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Abstract. This work deals with the performance of Quantum Clustering (QC) when 
applied to non-spherically distributed data sets; in particular, QC outperforms K-
Means when applied to a data set that contains information of different olive oil 
areas. The Jaccard score can be set depending on QC parameters; this enables to find 
local maxima by tuning QC parameters, thus showing up the underlying data 
structure. In conclusion, QC appears as a promising solution to deal with non-
spherical data distributions; however, some improvements are still needed, for 
example, in order to find out a way to detect the appropriate number of clusters for 
a given data set. 

1 Introduction. 

K-means is the most known and widely-used clustering algorithm; however, it has a 
number of problems, being two of the most important ones the fact that the number of 
clusters is not automatically selected and its difficulty to cluster properly when the 
dataset is not spherically distributed. Numerous works have been carried out in order 
to face the former problem; for instance, [1] and [2] make use of Cramérs’ V statistic 
as stability measure to produce the Separation Concordance (SeCo) map, and then using 
the Area Under this Curve as metric to obtain the most consistent values of K. 
Nevertheless, the latter problem is difficult to be solved because of k-means design 
itself. In this framework, Quantum Clustering (QC) appears as a promising solution due 
to its ability to work well with data non-spherically distributed data.. 
 
The QC was introduced in [3] using the Schrodinger equation on probability wave 
function formed as a superposition of N Gaussian probability functions (1), where there 
are N data points of dimension d. Then, looking for solutions of the harmonic oscillator 
potential in ground energy eigenstate, (2 – 4), those centroids in which the potential has 
a local minima can be found. From the wave function in (1) the potential function ܸሺݔሻ 
obtains the σ parameter; more minima appear in	ܸሺݔሻ as σ is decreased. Tuning σ can 
also be used for the estimation of the appropriate number of clusters. 
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QC has already been tested in [4]; this work made use of Single Value Decomposition 
(SVD) as a preprocessing step before the QC algorithm. Three known datasets of cells 
and genes were tested obtaining good results when dimensions were truncated to the 4th 
– 5th principal components before the application of QC; the corresponding Jaccard 
scores outperformed those achieved by k-means. 
 
The interface called Comparative-Package-for-Clustering-Assessment (COMPACT) 
[5] was used to obtain the results shown in this paper. COMPACT implements several 
clustering algorithms and has the option of reducing the dataset´s dimensionality using 
SVD. The Jaccard score is used to evaluate the clusters obtained compared with the 
known outputs. 

2 The olive oil data set 

The known olive oil dataset [6] has been chosen because it presents a non-spherical 
distribution, and hence, it is suitable to evaluate QC performance compared to k-means. 
The data set presents two types of underlying structure (3 regions and 9 sub-regions) 
thus making the choice of the number of clusters challenging. 
 
The olive oil dataset, consists of 572 observations with 8 characteristics, related to the 
fatty acid content of olive oil. This data corresponds to 3 collection regions, and 9 sub-
regions.; four from Southern Italy (North and South Apulia, Calabria and Sicily), three 
from Umbria (Umbria, East and West Liguria) and two from Sardinia (Inland and 
Coastal regions). 
The projected visualization of the underlying dataset is shown in Figure 1, where each 
data point is labelled according to the region from which it was obtained [7]; the 
overlapping of the data from Calabria, North and South Apulia and Sicily is remarkable. 

3 QC setting-up 

As previously mentioned, COMPACT was used as interface to evaluate the QC 
performance. There are some parameters related to preprocessing (SVD, normalization, 
component reduction, etc.) … and others directly related to the QC algorithm; among 
the latter, the most important parameter is σ, although there are more algorithm 
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parameters that can be tuned (number of steps, rescale, QC core, % pure terms and 
learning rate η). 

 
Fig. 1: Visualization of the 3 main principal components of olive oil data. 

