
Regularisation Path for Ranking SVM

Karina Zapien1, Thomas Gärtner2, Gilles Gasso1, and Stephane Canu1

1- LITIS - INSA De Rouen, St. Etienne du Rouvray, France

2- Fraunhofer IAIS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany

Abstract. Ranking algorithms are often introduced with the aim of auto-

matically personalising search results. However, most ranking algorithms

developed in the machine learning community rely on a careful choice of

some regularisation parameter. Building upon work on the regularisation

path for kernel methods, we propose a parameter selection algorithm for

ranking SVM. Empirical results are promising.

1 Introduction

Ranking algorithms are typically introduced as a tool for personalising the order
in which (web) search results are presented, i.e., the more important a result is
to the user, the earlier it should be listed. To this end, one can consider two
possible settings: (i) the algorithm tries to interactively rearrange the results
of one search such that relevant results come the closer to the top the more
(implicit) feedback the user provides and (ii) the algorithm tries to generalise
over several queries and presents the results of one search in an order depending
on the feedback obtained from previous searches. Here, this problem is tackled
using the rank SVM approach [1, 2].

Kernel methods like the SVM or the rank SVM solve optimisation problems
of the form f̂λ = argminf V [f] + λΩ [f] where V is a loss function, λ ∈ R

+ is
a regularisation parameter, Ω is the regulariser. Although a key bottleneck for
applying such algorithms in the real-world is choosing λ, research often ignores
this. As empirical results, however, strongly depend on the chosen λ, runtime
intensive repeated cross-validations have to be performed. Hence, in this paper
we concentrate on speeding up and automating this choice by building on the
regularisation path for SVMs [3].

In fact, similar to SVM classification, it turns out that f̂λ as a function of λ
is piecewise linear and hence forms a regularisation path. The breakpoints of this
path correspond to certain events. Points of the regularisation path which are
not breakpoints can not be distinguished in terms of margin-errors of the training
data. To choose a particular solution to the ranking problem, an evaluation of
f̂λ on a validation set is performed for each breakpoint of the path.

In Section 2 we describe the ranking SVM and in Section 3 its regularisation
path. Experiments are shown in Section 4. Finally, Section 5 concludes.

2 Ranking SVM

In ranking problems like (i) and (ii) from the introduction, user preferences can
be modeled by a (typically acyclic) digraph (V,E) with E ⊆ V 2. For (i) the set

415

of web pages forms the vertex set V of the digraph and we are also given some
further information about the web pages (like a bag-of-words representation).
For (ii) each vertex of the graph is a pair containing a query (q ∈ Q) and a
document (d ∈ D). Hence, the vertex set is V ⊆ Q × D and edges of the form
((q, d), (q, d′)) with d, d′ ∈ D; q ∈ Q represent that d was more relevant than d′

for an user asking query q.
In both cases, the ranking algorithms aim to find an ordering (permutation)

of the vertex π : V → [[n]] where n = |V | and [[n]] = {1, . . . , n} such that
similar documents are ranked as closely together as possible, while as few as
possible preferences are violated by the permutation. Rank SVM approaches
such learning problems by solving the following primal optimisation problem:

f̂λ = argmin
f∈H

ξ⊤1I + λ
2
‖f‖2

H

subject to: f(v) − f(u) ≥ 1 − ξvu ξvu ≥ 0 ∀(u, v) ∈ E.

(1)

Here, H ⊆ {h : V → R} is a reproducing kernel Hilbert space (RKHS), λ ∈ R
+

is a regularisation parameter, and the square norm ‖f‖2
H

in the Hilbert space
serves as the regulariser. The final permutation π is then obtained by sorting
V according to f and resolving ties randomly. Now, let k : V × V → R be the
reproducing kernel of H and denote the vertex by xi such that V = {xi | i ∈ [[n]]}.
The set of violated constraints is {(xi,xj) ∈ E | π(xi) < π(xj)}.

Using f̂λ(x) =
∑n

i=1
βik(xi,x) with βi ∈ R, i ∈ [[n]]. With slight abuse

of notation we denote k(x) = (k(x,x1), k(x,x2), ..., k(x,xn))⊤ so that f(xi) =
β⊤

k(xi) and ‖f‖2
H

= β⊤Kβ. Then Eq. (1) with m preferences E = {(xki
,xli) |

i ∈ [[m]]} becomes:

β̂(λ) = argmin
β∈Rn,ξ∈Rm

ξ⊤1I + λ
2
β⊤Kβ

s. t. β⊤(k(xki
) − k(xli)) ≥ 1 − ξi, ξi ≥ 0 ∀i ∈ [[m]]

(2)

with Kij = k(xi,xj). The Lagrangian L of this problem then becomes:

L = ξ⊤1I +
λ

2
β⊤Kβ −

m
∑

i=1

αi

(

β⊤
(

k(xki
) − k(xli)

)

− 1 + ξi

)

