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Abstract.  The paper describes the computation of the full paths of
the well-known v-SVR. In the classical method, the user provides two
parameters: the regularization parameter A and v which settles the width
of the tube of the e-insensitive cost optimized by SVR. The paper proposes
an efficient to way to get all the solutions by varying v and A. It analyzes
also the stopping of the algorithm using the leave-one-out-criterion.

1 Introduction

The SVR algorithm is a popular method for dealing with regression problems [1].
The algorithm minimizes the e-insensitive cost while preserving the smoothness
of the regression function. The trade-off is realized via a regularization parameter
A set by the user. The user also provides the width € > 0 of the tube. As the
practical choice of € is difficult, the »-SVR method was proposed and permits to
automatically determine the value of e [1].

Many research works have been dedicated to ways of helping the setting of the
parameters. Most rely on measures such as cross-validation [2] or on measures
derived from bounds [3] to guide the selection. Recently, novel approaches based
on the computation of the regularization paths have been widely studied [4, 5]
since they provide a smart and fast way to get all the optimal solutions. Indeed,
given an initial regression function, the next solution (wrt the hyperparameters)
is obtained by solving a linear system with very few equations. In the paper, we
propose to explore the two-dimensional space of the hyperparameters for »-SVR
by following two solution paths (A-path and v-path).

Having the whole regularization path is not enough. Indeed, the user still
needs to retrieve from it the best values for the hyperparameters. This can be
done using a generalization error or an estimate of this error. We propose to
include the leave-one-out (LOO) estimator inside the solution paths in order
to have an idea of the generalization error at each step. The LOO is known
to be unbiased but has a huge computational cost. However, by exploiting the
warm-start property of the support vector algorithm [6] this computation can
be carried up. After the formulation of the »-SVR problem, we describe the
mechanisms of the solution paths. The next section analyzes the criterion to
stop the algorithm whereas the last section presents experimental results.

2 The v-SVR setting

Assuming m training points {(z;,y;) € X x R}, the v-SVR algorithm optimizes
the e-insensitive cost L(y, f(z)) = maz(0, |y— f(x)|—¢) and allows the automatic
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computation of the e-tube [1]. Its primal formulation is:

mingeee 31 +ve+ 0 &+ &
st. —e—& <y — flz) <e+&, &, &>0 Vie{l,...,m} ande>0

According to this formulation, the parameter v varies in the interval [0,m].
It gives an upper bound on the number of points allowed to be outside the
tube and a lower bound on the number of support vectors. The regression
function: f(z) = + (X1, (af — a;)k(z;,2) + Bo) with By = Ab is the solution
of the previous problem. Here, k(.,.) represents the kernel and the Lagrange

()

multipliers «; ’ are solutions of the dual problem (with K the Gram matrix):

1
{ maro=cRm,xeR™ — Q—(Q* — a)TK(a* - a) + (a* - a)Ty s.t.

0<a;, af <1, Vie{l,....m}and (" —a)'1,, =0, (a* + )" 1, <v

3 Formulation of the »-SVR solution paths

Given fixed values of the regularization parameter A and of v, the KKT con-
ditions permit the automatic determination of b and e [1]. The quality of the
regression depends on the chosen values. The aim of this section is to analyze
the evolution of the regression function f(z) according to the variations of A
for v fixed: the A-path. Conversely, keeping A fixed at a specified value, the
regression function can be analyzed with respect to v: the v-path. Following the
original idea in [5], it can be shown that these paths are piecewise linear. The
initial regularization path for SVR [5] was extended to the double path (A-path
and e-path) in [7]. In this paper, we give another formulation of the double path
as we compute the v-path instead of the e-path. Moreover this formulation is
based on more intuitive hyperparameter v. Let define the following sets:

L: flx) < Viel, o;=10af=0 bounded points
R: flz) > VieR, o =0,af=1 bounded points
C: |y2 flxy) < e, VieC, o;=0a=0 useless points
Er: fla) = Vie&r, 0<q; <1l,af =0 useful points
Er: flxy) = VieEr, a;=0,0<af <1 useful points

The sets £ and R contain respectively the points with errors belonging to the
left part and right part of the e-tube whereas the points of £, and £x lie on the
left and right elbows. The elements of C are the points in the tube.

