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Abstract. In the supervised classification framework, the human super-

vision is required for labeling a set of learning data which are then used for

building the classifier. However, in many applications, the human super-

vision is either imprecise, difficult or expensive and this gives rise to non

robust classifiers. An interesting application where this situation occurs is

DNA barcoding which aims to develop a standard tool to identify species

with no or limited recourse to taxonomic expertise. In some cases, the

morphological features describing the reference sample may be mislead-

ing and the taxonomists attribute labels incorrectly. This work presents

a robust supervised classification method for categorical data based on a

multivariate multinomial mixture model. The proposed method is applied

to DNA barcoding and compared to classical methods on a real dataset.

1 Introduction

Determining to what species an organism belongs is probably the most common
problem in Biology. The answer concerns many areas of practical importance
such as protecting endamaged species, sustaining natural resources, stopping
disease vectors or monitoring environmental quality. Created in 2003, the Con-
sortium for the Barcode of Life 1 is an international initiative devoted to devel-
oping DNA barcoding as a standard tool to identify species. Its purpose is to
provide a simple and automatic method to correctly identify the species, with
no or limited recourse to taxonomic expertise. The 5’ half of the mtDNA gene
COI has been chosen as the barcode locus for most animals, and gene markers
with similar barcoding properties are investigated in plants, fungi, and protists.
Traditionally, the barcoding procedure is based on an algorithm combining k-
NN with neighbour-joining trees [1]. Several alternatives to this method were
quite successfully applied to various kinds of organisms, although problems have
arisen in some cases. The main drawback is that all these approaches were based
on supervised algorithms which do not take into account important phenomena
such as the possibility that some inputs in the training set be misidentified by
the taxonomists (similar morphologies, for instance). In this case, the learned
classifiers will be biased. We address this problem, known as label noise, by
proposing a robust supervised classification method for categorical data, able to
handle incorrect labels in the training set.

1http://www.barcodingoflife.org
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To our knowledge, the label noise problem in the case of categorical data
has received very few attention whereas some works consider this problem in the
continuous case. To summarize, learning a supervised classifier from continuous
data with uncertain labels can be achieved using three main strategies: cleaning
the data, using robust estimations of model parameters and finally modeling
the label noise. On the one hand, the two first approaches appeared not to be
well adapted since they provided only a slight reduction of the average proba-
bility of misclassification compared to usual classifiers. On the other hand, the
probabilistic modeling of label noise has the advantage of explicitly including
the label noise in the model with a sound theoretical foundation. Lawrence
and Schölkopf proposed in [2] an algorithm for building a kernel Fisher discrim-
inant classifier taking into account the label noise. More recently, Bouveyron
and Girard [3] proposed a method, called Robust Mixture Discriminant Analy-
sis (RMDA), which compares the supervised information given by the learning
data with an unsupervised modeling based on the Gaussian mixture model.

This paper is organized as follows. Section 2 presents a robust classification
method for categorical data with label noise. The proposed method, called
Robust Discrete Discriminant Analysis (RDDA), is applied to DNA barcoding
in Section 3 where it is compared to classical methods. Finally, further works
are discussed in Section 4.

2 Robust supervised classification for categorical data

This section briefly reviews categorical data classification and then presents a
mixture model for the classification of categorical data with label noise.

2.1 Classification of categorical data with mixture models

Let us consider a dataset {x1, ..., xn} of n observations described by p categorical
variables with respectively m1, . . . , mp modalities. The data can be represented

by n binary vectors xi = (xjh
i ; h = 1, . . . , mj; j = 1, . . . , p) where x

jh
i = 1 if

xi belongs to the category h of the variable j and 0 otherwise (i = 1, . . . , n).
The data are assumed to arise independently from a mixture of multivariate
multinomial distributions defined by:

P (x) =

K
∑

k=1

πkP (x; αk), (1)

where K is the number of mixture components, πk is the mixing proportion of
the kth component and P (x; α) is the multinomial distribution of parameter α.
However, the model described here requires the estimation of a large number of
parameters (Πp

j=1
mj −1 for each mixture component) and this could be difficult

in practice if the number of observations is limited.

Parsimonious models In order to overcome this difficulty, it is possible to
consider parsimonious versions of the previous model by making additional as-
sumptions on it. For instance, it is possible to assume that P (x; αk) is the
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product of p conditionally independent multinomial distributions [4]:

P (x; αk) =

p
∏

j=1

mj
∏

h=1

(

α
jh
k

)x
jh

i

, (2)

where αk = (αjh
k ; h = 1, . . . , mj j = 1, . . . p) now includes

∑p

j=1
(mj − 1)

independent parameters. Celeux and Govaert proposed in [5] a family of par-
simonious models based on a reparameterization of this model. They exhibited
5 parsimonious models ranging from very simple ones to (2), the most complex
one and referred to as Model [ǫk

jh] in their work.

Smoothing models Smoothing models aim to over-sample by smoothing ob-
served frequencies using nonparametric techniques. For instance, kernel estima-
tors of P (x, αk) can be written as

P̂ (x, αk) =
1

n

n
∑

i=1

Kλ(‖x − xi‖),

where Kλ is a kernel depending on a smoothing parameter λ and ‖x−xi‖ is a dis-
similarity measure between x and xi. See [6] for an example. Similarly, Hills [7]
uses the frequencies of nearest neighbors for estimating the group probabilities.

Regularized models Celeux and Mkhadri [8] proposed a regularization tech-
nique for the multinomial model inspired by the Regularized Discriminant Analy-
sis developed by Friedman for continuous data. The method uses two regulariza-
tion parameters to provide regularized models which vary between multinomial,
independence and smoothing models.

