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Abstract. In the eighties the problem of the lack of an efficient algorithm to train multilayer 
Rosenblatt perceptrons was solved by sigmoidal neural networks and backpropagation. But 
should we still try to find an efficient algorithm to train multilayer hardlimit neuronal networks, 
a task known as a NP-Complete problem? In this work we show that this would not be a waste 
of time by means of a counter example where a two layer Rosenblatt perceptron with 21 
neurons showed much more computational power than a sigmoidal feedforward two layer 
neural network with 300 neurons trained by backpropagation for the same classification 
problem. We show why the synthesis of logical functions with threshold gates or hardlimit 
perceptrons is an active research area in VLSI design and nanotechnology and we review some 
of the methods to synthesize logical functions with a multilayer hardlimit perceptron and we 
propose the search for an efficient method to synthesize any classification problem with 
analogical inputs with a two layer hardlimit perceptron as a near future objective. Nevertheless 
we recognize that with hardlimit multilayer perceptrons we cannot approximate continuous 
functions as we can easily do with multilayer sigmoidal neural networks, with multilayer 
hardlimit perceptrons we can only solve any classification problem, as we plan to demonstrate 
in a near future. 
 
Keywords: Sigmoidal Neural Networks, Backpropagation, Multilayer Hardlimit Neural 
Networks, Efficient Training Algorithm for Multilayer Rosenblatt Perceptrons. 
 
1     Introduction 
 
Since the work of Minsky and Papert [1] in 1969 where they show that a hardlimit 
perceptron with one layer can classify only linearly separable problems and to classify 
problems linearly non separable it would be needed two or more layers, research in 
neural networks stagnated because there was no algorithm to train multilayer 
hardlimit perceptrons, only the Rosenblatt learning rule to train one layer perceptrons 
[2-3]. It was only in 1986 that the first answer to this open problem arose with 
multilayer sigmoidal neural networks and the Backpropagation algorithm [4]. 
Nevertheless research towards an algorithm to train multilayer hardlimit perceptrons 
or threshold gates to implement logical functions continued during the sixties [5-8] 
and was rediscovered by the VLSI and nanotechnology communities and some 
proposals recently arose [9-12] but until today nobody found an efficient algorithm to 
train multilayer hardlimit perceptrons to solve any classification problem, although 
there appeared some very inefficient proposals [13-15]. The synthesis of logical 
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functions with threshold began in forties [16] almost at the same time of the 
publication of the seminal work of McCulloch and Pitts [17] but it was only in the 
sixties that appeared the first proposals of algorithms to obtain the weights of 
multilayer threshold gates to implement logical functions. In this work we show that 
obtaining an efficient algorithm to design multilayer Rosenblatt perceptrons for 
classification problems it would not be a waste of time since in many cases, as in our 
counter example, multilayer hardlimit perceptrons exhibit a much greater 
computational power than multilayer sigmoidal networks trained by Backpropagation 
for the same classification task. Nevertheless surprisingly it has been shown that two 
layer sigmoidal networks are more powerful than two layer hardlimit networks for the 
class of Boolean functions [18]. 
 
2     The counter example: a five classes classification problem 
 
Consider that we want to classify points belonging to four squares and we consider 
the complementary universe as a fifth class, a big square that contains the smaller four 
squares, as we show in figure 1. 
 

d

 
 

Fig. 1: Illustration of our classification problem. d is the thickness of the boundary between 
each of four classes and the universe considered as a fifth class defined by the big square that 

contains the small squares. 
 
Since during the training of the sigmoidal neural network a point cannot belong 
simultaneously to one of the sides of the squares and to the complementary universe, 
we must consider a boundary thickness, d, and the points are only considered to 
belong to the complementary universe outside this boundary. With a two layer 
feedforward neural networks with N sigmoidal neurons in the first layer and four 
linear neurons in the second layer, using the output codification [1 0 0 0]T for the first 
square, [0 1 0 0]T for the second square and so on, and with a test set of 10M points 
we verified that as we reduce the thickness d we must increase the number of hidden 
neurons N to obtain good classification results. For a complementary universe with 
side 6, squares with side 0.4 and d=0.1 we needed N=300 hidden sigmoidal neurons 
to obtain good classification results, greater than 99%, using the  
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Levenberg-Marquardt backpropagation, and we needed N=250 hidden sigmoidal 
neurons using the variant of Levenberg- Marquardt backpropagation with Bayesian 
Regularization [19] to attain the same classification results. When we decrease d the 
classification performance degraded and it would be necessary to increase even more 
the number of hidden neurons. But a square can be seen as the intersection of four 
semi planes, each semi plane being defined by a Rosenblett perceptron in the first 
layer and the intersection of semi planes being implemented by a fifth Rosenblatt 
perceptron in the second layer that makes the logical AND of the output of the four 
hardlimit perceptrons of the first layer. To classify the complementary universe with 
any dimension we only need one more hardlimit perceptron that implements the 
logical NOR of the classifications of the four groups:  
H(– c1 – c2 – c3– c4)  
where the ci are the outputs of the hardlimit perceptrons that classify the points 
belonging to each of the four squares and H is defined by (1) 
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As  an  example,  consider  a  square  defined  by  the  following  semi  planes,  
considering  that   
x1  <  x2  and  y1  <  y2:  
 
