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Abstract. In this presentation we show the semi-supervised learning
with two input sources can be transformed into a maximum margin prob-
lem to be similar to a binary SVM. Our formulation exploits the unlabeled
data to reduce the complexity of the class of the learning functions. In
order to measure how the complexity is decreased we use the Rademacher
Complexity Theory. The corresponding optimization problem is convex
and it is efficiently solvable for large-scale applications as well.

1 Introduction

Semi-supervised learning belongs to the main directions of the recent machine
learning research. The exploitation of the unlabeled data is an attractive ap-
proach either to extend the capability of the known methods or to derive novel
learning devices. In this presentation we give a synthesis of some earlier ap-
proaches and show an optimization framework with good statistical generaliza-
tion capability. Our idea consists of:

Multiview learning, when two or more sources of the inputs are given with
the same output, see in papers of Blum et al. [4] and Dasgupta et al. [5],

Maximum margin learning, where the unlabeled cases within the margin
considered as errors, see in Bennett et al. [3],

Reduction of the learning class complexity, where the “closeness” of
the learning functions is assumed on the unlabeled data, see in the conference
paper about skeleton learning of Lugosi et al. [6] and Balcan et al. [1],

Combination of the multiview and maximum margin learning, which
introduces new constraints to the optimization, see in Meng et al. [7].

Blending these ideas we arrive at an optimization framework, which can
be solved efficiently at the level of computational complexity of a binary SVM
problem. In the first part the optimization problem is presented and then the
generalization performance is analyzed. We apply the Rademacher complexity to
give an upper bound on the expected error. At the end, experimental results will
illustrate the usefulness of the approach. The underlying theory is summarized
in Appendix A and B. Further details can be found in [2].

∗This work is supported by PASCAL Network of Excellence (IST-2002-506778) European
Community IST Programmes. The authors want to thank Gabor Lugosi for very fruitful
discussions.
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2 Optimization Framework

In the semi-supervised, multiview learning, with two views, we are given a com-
pound sample SL of pairs of outputs and inputs {(yi, (x1

i ,x
2
i )) : yi ∈ {−1, 1}, xk

i ∈
Xk, i = 1, . . . , mL, k = 1, 2} independently and identically generated by an
unknown multivariate distribution P(Y,X), and a compound sample SU =
{(u1

i ,u
2
i )) : uk

i ∈ Xk, i = 1, . . . , mU , k = 1, 2} of unlabeled cases indepen-
dently and identically chosen from the marginal distribution P(X) of P(Y,X).
Furthermore, there is given a set of embedding of the inputs into Hilbert spaces
by the functions φk : Xk → Hφk

, k = 1, 2. The image vectors of these mappings
are called feature vectors in the sequel.

The objective is to find linear functions fk(xk) = wT
k φk(xk) + bk which can

predict the potential label value for any labeled and unlabeled cases. The deci-
sion function is then defined as 1

2

∑
k sign(fk). In order to exploit the unlabeled

data in the optimization problem we choose particular solutions of the SVM
subproblems where the predictors give similar solutions on the unlabeled data.

The matrix Y is a diagonal matrix of the labels {yi}, and the matrices Xk

and Uk comprise the labeled and unlabeled inputs in their rows for k = 1, 2.
Applying the embedding functions φk on Xk and Uk gives matrices with the
feature vectors in their rows, otherwise all vectors are column vectors.

The optimization problem formulating our learning framework is given by

min 1
2

∑
k wT

k wk + 1T
∑

k Ckξk + Cη1T (η+ + η−)
w.r.t. (wk, bk, ξk), k = 1, 2, (η+,η−),

Synthesis: s.t.
∑

k(−1)k−1(φk(Uk)wk + bk) = η+ − η−,
Subproblems: Y(φk(Xk)wk + bk) ≥ 1 − ξk,

ξk ≥ 0, (η+,η−) ≥ 0, k = 1, 2.

(1)

We use the acronym SVM 2K for the problem (1) in the sequel.
Introducing Lagrangian multipliers αk for any k to the SVM subproblems

and β to the synthesis constraints then we can express the normal vector of the
separating hyperplanes for any k by

wk = [φk(Xk)T ,φk(Uk)T ]gk, where gT
k = (αT

k Y,−(−1)kβT ),

then unfolding the Karush-Kuhn-Tucker conditions we can derive the corre-
sponding dual problem. The kernel matrices in the dual have the structure

Kk =
[

φk(Xk)φk(Xk)T φk(Xk)φk(Uk)T

φk(Uk)φk(Xk)T φk(Uk)φk(Uk)T

]
=

[
KLL

k KLU
k

KUL
k KUU

k

]
=

[
KL

k

KU
k

]
.