2.2 The proposed mixture model

The idea of the proposed model is to compare the supervised information car-
ried by the labels with an unsupervised modeling of the data. For this, let
us consider a multivariate multinomial mixture model in which two different
structures coexist: an unsupervised structure of K clusters (represented by the
random discrete variable S) and a supervised structure, provided by the learn-
ing data, of L classes (represented by the random discrete variable C). Let us
now introduce the supervised information carried by the learning data. Since
∑L

ℓ=1
P (C = ℓ|S = k) = 1 for all k = 1, ..., K, we can plug this quantity in (1):

P (x) =

L
∑

ℓ=1

K
∑

k=1

P (C = ℓ|S = k)πkP (x; αk), (3)

where P (C = ℓ|S = k) can be interpreted as the probability that the kth cluster
belongs to the ℓth class and thus measures the consistency between classes and
clusters. Introducing the notation rℓk = P (C = ℓ|S = k), we can reformulate (3)
as follows:

P (x) =

L
∑

ℓ=1

K
∑

k=1

rℓkπkP (x; αk). (4)
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Therefore, (4) exhibits both the modeling part of our approach, based on a
mixture model, and the supervision part through the parameters rℓk.

2.3 Estimation procedure

Due to the nature of the model proposed in the previous paragraph, the estima-
tion procedure is made of two steps corresponding respectively to the unsuper-
vised and to the supervised part of the comparison.

Estimation of the mixture parameters In this first step of the estimation pro-
cedure, we do not use the labels of the data in order to form K homogeneous
groups. Therefore, this step consists in estimating the parameters of the multi-
nomial mixture and depends on the chosen multinomial model. Due to the
limited size of the dataset in the following experiment, the parsimonious mod-
els proposed in [5] will be used instead of the original multinomial model. We
therefore refer to this article for inference aspects regarding these parsimonious
models and to [9] for their use within the MixMod software.

Estimation of the parameters rℓk In this second step of the procedure, we
introduce the labels of the learning data to estimate the parameters rℓk and
we use the parameters learned in the previous step for computing the posterior
probabilities P (S = k|X = x) through the Bayes’ rule. From (4), the log-
likelihood associated to our model can be expressed as:

log(L) =

L
∑

ℓ=1

∑

x∈Ci

log

(

K
∑

k=1

rℓkP (S = k|X = x)

)

+ Γ, (5)

where Γ does not depend on the parameters rℓk. Consequently, we end up with
the following constrained optimization problem to solve:











maximize log(L),

with respect to rℓk ∈ [0, 1], ∀ℓ = 1, ..., L, ∀k = 1, ..., K,

and
∑L

ℓ=1
rℓk = 1, ∀k = 1, ..., K.

Since it is not possible to find an explicit solution to this optimization problem,
an iterative optimization procedure has to be used to compute the maximum
likelihood estimators of the parameters rℓk.

2.4 Classification step

In model-based discriminant analysis, new observations are usually assigned to a
class using the maximum a posteriori (MAP) rule which assigns a new observa-
tion x to the class for which x has the highest posterior probability. Therefore,
the classification step mainly consists in calculating the posterior probability
P (C = ℓ|X = x) for each class ℓ = 1, ..., L which can be expressed as follows:

P (C = ℓ|X = x) =

K
∑

k=1

rℓkP (S = k|X = x). (6)
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Fig. 1: Performance of k-NN, SVM, CART and RDDA for different label noise
proportions on the DNA barcoding dataset.

As we can see, the probabilities rℓk balance the importance of the groups in the
final classification rule. Consequently, the classifier associated with this decision
rule will be mainly based on the groups which are very likely to be made of
points from a unique class.

3 Experimental results: application to DNA barcoding

The data used for illustrating the method come from the 5’ half of the mtDNA
gene COI, sequenced for 175 samples in four different species of the common
mistfrog (Litoria rheocola). The complete description of the data is available
in [10]. Each input is a vector of length 579, the first variable contains the
species, while the remaining are representing the DNA sequence (each of the 578
variables are coding for “A”,“C”,“G”,“T” nucleotides). Due to the restriction
on the number of variables imposed by the MixMod software, we preprocessed
the data and selected the most discriminant features. The final data set contains
175 input samples, one variable labeling the species and 20 categorical variables
for classification. In order to simulate a label noise, the observation labels have
been switched following a Bernoulli distribution with parameter η ranging from 0
to 1 and representing the noise proportion. The performance of the methods is
measured by the correct classification rate on a cross-validation test set and the
experiment has been repeated 25 times in order to average the results.

Figure 1 shows the performance of k-NN, SVM, CART and RDDA (intro-
duced in this paper) for different noise proportions. First, RDDA appears to be
slightly less efficient than k-NN, SVM and CART when there is no label noise.
Second, among the fully supervised methods, k-NN turns out to be very sensitive
to label noise whereas SVM and CART are more robust. Finally, the robustness
of RDDA is confirmed on this dataset since RDDA gives stable results for noise
proportions up to 50%. Furthermore, RDDA is as efficient as SVM and CART
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for low noise proportions and outperforms them for more than 25% of noise.

4 Conclusion and further work

We proposed a robust supervised classification method, RDDA (Robust Discrete
Discriminant Analysis), based on multinomial mixture models. On the one hand,
RDDA outperforms standard classification methods such as CART or SVM when
there is noise in the labels. Let us remark however that the results of both CART
and SVM are quite robust when the noise level is not too important. On the
other hand, although k-NN is probably the most commonly used method for
barcoding, the algorithm performs very poorly in the presence of noise. Thus,
we recommend its use with caution. Further work should be done in order to
fully establish the performances of RDDA. The algorithm should be tested on
simulated examples with different sample sizes, number of species and more
particularly different separation-levels for the species. In order to improve our
methodology, we will focus on using smoothing and regularized multinomial
mixture models within RDDA.
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