inspection. 
 However, the classification task is rather simple for some selected types of sugar 
with short-wave infrared camera systems (SWIR). Therefore, only the most difficult 
ones like sugar ester P1570 and S1570 have been used to create the dataset SugarH 
with 10,000 spectra per class. 

2.3 Hyperspectral Camera Systems 

There are four different pushbroom camera systems involved in this study as shown in 
Table 1. 
 

  Cam1 Cam2c Cam3 Cam2s Cam4 

Type 
SWIR-
320me 

SWIR-
320me 

SWIR-
384me 

SWIR-
384me 

Headwall 
SWIR 

Range in [nm] 970 - 2500 970 - 2500 950 - 2500 950 - 2500 900 - 2500 

Bands 256 256 288 288 273 

Spatial resolution 320px 320px 384px 384px 384px 

Used for dataset 
Coffee, 
SugarH 

Coffee 
Coffee, 
SugarH 

SugarH 
Coffee, 
SugarH 

Table 1: Detailed specification of used hyperspectral camera systems. 
 
As summarized in Table 1, this study considers only SWIR camera systems. Two pairs 
of cameras are even of the same type from the same series (Cam1 and Cam2c, Cam2s 
and Cam3, respectively). It should be noted that every camera system is unique in 
respect to their sampling of the reflectance spectra at slightly different wavelengths.  
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3 Existing methods 

There is one naive method for a sensor data transfer and this is simply interpolating the 
spectra to the target camera wavelengths. Further investigations on hard classification 
problems have already shown that a simple interpolation is not sufficient for a sensor 
data transfer [4]. It was not possible to obtain nearly the base models classification 
performance. However, interpolation might be sufficient for very simple classification 
tasks. 
 Another published method is the transfer of calibration models by using the 
ATLD algorithm and a transfer rule for new data from another camera system [1]. 
Publication [1] just considered a regression problem with a simple machine-learning 
method like Partial-Least-Squares (PLS). So far, this method has not been proven on 
classification tasks and in combination with more advanced machine-learning methods, 
though. 

3.1 Eliminating offsets with calibration transfer  

The existence of offsets in reflectance between different camera systems can be shown, 
which persists despite standardization with a standard optical calibration pad. It is 
described in [1] how to determine these offsets with the ATLD algorithm and use them 
to transfer new sensor data into the base model data space. Nevertheless, new samples 
from the same data space for each new camera system are needed to calculate the offsets 
correctly. If the offset is stable enough through the camera systems and is irrespective 
of the classification problem and the data space, a calibration pad with gradually 
decreasing reflectance can be used to determine the offset. This general offset can then 
be used as a transfer rule for every new data from the classification task. However, to 
compare the results of [1] with more advanced machine-learning methods, samples 
from the same data space (coffee, sugar) are used. 
 By evaluating the results from [1], it was found that the offset could be calculated 
more accurately by using the Self-weighted Alternating Trilinear Decomposition 
(SWATLD)[5].  

4 Transfer Learning on Radial Basis Functions Networks 

Transfer learning is a commonly used machine-learning method in order to transfer 
model knowledge in a changing data environment. The basic assumption of many 
machine-learning algorithms is that both training data and unknown (new) data are in 
the same feature space having the same distribution [6]. Nevertheless, in some 
situations, this basic assumption does not hold. This section uses the idea of transfer 
learning applied to the task at hand. 

4.1 Idea 

The particular transfer learning method was introduced in [7] for GMLVQ and used in 
[8] to transform disturbed sensor data for an arm prosthesis. The underlying assumption 
is that the disturbed data is the result of a linear transformation from the original 
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dataspace. The goal here is to find the inverse transformation as described in formula 
in (1).  
 

ොݔ  ൌ ܶ	݄ݐ݅ݓ				,ݔ	ܶ ∈ Թ	௫	ෝ  
ݔ ൌ ܶିଵ	ݔො	.	 

(1) 

 
This transformation matrix  ܶିଵ will be trained in [7] and [8] with the GMLVQ.
 However, for the datasets used in this study, Radial Basis Functions Networks 
(RBF Networks) resulted in better classification performances. Due to these results, the 
main idea from [7] and [8] has been adopted and applied to the concept of RBF 
Networks. The previously learned parameters of the base RBF Network remain 
unchanged and only ܶିଵ is trained. 

