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Abstract. The bootstrap aggregating procedure at the core of ensemble
tree classifiers reduces, in most cases, the variance of such models while
offering good generalization capabilities. The average predictive perfor-
mance of those ensembles is known to improve up to a certain point while
increasing the ensemble size. The present work studies this convergence in
contrast to the stability of the class prediction and the variable selection
performed while and after growing the ensemble. Experiments on several
biomedical datasets, using random forests or bagging of decision trees,
show that class prediction and, most notably, variable selection typically
require orders of magnitude more trees to get stable.

1 Motivation

The generalization capabilities of Random Forests (RF) [1], and similar tree en-
semble classifiers, is known to increase up to a certain point with the number of
trees in the forest. This number is commonly chosen, typically through an inter-
nal cross-validation, to reach a plateau of the predictive performance. However,
stability issues of such ensemble have not been extensively studied so far. Our
first objective is to assess to which extent the predictive performance conver-
gence appears earlier than a stable class prediction. In other words, while the
average predictive performance no longer changes significantly once this plateau
has been reached, the specific labels assigned to each test example can still vary.
The bootstrap mechanism at the core of the estimation of such classifiers is
known to reduce variance in most cases and indeed stabilizing the individual
class prediction is expected but possibly with a larger number of trees.

Tree ensemble techniques also perform an embedded variable selection. Such
a selection already occurs at each node while growing the various trees. It
can also be performed globally once the forest is built. Breiman suggests in
particular a permutation test to select the most relevant features from a Random
Forest [1]. In the present work, we study the stability of this variable selection
in contrast to the convergence of the average predictive performance and of the
class predictions. Our central question of interest is to assess to which extent
the variable selection is more brittle than the individual class predictions. Our
experiments conducted on various biomedical datasets, with RF and bagging of
decision trees or stumps, show that orders of magnitude more trees are typically
required to get a stable variable selection as compared to reaching a stable class
prediction.

2 Ensemble of tree classifiers
Bagging of decision trees is arguably among the simplest approaches to over-
come the strong tendency of a single decision tree to over-fit the learning data.
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Bagging (bootstrap aggregating) builds a set of classifiers from successive boot-
strap samples of the original training set. The final classifier combines individual
decision trees by a majority vote, a form of unweighted averaging [2]. The di-
versity of the ensemble combined with the final averaging is known to increase
the robustness of the aggregated classifier. Random Forests (RF) go one step
further to promote the ensemble diversity by randomly sub-sampling the set of
features to be evaluated at each node while growing the trees [1].

The approaches mentioned so far mostly focus on improving the predictive
accuracy of the tree ensemble under various settings. The number of trees is
typically tuned to the smallest possible ensemble size while still reaching the
asymptotic predictive performance. Pruning techniques can also be used to
further reduce the ensemble size with a marginal loss, or sometimes even a gain,
in predictive accuracy [3].

A distinct but related issue is the stability of the class prediction, that is
to which extent the class label predicted for each test example stays the same
over different data resamplings. The experiments reported in section 4 show
that stable class predictions can be observed but at the cost of increasing the
ensemble size beyond the convergence of the prediction accuracy.

Ensembles of tree classifiers are also commonly used to select features. The
very process of learning decision trees includes a greedy selection of a most
discriminant feature at each node, according to a relevance index such as infor-
mation gain, gain ratio or the Gini index. However the diversity of the various
trees, even though beneficial for the predictive accuracy, may result in a large set
of used features, some of them only marginally present in the ensemble. Further
selecting the most prominent variables increases the interpretability of the com-
bined classifier, a key aspect for applications such as medical diagnosis from gene
expression measurements. Such a selection can be performed according to the
number of times a given feature appears in the forest, possibly weighting each
feature occurrence by its relevance at the corresponding node. An even better
alternative to estimate the importance of each feature to classify unseen exam-
ples relies on a permutation test computed on the out-of-bag examples from each
bootstrap round [1]. For each variable, one compares the out-of-bag classification
accuracy after permuting the feature values on those examples with the accuracy
obtained from the original values. The more the classification performance drops
after permutation the more important is estimated the corresponding feature.
We study here the stability of the most prominent features resulting from this
additional selection and we compare it to the class prediction stability.

3 Experimental design and stability assessment

We aim at assessing the predictive and stability performances of ensemble tree
classifiers while growing the number T of trees in the ensemble. For the sake
of this study, we compare a representative set of such classification methods:
bagging of unpruned CART trees [4], Random Forests [1], as well as bagging of
decision stumps and RF of decision stumps. Practical experiments are conducted
on several biomedical datasets described below. Most of them fall into the small
n (number of examples), large p (number of features) setting. In those cases,

264



ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

a standard 10-CV protocol is likely to show highly variable results when the
number of examples is limited to a few tens. Hence, we rely on K = 200 random
splittings of the data into train (90%) and test (10%). Each data partitioning
results from uniform sampling without replacement (a significance test for such
a protocol is proposed in [5]) and we report average predictive performances over
all resamplings.

Predictive performance is measured by the Balanced Classification Rate
(BCR), which is the per class accuracy, averaged over the various classes. BCR
is preferred to accuracy for classification problems with unequal class priors.
BCR is also simpler than ROC analysis for multi-class problems. For binary
classification problems, BCR simply reduces to the arithmetic average between
specificity and sensitivity.