3.1 Computation of the \-path

We suppose the value of v is constant. Let f!(x), the solution obtained for Af.
The corresponding sets are £¢, Rt , Ct, £, Ex'. The parameters of the model
are piecewise-linear in A as long as the sets are not modified. The key point is
to determine the values of A for which a point moves from a set to another one.
The modification of the sets arrives if one of these eight moves occurs: from £
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to E¢' (in(f)), from Rt to Er" (in(r)), from C* to E," or from C* to Ex’ (in(c));
from E¢" to Lt (out(£)), from Ex" to R (out(r)) and finally from E." or Ex’ to
C' (out(c)). Before be interested by these moves of the training points, let write
for ATl < X < X!, the regression function as Af(z) = Af(x) — A fi(z) + AL fi(x).
Hence we have:
M) = > (0] —bai) k(ws, ) + 580 + N f'(x) (1)
i€ELtUER?
with da; = a; — af, daf = af —at, 680 = Bo — 3% In the latest relation, the
sum is carried only over £, and £r as the Lagrange parameters corresponding
to the other sets are fixed (equal to 0 or 1).
For j € &', we have: y; — fi(z;) = —e'. Therefore, the following equation
holds: A(yj + €) = Yicenive,t (005 — dai)k(xi,x5) + 680 + A'(y; + ¢'). By
defining d = \e and dd = \e — Alel, we get:

A=Ay = > (0o] — bov)k(wi, ;) + 680 —6d  Vj e &
i€ERTUELT
Similarly, for j € Ex’, one can establish:
A=Ay = > (0o] — dcu)k(wi, a;) + 6o +6d  Vj € Er'
i€ERUELT

Using the constraints (a* — a)'1 = 0 (which leads to (§a* — da) "1 = 0) and
(a* +a)"1 < v (hence (da* + da) "1 < 0) of the dual problem, we obtain the
linear system of |Ez| + |Er| + 2 equations: Ad = (A — \')z where:

—K (&, €r) K, Er) 1 -1 lYs" Vet

A _ —K((‘:E,SR)T K((SR,SR) 1 1 (5 o 50(* o y$Rt
- 17 17 o o |7 |88 |7 o0
17 17 0 0 od 0

Let 7 = A~'z, the parameters are given by these equations linear in \:

atl = ol (A= Mg, e =a (A Mg 2)
B = B+ (A= N, )
N + ()\_ )\t)"7d (4)

3.1.1 Points in Ec or Er and detection of the events out(£), out(r) and out(c)

These events occur respectively (due to the definition of the sets and the events)
when the parameters a hint the boundary 1, the parameters a* reach their
boundary 1 and both parameters attain the value 0. According to 2, we get:

t+1  _ 1-=af t t, t+1  _ 1-ojf t t
)\out(l) T Nay +A » € E»C ) Aout(r) - Na + A , 1€ E'R
ot . _art .
)‘to:tl(c) = {—nj_l + /\t, S ggt} @] {—n(j; + )\t, 1€ 5Rt}
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3.1.2  Points in L, R, C and detection of in({), in(r) and in(c)

These events occur respectively when y; — f(z;) = —e'T! for previously i € £?,
yi — f(z;) = ' for previously i € R! and |y; — f(x;)| = €1, for i € Ct.
By substituting equations 2 - 3 in (1) and after some algebras, we get: f(x) =
3 [ (@) = hi(@)]+hi(z) with  h*(2) = Yicep rie,e (00F = 0i)k(xi, 25) +0fo.
Using (4) and the latest relation, the values of A associated to these events are:
t41 _ N @)=kt (@i)—€e"4na) . ¢ i1 AN @i) =kt (@i)+e —na)
Ain(ty = gm0 €L Ay T T G
iy =y, iectu{a, iec

i€ RE

in(c) in(r)’

3.1.8  A-path algorithm

The next value A'**! is the largest positive value of \ less than A!. The difficult
part of the method is to find an initial configuration of A such as each elbow
Er and &, contains at least one point (see [5, 7]). We initialize our algorithm
by solving a QP problem.Thus the algorithm proceeds until one elbow becomes
empty or the value of A becomes small. At each step, solving the linear system
has a complexity of O(p®) with p = |Ez] + |Er| + 2. The calculation of h(z)
requires O(m(|€z]+|Er|)) operations and the detection of the next event induces
a complexity about O(m).