An evaluation performance based on the Jaccard score allowed to draw a number of 
conclusions: 

- Normalization and SVD is needed in order to avoid a high number of clusters. 
- When QC core is applied, the option of % of pure elements just tends to remove 

observations with an outlier behavior (the performance changes because the number 
of observations decreases). 

- The optimal value of the learning rate is η ൌ 0.1; other values of η might improve 
the performance but involving an unstable range of σ to assign a reasonable number 
of clusters. 
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Finally, the best performance was obtained with the following combination of 
parameters: 

- SVD pre-processing is enabled 
- Normalization is applied 
- QC core is not activated 
- The σ belongs to [0.4, 0.6] producing 10 to 2 clusters. 
- The η is 0.1 
- Number of steps: 100 

4 Data structure 

Since the actual output of the olive oil data set is known (classes and sub-classes), it is 
possible to assess and analyze the performance of QC. Although one the main 
advantages of the QC is that the underlying data structure can be found by varying the 
parameter σ. Figure 2 shows that QC does not find the correct number of clusters when 
it obtains the best performance results, that are highlighted in black; in particular the 
value of σ that provides the best performance in the case of three-cluster problem leads 
to four clusters, while QC finds eight clusters when it achieves the best performance in 
the nine-cluster problem. 
 

 
Fig. 2: Performance as σ function. Left axis shows Jaccard score and right axis shows the cluster 
number. Best Jaccard score results alongside the number of clusters are highlighted in black. 

5 QC vs K-means performance 

This section benchmarks QC performance versus K-Means, for the two classifications 
of the data set, namely, three and nine clusters. It must be emphasized that an additional 
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advantage of QC with respect to K-Means is that QC obtains the same solution every 
time the algorithm is run for a particular σ value whereas K-means may provide 
different solutions in different runs since it is strongly depends on the initial conditions; 
to circumvent that bias, K-means was run 500 times to estimate the lowest SSE for each 
cluster number, [2, 12], then the Jaccard score has been obtained for the 3 and 9 regions, 
bearing in mind the lowest SSE doesn’t imply the highest Jaccard score. 
 
The results presented in Fig. 3 show that although QC nor K-Means find the correct 
number of clusters in either of the two problems, QC performance is considerably better 
than that achieved by K-Means, even taking into account that the right number of 
clusters is provided to K-Means. The best solutions for 3 regions are 4 clusters in both 
cases, with the QC Jaccard higher than K-Means. The best matching results for 9 sub-
regions with K-Means is 6 clusters and QC 8 clusters, again QC scoring slightly higher 
(0.74 vs 0.72). The K-Means SSE decreases as K increases, as expected. 

 
Fig. 3 Jaccard score of K-means and QC. Left axis represents Jaccard score and right axis 
represents SSE of K-Means. Orange lines refer to 3 cluster problem and blue ones to 9 cluster 
problem. Dashed line shows QC performance and the grey dot line refers to SSE of K-Means. 

Table 1 depicts the best indices for both algorithms: Jaccard score, purity and efficiency 
(η). 
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Best 
Jaccard sc. 

K-Means QC 

Regions Clust. Jaccard Purity η Clust. Jaccard Purity η 
3 4 0,597 0,619 0,943 4 0.813 0.905 0.889 
9 6 0,718 0,911 0,772 8 0.745 0.794 0.924 

Table 1: Jaccard score, purity and efficiency (η) are shown of clusters with the best Jaccard 
scores. 

6 Conclusion 

This work has proposed the use of QC to cluster non-spherical data distributions. QC 
outperforms the classical K-Means when applied to a data set containing information 
of different production regions of olive oil. Although, QC may not find the correct 
number of clusters, the performance measured in terms of Jaccard score, purity and 
efficiency is much better than that achieved by a K-Means that does know the number 
of clusters in advance. 
Our ongoing and future research is related to the application of QC in more demanding 
environments in order to figure out its usefulness and range of application. And also, 
research related to the search for the correct σ for unsupervised data. 
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