The stability of the class prediction measures to which extent each individual
test example is assigned the same class label across various resamplings. For each
example x;, let ¢* denote the most commonly predicted class label (across all
resamplings for which that example appears in a test fold); let n; be the number
of times such a prediction occurs out of the n,, occurrences of z; in a test fold.
The class prediction stability is given by: e

ng,
n Zl N, (1)

where n denotes the total number of examples, each of t}llem appearing approx-
imately 0.10 x K = 20 times in a test fold. Such a stability index falls in the
interval [\%‘I’ 1] with |C| classes. The stability is equal to 1 when each test ex-
ample is always assigned the same, although not necessarily correct, class label.

The stability of the feature selection can be measured according to the
Kuncheva Index [6]. This index measures to which extent K sets S; of s se-
lected features share common features:

K-l K S; ﬁSj _ &
K({S1,....,9k}) = ﬁ ‘ Z %a (2)

where p is the total number of features, and feature selection is performed on
each of the K training folds. The s2/p term corrects a bias due to the chance of
selecting common features among two sets chosen at random and motivates our
choice of this specific stability index. The Kuncheva index ranges within (-1,1]
and the greater its value the larger the number of common features across the K
feature sets. In the experiments reported in Section 4, s was set equal to 25 to
stick to a small subset of the most important features. Additional experiments
(not reported) show that our conclusions remain essentially identical for larger
values of s. In some marginal cases however, such as bagging of a few decision
stumps, the number of selected features is bound to be lower than the prescribed
s, which tends to increase the stability.

Table 1 presents the main characteristics of the datasets used in the present
study: the number of instances, number of continuous/categorical features and
class priors. We focus on biomedical data for which the number of features of-
ten largely exceeds the number of samples. This is particularly true for gene
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expression data (Alon, DLBCL and van’t Veer) although we also consider elec-
trocardiogram data (Arrhythmia) to broaden the scope of our study. Those are
binary classification tasks but our main conclusions are likely applying as well to
multi-class problems. Alon [7] task aims at discriminating between normal and
colon tumor tissues, DLBCL [8] concerns the prediction of tissue type from diffuse
large B-cell lymphoma, while van’Veer [9] aims at predicting distant metas-
tasis from breast cancer samples. The Arrhythmia [10] problem discriminates
between normal and arrhythmic ECG.

Name #examples | # cont. feat. | # cat. feat. | class priors
Alon [7] 62 2000 0 40/22
DLBCL [§] 77 7129 0 58/19

van’t Veer [9)] 7 4353 2 44/33
Arrhythmia [10] 430 198 64 185/245

Table 1: Datasets overview

4 Results

The experimental results are reported in the plots below. They show no signifi-
cant BCR differences across the various ensemble classifiers, but for Arrhythmia
on which stumps have significantly lower results (p—value < 2.1071% accord-
ing to the corrected resampled t-test [5]). For all methods, the convergence of
the predictive performance is typically reached after 10 or 20 trees for the four
datasets. The same conclusions can be drawn when the predictive performance
is estimated from the classification accuracy instead of the BCR (results not
shown). The class predictions typically require an order of magnitude more
trees (100...200 trees) to get stable. Feature selection only get stable, and yet
not perfectly, from at least an order of magnitude more trees (> 1,000) on the
3 genomic datasets. An earlier convergence is obtained for Arrhythmia as a
natural consequence of a smaller total number of features and more training
samples. Bagging of decision stumps also tends to offer an earlier convergence
of the feature selection stability. This makes sense as there is only one feature
selected for each stump without any random sampling of the feature space.
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5 Conclusion and perspectives

Our experimental study demonstrates, for a variety of ensemble tree classifiers,
that stable class predictions and, most notably, stable feature selection require
orders of magnitude more trees than those needed to reach the asymptotic pre-
dictive performance. Our future work includes a more formal analysis (similarly
o [11]) of such behaviors, and possibly ways to promote an earlier stability
without losing the benefits of the ensemble.

References

[1] Leo Breiman. Random forests. Machine Learning, 45:5-32, 2001.

[2] Leo Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.
10.1007/BF00058655.

[3] G. Martinez-Muiioz, D. Herndndez-Lobato, and A. Sudrez. An analysis of ensemble prun-
ing techniques based on ordered aggregation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(2):245 —259, feb. 2009.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth Inc., 1984.

[6] C. Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning,
52:239-281, 2003.

[6] Ludmila I. Kuncheva. A stability index for feature selection. In AIAP’07: Proceedings of
the 25th conference on Proceedings of the 25th IASTED International Multi-Conference,
pages 390-395, Anaheim, CA, USA, 2007. ACTA Press.

[7] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences of the United States of America, 96(12):6745-6750, June 1999.

[8] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaasen-
beek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. Norton,
T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C. Aster, and T. R. Golub.
Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and super-
vised machine learning. Nat Med, 8(1):68-74, January 2002.

[9] Laura J. van 't Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, Augustinus A.
Hart, Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T.
Witteveen, George J. Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, René
Bernards, and Stephen H. Friend. Gene expression profiling predicts clinical outcome of
breast cancer. Nature, 415(6871):530-536, January 2002.

[10] A. Frank and A. Asuncion. UCI ML repository - http://archive.ics.uci.edu/ml, 2010.

[11] D. Herndndez-Lobato, G. Martinez-Mufioz, and A. Sudrez. Inference on the prediction of
ensembles of infinite size. Pattern Recognition, 44:1426-1434, 2011.

268





