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Abstract. The human mirror neuron system (MNS) is supposed to be
involved in recognition of observed action sequences. However, it remains
unclear how such a system could learn to recognise a large variety of action
sequences. Here we investigated a neural network with mirror properties,
the Recurrent Neural Network with Parametric Bias (RNNPB). We show
that the network is capable of recognising noisy action sequences and that
it is capable of generalising from a few learnt examples. Such a mechanism
may explain how the human brain is capable of dealing with an infinite
variety of action sequences.

1 Introduction

The human mirror neuron system (MNS) is active both during observing and
performing actions [1]. Because of this mirror property various authors have
suggested the involvement of the MNS in understanding actions of others [2, 3, 4].
Theoretically, mirror neurons could be involved in simulating the perceptual
consequences of actions[5] through forward modelling [6, 7]. In this view mirror
neurons can be thought of as representing a particular action from an action
repertoire. As soon as an action is observed the corresponding mirror neurons
will fire. An immediate implication is that it is easiest to recognise one’s own
actions [8].

Tani and colleagues [9, 10] constructed a Recurrent Neural Network with
Parametric Bias (RNNPB) that was capable of learning, recognising and gene-
rating observed actions. This clearly gives the network mirror properties. One
very interesting aspect of the RNNPB architecture is that the same network can
represent multiple actions, in contrast to the assumption that different mirror
neurons represent different actions. But can such a system learn a large variety
of actions? Note that Ito and Tani [11] also considered the problem of generali-
zability. However, our experimental setup differs from their’s. In Section 2, we
present the RNNPB architecture. In Section 3 we will analyse the generalising
capabilities RNNPB model . We conclude with discussion and conclusions in
Section 4.

∗The present study was supported by the EU-Project "Joint Action Science and Techno-
logy" (IST-FP6-003747).
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2 The RNNPB architecture

The RNNPB architecture is a modified version of the Jordan RNN [12]. Once
trained these networks produce the next time step of a learnt time series. This
property enables the RNNPB architecture to learn action sequences as was de-
monstrated in [10]. The network consists of several layers of neurons (Fig. 1).
The hidden layer receives inputs from the context, input and the parametric bias
(PB) layer. The context layer stores previous activations of the hidden layer.
All layers except the input layer have sigmoid activation functions. The nodes
in the PB layer correspond to the mirror neurons because they encode the se-
quences generated by the network. The output is copied to the input layer in a
one-to-one fashion. There are three modi operandi for the RNNPB architecture:
learning mode, recognition mode and generation mode, which we will discuss
next.

output layer

hidden layer context layer

PB layerinput layer

xt

yt

Figure 1: RNNPB architecture. The context layer is a copy of the previous
activations of the hidden layer, and the ouput layer is copied to the input layer
(dashed arrows). The solid arrows denote fully connected layers.

In learning mode, the input at time t to the input layer is the weighted
average of the external input and the recurrently connected output. If we use
vectors to denote the activity of nodes within a single layer, we can write:

uinput
t = βyt−1 + (1 − β)xt , (1)

where xt is the external input, yt the output, uinput
t the internal activation of

the input layer at time t, and β the relative strength of the recurrent output and
the external input. The error of the network’s output is given by the difference
between actual and desired output (i.e. the next time step of the external input):

δoutput
t = yt − xt+1 .

The connection weights between layers (solid arrows in Fig. 1) are updated
using the back-propagation through time (BPTT) algorithm [13]. In order to

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

 

 

am
pl

itu
de

10 20 30 40 50 60
timestep

learned sequence
generated sequence

sequence 1: 1_
2

_1
2sin(0.3 t) + 

sequence 2: 1_
2

_1
2sin(0.6 t) + 

sequence 3:0.9 - 0.8 exp(-t)

Figure 2: The network’s ability to generate previously learnt sequences.

let the network predict multiple, sequentially presented time series, a different
PB vector is updated for each time series. All PB vectors are initialised at zero.
The updating of these PB vectors and the internal connection weights takes
place after all time series have been presented. From here on we refer to this
entire cycle as one epoch, denoted by e. The internal values of the PB vector of
the kthtime series (uPB

k,e) are updated according to1:

uPB
k,e+1 = uPB

k,e + η

T∑

t=1

δPB
k,t ,

pk,e = sigmoid(uPB
k,e) ,

where δPB
k,t represents the back-propagated error for the PB layer at time step t

of the kth time series, η is the learning rate of the PB layer, and T is the duration
of the each time series.

The recognition phase only differs from the learning phase in that the internal
weights of the network are not updated. Only the PB vectors are updated.