4.2 Mathematical explanation 

The mathematical background is briefly shown here. More details on the standard RBF 
can be found in [9]. Starting point is 
 

 ܶିଵ ← argmin
்షభ

  (2)	ோி,ܧ

 
were ܧோி is the error function or also called energy function of Radial Basis Function 
Networks. Inserting the transformation rule (1) into the RBF’s objective function results 
in the following energy function: 
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1
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ቍ
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	 (3) 

 
In order to optimize this energy function with any optimization technique like gradient 
descent, the partial derivative of ܶିଵ from (3) is needed, which can be determined as 
follows: 
 

 డா

డ்షభ
ൌ ∑ 	∑ ∑ ሺݕሺݔොሻ െ ݐ

ሻ	ݕሺݔොሻ	
డ

డ்షభ
ቆെ

ฮ்షభ	௫ොିఓೕฮ
మ

ଶఙೕమ
ቇ , (4) 

 
where ݔො are data points from the target camera system and ܶ is a square matrix based 
on base model input sizes (spectral bands). This means, to fit new sensor data to base 
model input sizes, we have interpolated these data, to obtain the wavelength range of 
the previous camera system, which has been used to generate the base model originally.  

5 Results 

All the following results are subjected to the procedure shown in Fig. 1. The 
classification model part and thus the base models were generated by an RBF Network 
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with 40 prototypes. For generating the base models, the lower part of Fig. 1 is not 
needed. 
 

Reflectance 
spectra 
dataset

Pre‐
processing 
(median,   
l2‐norm)

10‐fold CV 
training for 

Cami

classification
model for 

Cami  

Interpola‐

tion Camj to 
Cami  

Recall by 

Camj

i ≠ j

Pre‐
processing 
(median,   
l2‐norm)

Calib. ‐
transfer/ TL 

RBF  
 
Fig. 1: Scheme of procedure  
 
Table 2 contains all results. The original classification rates are on the main diagonal 
(bold fonts). Any other entry is a sensor data point transferred to the respective target 
models. In order to allow for a correct validation, this ensures that training samples 
used either for the base model or the transfer model are not used as test samples at all.  
 

 
Table 2: Results by recalling data from another camera system. The gray bars indicate 
the performance of the combination of camera and method.  
 
The aim was to get nearly the same classification performance on any non-main 
diagonal element. It is easy to see, that a simple correction of offsets as used in [1] may 
be applicable for rather simple classification tasks. For hard classification problems, 
that need advanced machine-learning methods, such as the SugarH dataset, the offset 
correction fails and will be outperformed by transfer learning, which has nearly the 
same computationally effort. 

 Trans-               Base model of Trans-               Base model of

fer of Cam1 Cam2c Cam3 Cam4 fer of Cam1 Cam2s Cam3 Cam4

Cam1 0.929 0.701 0.821 0.508 Cam1 0.910 0.508 0.534 0.500

Cam2 0.644 0.923 0.843 0.639 Cam2 0.500 0.960 0.550 0.500

Cam3 0.829 0.892 0.943 0.551 Cam3 0.534 0.874 0.957 0.505

Cam4 0.760 0.444 0.520 0.928 Cam4 0.561 0.500 0.500 0.981

 Trans-               Base model of Trans-               Base model of

fer of Cam1 Cam2c Cam3 Cam4 fer of Cam1 Cam2s Cam3 Cam4

Cam1 0.929 0.923 0.923 0.902 Cam1 0.910 0.906 0.902 0.902

Cam2 0.920 0.923 0.910 0.898 Cam2 0.952 0.960 0.950 0.912

Cam3 0.936 0.934 0.943 0.920 Cam3 0.953 0.958 0.957 0.938

Cam4 0.918 0.927 0.909 0.928 Cam4 0.968 0.967 0.968 0.981

Calibration model transfer: Coffee Calibration model transfer: SugarH

Transfer Learning RBF: Coffee Transfer Learning RBF: SugarH
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 By introducing a new separated hyperparameter, it is actually possible to reach in 
some cases a higher classification performance as the base model itself. To compare 
the results, both methods got 1,000 new samples to achieve these results. That means, 
by adding just 10% of the data points from the base model, a significantly better target 
model can be obtained.    

6 Conclusion 

We adopted the concept of transfer learning originally designed for prototype-based 
classifiers to work in an RBF Network. This approach significantly outperforms the 
concept of an offset correction for those cases more advanced machine learning 
methods have to be applied. However, new samples from the target camera system 
within the same data problem domain are still needed. A fraction of the original quantity 
appears to be sufficient, though. It was not possible to simply swap the inverse 
transformation matrix from one classification problem to another.  
Due to this fact, learning a unified camera characteristic to provide a general ܶିଵ for 
each camera pair is out of question. 
 Transferring machine-learning based models among various hyperspectral 
sensors remains an open research topic.  
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