−
m

∑

i=1

γiξi

with αi ≥ 0, γi ≥ 0. A matrix P ∈ R
m×n can be defined with entries

Pij =







+1 if j = ki

−1 if j = li
0 otherwise

=⇒ PK =











k(xk1
)⊤ − k(xl1)

⊤

k(xk2
)⊤ − k(xl2)

⊤

...
k(xkm

)⊤ − k(xlm)⊤











(3)

so that the Lagrangian can be expressed as:

L = ξ⊤1I +
λ

2
β⊤Kβ − β⊤KP⊤α + 1I⊤α − ξ⊤α − ξ⊤γ

416

Using the KKT conditions, we obtain: ∂L
∂ξ

= 0 ⇒ 0 = 1I − α − γ and ∂L
∂β

= 0 ⇒

0 = λKβ − KP⊤α, giving 0 ≤ αi ≤ 1 and β = 1

λ
P⊤α such that

f(x) =
1

λ
α⊤Pk(x). (4)

Finally, the dual of Problem (2) is a QP problem:

α̂(λ) = argmax
α∈Rn

α⊤1I − 1

2λ
α⊤PKP⊤α

s.t. 0 ≤ α ≤ 1I.
(5)

3 Regularisation Path for Ranking SVM

Following Hastie’s work [3] we now derive the regularisation path of ranking
SVM. According to [4], the solution α̂(λ) of the above problem is a piecewise
linear function of λ. For given λ let fλ(x) be the decision function correspond-
ing to α̂(λ). Then, the following partition derived from the KKT optimality
conditions can be made:

• Iλ
α = {i ∈ [[m]] | fλ(xki

) − fλ(xli) = 1} = {i ∈ [[m]] | 0 < α̂i(λ) < 1},

• Iλ
0 = {i ∈ [[m]] | fλ(xki

) − fλ(xli) > 1} = {i ∈ [[m]] | α̂i(λ) = 0}, and

• Iλ
1 = {(i ∈ [[m]] | fλ(xki

) − fλ(xli) < 1} = {i ∈ [[m]] | α̂i(λ) = 1}.

We choose λ1 > λ2 > . . . such that the above sets remain unchanged for all
λ ∈ (λt+1, λt] and denote αt = α̂(λt), f t = fλt

, as well as (It
α, It

1, I
t
0) =

(Iλt

α , Iλt

1 , Iλt

0). For other λ we suppress the dependence of f and α on λ. Then
α̂(λ) for λ ∈ (λt+1, λt) depends linearly on λ as:

f(x) =

[

f(x) −
λt

λ
f t(x)

]

+
λt

λ
f t(x) =

1

λ

[

(α − αt)⊤Pk(x) + λtf t(x)
]

f(x) =
1

λ

[

(αIα
− αt

Iα
)⊤PIα

k(x) + λtf t(x)
]

(6)

with PIα
being the submatrix of P containing the rows corresponding to Iα and

all columns. The last line holds as αi −αt
i = 0 for all i /∈ Iα. As all sets remain

fixed for λ ∈ (λt+1, λt), we also have that 1 = f(xki
)−f(xli) = f t(xki

)−f t(xli)
for all i ∈ Iα, so Eq. (4) leads to

λ − λt =
(

αIα
− αt

Iα

)⊤
PIα

(

k(xki
) − k(xli)

)

∀i ∈ Iα. (7)

The latter set of equations can be simplified by using Eq. (3) to obtain:

(λ − λt)1IIα
= PIα

KP⊤
Iα

(

αIα
− αt

Iα

)

(8)

If we define η = (PIα
KP⊤

Iα
)−11IIα

, with 1IIα
a vector of ones of size |Iα|,

then it can finally be seen that αi, i ∈ Iα changes piecewise linear in λ as follows:

αi = αt
i − (λt − λ)ηi i ∈ Iα. (9)

417

For all λ ∈ (λt+1, λt), the optimal solution α can be easily obtained until the
sets change, i.e., an event occurs. From any given optimal solution αt for λt, the
corresponding sets It

α, It
0, and It

1 can be deduced and thereon the corresponding
λt+1 that generates an event together with the optimal solution.

3.1 Initialisation

If λ is very large, β = 0 minimises Problem (2) and I1 = [[M]], I1 = I0 = ∅.
This implies that ξi = 1 and because of the strict complementary and KKT
conditions, γi = 0 ⇒ αi = 1. To have at least one element in Iα, we need a
pair (xki

,xli) for which β⊤(k(xki
) − k(xli)) = 1. As 1

λ
P⊤α = β = 0 we get

α = 1I and define λi = α⊤P (k(xki
) − k(xli)). Now λ0 = max{λi | i ∈ [[m]]},

Iα = arg maxi{λi} and I1 = [[m]] \ arg maxi{λi}.

3.2 Event Detection

At step t the optimal solution αt defines a partition Iα, I1, I0. If these sets
remain fixed for all λ in a given range then the optimal solution α(λ) is a linear
function of αt. If an event occurs, i.e., the sets change, then the linear equation
has to be readjusted. Two types of events have to be determined: a) a pair in
Iα goes to I1 or I0 and b) a pair in I1 or I0 goes to Iα.