In the generation phase, the network generates the previously learnt time
series by setting the PB vector to the appropriate value and running the network
in closed loop (β = 1 in Eq. 1). During this phase, no updating takes place.

1In [10] the symbol ρ was used to refer to internal values the PB layer and p to refer to
output values of the PB layer.
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3 Generalising capabilities of the RNNPB architecture

In order to verify that the RNNPB architecture is capable of learning multiple
time series, we trained the network with three different time series. For all our
simulations we used the following architecture: 1 input node, 1 output node,
5 hidden nodes, 2 context nodes, and 2 PB nodes. The network’s learning
parameters were: η = 0.01, β = 0.1, ηBP = 0.02 and α = 0.9, where ηBP and α
respectively denote the learning rate and momentum parameter for the BPTT
algorithm. The learnt sequences and the network’s output in generation mode
are shown in Fig. 2. It is clear that the network has captured the amplitude and
periodicity of the learnt sequences.

The PB vectors that were obtained during training are p1 = (0.6147, 0.546),
p2 = (0.3905, 0.206) and p3 = (0.4553, 0.6511). To quantify how well the net-
work could recognise the first sequence (Fig. 2), we used the Euclidean norm
εk = ||pactual − pk|| as an error measure. We found that all three learnt signals
were successfully recognised in the absence of noise (εk < 0.02 for correct k and
εk > 0.18 for incorrect k). In the presence of Gaussian noise the network could
reliably recognise all three time series for σ < 0.18. This is shown for the recog-
nition of sequence 1 in Fig. 3. The error ε1 is smaller than the other errors until
the noise level exceeds σ > 0.18. Similar results were obtained for recognition of
the other sequences.
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Figure 3: Ability to recognise sequence 1 when it is corrupted with Gaussian
noise. The error εk of the recognised PB vector with respect to each of the learnt
PB vectors pk is plotted as a function of noise level σ.

We were also interested in whether the RNNPB network could generalise
across frequencies and amplitudes of the learnt signals. If so, we would expect
that the PB vector depends systematically on the amplitude and frequency of
sequence that the network tries to recognise. First, we varied the angular fre-
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Figure 4: Coordinates of the PB vector after recognising sinusoidal sequences of
varying amplitude an frequency. The learnt PB vectors are indicated by large
circles. The angular frequency was varied from 0.2 to 0.7 in steps of 0.01 for
a fixed amplitude of 0.8 (grey circles). Amplitude was varied from 0.5 to 1 in
steps of 0.05 for angular frequencies of 0.3 (squares) and 0.6 (triangles).

quency from 0.2 to 0.7 in steps of 0.01 and fixed the amplitude to the trained
value (A = 0.8). The coordinates of the PB vector (values of the PB nodes) are
plotted in Fig. 4 for each frequency (grey dots). As can be seen the PB vectors
lie on a continuous curve through the learnt PB vectors (large circles). This
shows that the network has captured the notion of angular frequency. In a simi-
lar fashion we varied the amplitude for the two learnt frequencies. For ω = 0.6
(triangles) the PB vector varies smoothly for amplitudes A ≥ 0.7. For smaller
amplitudes the PB vector shows a large jump (dashed line). Thus, the network
was capable to generalise across amplitudes but for a limited range. For ω = 0.3
(squares) no jumps are observed but the curve practically coincides with the
curve that was obtained by varying the angular frequency (grey circles). This
means that near ω = 0.3 the network is sensitive to changes of both amplitude
and frequency, but it is unable to distinguish between them.

4 Discussion and conclusions

The RNNPB architecture is capable of learning, recognising and generating mul-
tiple action sequences. Simulations have shown that the recognition of action
sequences is quite robust against noise. In agreement with [11] we found that
the RNNPB architecture is capable of generalising the frequency of sinusoidal
sequences. Generalisation of the amplitude was limited. Either the network
became unstable if the amplitude deviated too much from the amplitude during
learning, or the network could not distinguish between changes in amplitude and
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changes in frequency. The reason for this may be that the network never learnt
more than one amplitude in the first place.

The PB nodes are analogous to mirror neurons in a strict sense because
their activity is the same during generation and recognition of action sequences.
However, human brain imaging is not sensitive to individual neurons, so that the
entire RNNPB network would light up in imaging studies. Thus, the number
of strict mirror neurons may be quite sparse in the MNS. Generalising action
sequences from a few learnt examples could potentially explain how the human
brain is capable of dealing with an infinite variety of action sequences. It also
implies that neurons in the MNS may be capable of simultaneously representing
multiple action sequences depending on the activity of a few strict mirror neurons
who parametrically bias the network’s dynamics.
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