Thus, the dual reads as

minα1,α2,β
1
2

∑
k gT

k Kkgk − ∑
k 1T αk

s.t. 1T gk = 0, where gT
k = (αT

k Y − (−1)kβT ),
0 ≤ αk ≤ Ck, −Cη ≤ β ≤ Cη, k = 1, 2.
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3 Theoretical Foundation

To illuminate the theoretical background of the presented learning method we
use the theory of the Rademacher Complexity, see in [2]. We assume the notation
taken from Section 2.

3.1 Analyzing the Semisupervised Multiview Learning

For SVM 2K, the two feature sets are
(
(φ1(X1), (φ1(U1)

)
and

(
(φ2(X2), (φ2(U2)

)
.

An application of Theorem 3, see in the Appendix A, shows that

fD(u, f1, f2)
def= Eu[|∑k(−1)k−1(wT

k φ(uk) + bk)|]
≤ 1

mU
1T (η+ + η−) + 2C

mU

√∑
k tr

(
Kk

)
+ 3

√
2 ln(2/δ)

2mU
=: D.

with probability at least 1−δ. We have assumed that ‖wk‖2 +b2
k ≤ C2 for some

prefixed C and any k = 1, 2. Hence, the class of functions we are considering
when applying SVM 2K to this problem can be restricted to

FC,D =
{

f
∣∣∣f : (xk) → 1

2

∑
k=1

(
Kk(xk)gk + bk

)
,

gT
k Kkgk + b2

k ≤ C2, k = 1, 2, fD(u, f1, f2) ≤ D
}

,

where Kk(xk) =
[
φ(xk)T φ(Xk)T ,φ(xk)T φ(Uk)T

]
.

The class FC,D is clearly closed under negation.
Applying the usual Rademacher techniques for margin bounds on general-

ization we obtain the following result.

Theorem 1. Fix δ ∈ (0, 1) and let FC,D be the class of functions described
above. Let (Xk) labeled and (Uk) unlabeled samples be drawn independently
according to a probability distribution P(X) for k = 1, 2. Then with probability
at least 1 − δ over random draws of labeled samples of size mL, every f ∈ FCD

satisfies

P(x,y)∼D(sign(f(x)) �= y) ≤ 1
2mL

1T
∑

k

ξk + R̂�(FC,D) + 3

√
ln(2/δ)
2mL

.

It therefore remains to compute the empirical Rademacher complexity of
FC,D, which is the critical discriminator between the bounds for the individual
SVMs and that of the SVM 2K. The details are presented in the Appendix B.

4 Experiments

In the experiment we used the image dataset2 being commonly used for generic
object recognition. In the cross-validation 5% percent of the cases are randomly

2Available at http://www.robots.ox.ac.uk/∼vgg/data/
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chosen as labeled cases and all others were unlabeled. This random selection of
the labeled cases was ten times repeated.

Table 1 shows the mean and the standard deviation of the accuracies and the
Rademacher complexities computed for each image class by using SVM work-
ing on the concatenation of two feature sets and the same ones in case of the
SVM 2K. It shows that the smaller Rademacher complexity can increase the
mean and decrease the standard deviation of the accuracies in classification.

Image classes
Airplanes Faces Motorbikes

SVM on mean(std) 91.4(2.8) 96.8(1.3) 94.1(1.3)
two features Rad. comp. 588.2 339.1 574.3
SVM 2K mean(std) 91.9(2.1) 97.4(1.3) 94.3(1.1)

Rad. comp. 236.4 34.4 197.4

Table 1: Accuracies(%), standard deviation and estimation of Rademacher Com-
plexities of the SVM acting on two feature sets and the SVM 2K in three image
classes. 5% of the cases were labeled.

A Appendix: Short Introduction of Rademacher Com-
plexity Theory

We begin with the definitions required for Rademacher complexity, see for ex-
ample Bartlett and Mendelson [2] (see also [8] for an introductory exposition).

Definition 2. For a sample S = {x1, · · · , x�} generated by a distribution D
on a set X and a real-valued function class F with a domain X, the empirical
Rademacher complexity of F is the random variable

R̂� (F) = Eσ

[
sup
f∈F

∣∣∣2
�

�∑
i=1

σif(xi)
∣∣∣∣∣∣∣x1, · · · , x�

]

where σ = {σ1, · · · , σ�} are independent uniform {±1}-valued Rademacher ran-
dom variables. The Rademacher complexity of F is

R� (F) = ES

[
R̂�(F)

]
= ES,σ

[
sup
f∈F

∣∣∣2
�

�∑
i=1

σif(xi)
∣∣∣]

We use ED to denote expectation with respect to a distribution D and ES

when the distribution is the uniform (empirical) distribution on a sample S.