x ≥ x1,  which is classified by the hardlimit perceptron o1=H(x – x1) 
  
x ≤ x2, which is classified by the hardlimit perceptron o2=H(- x + x2) 
 
y ≥ y1, which is classified by the hardlimit perceptron o3=H(y – y1) 
 
y ≤ y2, which is classified by the hardlimit perceptron o4=H(- y + y2) 
 
 
and the logical AND of the four oi is implemented by the following fifth hardlimit 
perceptron that classifies if any point (x, y) belongs to one of four squares defined by 
the vertices (x1, y1), (x1, y2), (x2, y1)  and  ( x2, y2): 
  
c1=H(o1  + o2  + o3  + o4 – 4 ) 
 
 
To classify the complementary universe, u, we just make the logical NOR of the four 
ci that classify the four squares with the following hardlimit perceptron 
 
 
u= H( –c1 –  c2 – c3 –c4 ) 
 
This way with only 21 hardlimit perceptrons we can classify any four squares with a 
boundary with null thickness, d=0, and an infinite complementary universe as the fifth 
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class. On the contrary with the sigmoidal network as we increase the complementary 
universe and decrease the boundary thickness the number of hidden neurons must 
increase exponentially. This counter example shows that although it does not exist an 
efficient learning algorithm to solve classification problems for multilayer Rosenblatt 
perceptrons, these multilayer hardlimit perceptrons are in some cases much more 
computationally powerful than sigmoidal feedforward neural networks for the same 
classification problem. 
 
 
3   A  two layer rosenblatt perceptron can compute any logical 
function 
 
Next we will show the known result that a two layer Rosenblatt perceptron is capable 
to compute any logical function by an original constructivist argument. It is this result 
that makes the VLSI and nanotechnology communities interested in implementing 
logical functions with threshold gates or hardlimit perceptrons because their 
implementation with threshold gates is in many cases much simpler than with digital 
gates and it can be saved lots of semiconductor space.  
Consider a logical function of four variables in the first normal form given by (2).  

F(x1, x2, x3, x4)=m1  + m7  + m14  + m15                               (2) 
 
Since any minterm is a linearly separable function, it is the logical AND of positive 
and negated variables, the hardlimit perceptrons of the first layer will implement the 
minterms and in the second layer a hardlimit perceptron will implement the logical 
OR of these minterms. So we could train each hardlimit perceptron with the 
perceptron learning rule to obtain the right weights. Nevertheless, due to the 
simplicity of the minterms we will present a method to assign the right weights. The 
weights associated to the positive variables are set to 1, the weights associated to 
negated variables are set to -1 and the bias is set to –N, N being the number of positive 
variables. For example the minterm 43217 xxxxm =  is implemented by a hardlimit 
perceptron with weights given by w1=w2=w3=1, w4=-1, and bias given by b= – 3. 
 
Finally the OR of the minterms is implemented by a hardlimt perceptron in the second 
layer with weights set to 1 and bias set to -1. This function can be minimized using 
Karnaugh maps resulting in the simplified expression 
 

F’(x1, x2, x3, x4)=x1 x2 x3 + x2 x3 x4 + x1 x2 x3 x4                                   (3) 
 
which can be implemented by four hardlimit perceptrons. It can be shown that any 
association of two of these terms is a linearly non separable function so it cannot be 
further minimized. Nevertheless this is not a general result. 
We can generalize this constructivist design algorithm to any logical function with N 
minterms, being each minterm implemented by a perceptron and a N+1th perceptron 
that implements the OR of the N minterms. So we found a constructive methodology 
to build any logical function with N minterms with a two layer hardlimit perceptron 
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with N+1 neurons, which proves that any logical function can be implemented by a 
two layer hardlimit perceptron, as we wanted to show. In most cases the terms of the 
minimized function cannot be associated, i.e. from their association there results a 
linearly non separable logical function, and so the implementation of the minimized 
function corresponds to the minimum number of threshold gates. 
From this result we can design a new approach to digital design where the logical 
gates are replaced by perceptrons implemented by a single high gain transistor and 
some resistances. This could save a lot of silicon space as in the case of the 
implementation of a N bits comparator that is implemented by a single perceptron but 
whose implementation with logical gates implies a number of gates that increases 
exponentially with N. 

 
4    Conclusions and Future Work 
 
We showed by means of a counter example that in many cases multilayer hardlimit 
perceptrons have more computational power than multilayer sigmoidal neural 
networks to solve a given classification problem. As a corollary of the demonstration 
of the universality of a two layer hardlimit perceptron we showed how to implement 
logical functions with operational amplifiers which in many cases have a great 
advantage in terms of the number of transistors needed to implement them over the 
classical digital design as it is the case of the majority function of N bits and the N 
bits comparator, the implementation of which with digital design would imply a 
number of logical gates that increases exponentially with N. In a near future we will 
work towards finding an efficient algorithm to train multilayer hardlimit perceptrons 
to solve classification tasks, a problem that is shown to be NP-Complete. 
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