3.2.1 Pair in Iα goes to I1 or I0

This event can be determined by analysing at which value of λ the corresponding
αi turns zero or one. Eq. (9) is used and the following systems are solved for λi:

1 = αt
i − (λt − λi)ηi i ∈ Iα (10)

0 = αt
i − (λt − λi)ηi i ∈ Iα. (11)

Using this last equation, the exact values for λi that produce an event on pairs
in Iα moving to I0 ∪ I1 can be determined.

3.2.2 Pair in I1 or I0 goes to Iα

To detect this event, note that Equation (8) can also be written as follows:

(

αIα
− αt

Iα

)

= (λ − λt)
[

(

PIα
KP⊤

Iα

)−1
1IIα

]

= (λ − λt)η. (12)

Plugging Eq. (12) in Eq. (6), we can write f(x) in a convenient manner:

f(x) =
1

λ

[

λtf t(x) +
(

λ − λt
)

ht(x)
]

with ht(x) = η⊤PIα
k(x). (13)

An event on pair (xki
,xli) ∈ I0 ∪ I1 −→ Iα means that f(xki

) − f(xli) = 1
and can be detected by using Equation (3.2.2). The corresponding λi that
generates this event is calculated as follows:

418

λi =
λt [(f(xki

) − f(xli)) − (ht(xki
) − ht(xli))]

1 − (ht(xki
) − ht(xli))

(14)

λt+1 will be the largest resulting λi < λt from Eqs. (10), (11) and (14).
Experimentally, we observed that the validation error is typically lower at

the break points rather than between them.
The numerical complexity of the algorithm depends on the number of iter-

ations needed to explore the overall solution path and the mean size of Iα. At
each iteration, a linear system is solved to get η which has complexity O(|Iα|

2).
Empirically we observed that the number of iterations is typically only 2-3 times
larger than the number of training pairs

In SVM methods, another key point is the determination of kernel hyper-
parameter. This problem was not tackled here. However, one can seek to com-
bine our regularisation path with the kernel parameter path developed in [5].

4 Experimental Results

Three datasets were used to test the algorithm. A toy example generated from
Gaussian distributions and two more datasets taken from the UCI datasets1.

The toy dataset [3] was originally designed for binary classification with in-
stances xi and corresponding labels yi ∈ {±1}. It can, however be also viewed
as a ranking problem with E = {(xi,xj) | yi > yj}. It contains 100 positive
and 100 negative points which induce 10000 constraints. The other two datasets
have regression problems and can also be viewed as ranking problems by letting
E = {(xi,xj) | yi > yj}. Three measures were used: The number of wrong clas-
sified pairs, the NDCG measure [6], and the Kendall rank correlation coefficient.

The experimental design is as follows: 1

5
of the original dataset was randomly

taken to form a test set. From the remaining data points a random sample of size
100 was drawn. On this subsample of the training data, the kernel parameter is
chosen by cross validation. Using this kernel parameter, 5-fold cross validation
in the training data was used to choose the vertex of the regularisation path
minimising the validation error. Test error of this model was measured on the
test set. Results are summarized in the following tables.

Dataset # Training pairs # Features σ λ∗ value Size of A
Mixture 10000 200 0.5 7.45 126
Auto 75245 392 16 0.0033 248

Housing 127137 506 5.67 0.0025 320

Table 1: Data and result summary

1http://archive.ics.uci.edu/ml/datasets.html

419

Dataset Misclassified pairs Percentage NDCG Kendall
Mixture 13 5.42 1 -0.08
Auto 209 10.87 0.4341 0.755

Housing 221 6.87 0.8784 0.85

Table 2: Test error

5 Conclusions

The proposed approach calculates efficiently the regularisation path of the rank-
ing SVM by solving small linear problems. Then, the regularisation parameter
can efficiently be chosen as the vertex of the regularisation path that minimises
the validation error. The computational complexity is highly related to the total
number of breakpoints on the path and the mean number of support vectors. In
our experiments, we have seen that the latter number is generally low and that
the former number is 2-3 times the size of the problem. A possible extension of
this work is the efficient combination of our regularisation path and the kernel
parameter path [5].

References

[1] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank
boundaries for ordinal regression. MIT Press, Cambridge, MA, 2000.

[2] T. Joachims. Optimizing search engines using clickthrough data. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
pages 133–142, 2002.

[3] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire
regularization path for the support vector machine. Journal of Machine
Learning Research, 5:1391–1415, October 2004.

[4] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths.
Annals of Statistics, 35(3):1012–1030, 2007.

[5] Dit-Yan Yeung Gang Wang and Frederick H. Lochovsky. A kernel path
algorithm for support vector machines. In Proceedings of ICML’2007, 2007.

[6] Stephen Robertson and Hugo Zaragoza. On rank-based effectiveness mea-
sures and optimization. Inf. Retr., 10(3):321–339, 2007.

420