Theorem 3. Fix δ ∈ (0, 1) and let F be a class of functions mapping from S to
[0, 1]. Let (xi)

�
i=1 be drawn independently according to a probability distribution
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D. Then with probability at least 1 − δ over random draws of samples of size �,
every f ∈ F satisfies

ED [f (x)] ≤ ES [f (x)]+R� (F)+3

√
ln (2/δ)

2�
≤ ES [f (x)]+R̂� (F)+3

√
ln (2/δ)

2�

Given a training set S the class of functions that we will primarily be con-
sidering are linear functions with bounded norm

{
x →

�∑
i=1

αiκ (xi, x) : α′Kα ≤ B2
}
⊆ {x → 〈w, φ (x)〉 : ‖w‖ ≤ B} = FB,

where φ is the feature mapping corresponding to the kernel κ and K is the
corresponding kernel matrix for the sample S. The following result bounds the
Rademacher complexity of linear function classes.

Theorem 4. [2] If κ : X × X → R is a kernel, and S = {x1, · · · , x�} is a
i.i.d. sample from X, then the empirical Rademacher complexity of the class FB

satisfies R̂� (F) ≤ 2B
�

√
tr (K).

B Appendix: Empirical Rademacher Complexity of FC,D

We define an auxiliary function of the weight vectors w̄k = (wk, bk), k = 1, 2,

D(w̄1, w̄2)
def
= ED

[∣∣ ∑
k

(−1)k−1(φk(Uk)wk + bk)
∣∣],

and the Rademacher complexity of the class FC,D

R̂� (FC,D) = Eσ

[
supf∈FC,D

∣∣∣ 2
mL

∑mL

i=1 σif (xi)
∣∣∣]

= Eσ

[
sup∥∥w̄k

∥∥≤C, k=1,2

D(w̄1,w̄2)≤D

∣∣∣ 2
mL

∑
k=1 σT

(
Kk(xk)gk + bk

)∣∣∣].
Based on the reversed version of the basic Rademacher complexity theorem
where the roles of the empirical and true expectations are swapped:

Theorem 5. Fix δ ∈ (0, 1) and let F be a class of functions mapping from S to
[0, 1]. Let (xi)

�
i=1 be drawn independently according to a probability distribution

D. Then with probability at least 1 − δ over random draws of samples of size �,
every f ∈ F satisfies

ES [f (x)] ≤ ED [f (x)]+R� (F)+3

√
ln (2/δ)

2�
≤ ED [f (x)]+R̂� (F)+3

√
ln (2/δ)

2�
.

The proof tracks that of Theorem 3 but is omitted through lack of space.
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For weight vectors {w̄k} satisfying D(w̄1, w̄2) ≤ D, an application of Theo-
rem 5 shows that with probability at least 1 − δ we have

D̂(w̄1, w̄2)
def
= ES

[∣∣ ∑
k(−1)k−1(φ(Uk)wk + bk)

∣∣]
≤ D + 2C

mU

√∑
k tr(Kk) + 3

√
2 ln(2/δ)

2mU

≤ 1
mU

1T (η+ + η−) + 2C
mU

√∑
k tr(Kk) + 3

√
ln(2/δ)
2mU

=: D̂.

The above result shows that the Rademacher complexity of FC,D with proba-
bility greater than 1 − δ satisfies

R̂� (FC,D) ≤ Eσ

[
sup

‖w̄k‖≤C, k=1,2,

D̂(w̄1,w̄2)≤D̂

∣∣∣ 2
mL

σT
∑

k

[φk(Xk)wk + 1bk]
∣∣∣
]
,

where σ ∈ {−1,+1}mL . Note that the expression in square brackets is con-
centrated under the uniform distribution of Rademacher variables. Hence, we
can estimate the complexity for randomly chosen instantiation σ̂ of the the
Rademacher variables σ. We now must find the value of {w̄k} that maximizes

max 1
mL

∣∣∣[ ∑
k σT φk (Xk)wk +

∑
k σT 1bk

]∣∣∣ = 1
mL

∣∣∣ ∑
k σT

(
KL

k gk + bk

)∣∣∣
s.t. gT

k Kkgk + b2
k ≤ C2, k = 1, 2,

1
mU

1T
∣∣∣(∑k(−1)k−1

(
KU

k gk + bk

)∣∣∣ ≤ D̂.

The expected value of the objective function computed on randomly chosen σ̂’s
is the estimate of the Rademacher complexity.
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