3.2 Computation of the v-path

In this case, the parameter A is fixed and we examine the effect of v on the regres-
sion solution. The proposed approach is closely similar to the derivation of the
A-path. Let the parameter v corresponding to the solution f*(z). Let v! < v <
vt such as the sets obtained at the step ¢ are not modified. As X is constant,
from (1), we obtain: A (f(z) — f*(x)) = D ;cenive, t (0af —daq)k(zi, x)) + 0 0.
According to the conditions verified by the points belonging to £, and x (re-
spectively y; — f(z;) = —e and y; — f(x;) = €) we obtain the set of equations:

> (0o = Sen)k(wi, ;) + 0B —6d=0  Vje& (5)
i€EERTUEL

> (007 = dai)k(wi u;) + 06 +6d=0  VjeEr' (6)
i€ERIUELT

with dd=\(e — €'). Also here, the condition (a*—a)T1=0 holds and leads to
(6a* —da) "1 =0 whereas the inequality (a*+a)'1 < v yields the constraint
(6a*+da) "1 < v—vt. Grouping all these equations, we obtain a linear system:
A§ = (v—v')z withz=[ 0 0 0 1 ]T. The values of v corresponding to the
events are computed by applying the previous mechanism. The events in(¢),
in(r) and in(c) can be checked by using the relation f(x) = f(z) + ”%”tht(x)
derived from the updating equations of the parameters with respect to v. The
complexity of each step is equal to the complexity of a step of A-path.
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The v-path is similar to the A\-path. Here the initialization of the algorithm
is easy as we can choose v as one of its extreme value: choosing v small means
that no training point is allowed to be outside the tube (v is an upper bound on
the number of points outside the tube). The initial solution is very sparse and
the tube is width. Therefore the LOO error can be computed very quickly. A
choice of v ~ m leads to a tiny tube. The obtained solution is less sparse and
induces a high computational cost of the LOO error.

The question arises how to switch from a path to the other. As at each step
of a path all the parameters are available, the switching is easily carried as long
as each elbow contains at least one point. Remark that the parameters A\ and v
can be increased or decreased along the paths.

4 Evaluation of the path

At each step, we quantify the generalization ability of the obtained regression
function. Here, we study the application of two types of generalization error:
the cross-validation error C'V = NL Zfi“l |(y; — f(z;)| and the Leave-One-Out
error LOO = =37y [y — fr(2i)|- fx(2) is the solution obtained with the
point (zg,yx) out of the training set. The LOO is known to be unbiased but is
very time consuming. To circumvent this drawback, a solution is the use of the
warm-start procedure (starting from the current solution as an a priori on the
next solution) of the support vector machine [6].

5 Simulation results

To evaluate the algorithm, we realize simulations on a toy problem. Let the non-
linear function y = sin(exp(3 * x)). The variable x is distributed uniformly in
the interval [0, 1]. 150 points are used for training and 100 for cross-validation.
A gaussian kernel with bandwidth 0.1 was used. The results concerning the
application of the A-path are reported on figure 1. We remark that when A
decreases, the LOO error decreases quickly so the algorithm can be stopped
earlier. The same remark holds for the width of the tube. For the small values
of v, as the initial solution is sparse, the LOO computation is very fast thus
saving much effort. Therefore, the earlier stopping of the algorithm gives sparse
solution and there is no need to explore all the path. Notice that, for a lack
of place, the figures related to the CV error are not presented by the obtained
results are quite similar to those of the LOO.

The illustration of the v-path for different values of A is displayed on figure
2. As v decreases, the tube vanishes and the LOO error decreases. These results
are coherent with those of the A-path.

6 Conclusion

This paper presents an algorithm to compute efficiently the solution paths of
the v-SVR (based on two hyperparameters A\ and v). From an initial solution,
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Variation of the LOO criterion with respect to 1/A Variation of the tube width £ with respect to 1/A
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Fig. 1: Illustration of the A-path for different values of v. Remark that the x-axis
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the second figure is in a logarithmic scale.
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Fig. 2: Illustration of the v-path for different values of A.

it provides an easy and automatic way to calculate all the solutions for an hy-
perparameter fixed and vice versa. The main difficulty is to find in the tricky
way these hyperparameters without exploring entirely the two-dimensional path.
The development of this part is currently under study. However some simula-
tions show that a good strategy consists to fix v at a small value and then to
run the A-path. The optimal value obtained from this path is fed to the r-path.
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