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Abstract. We propose a novel intelligent approach into 2D to 3D of on-line 
sketching in conceptual design. A Multilayer Perceptron (MLP) neural network is 
employed to construct 3D freeform surfaces from 2D freehand curves. Planar 
curves were used to represent the boundary strokes of a freeform surface patch and 
varied iteratively to produce a training set. Sampled curves were used to train and 
test the network. The results obtained demonstrate that the network successfully 
leaned the inverse-projection map and correctly inferred respective surfaces from 
curves previously unencountered.  

1 Introduction 

At the early stages of conceptual product design, a designer always tries to covert his 
new ideas into sketches as soon as possible. It can be argued that sketching is an 
essential activity for creative design because it permits a designer to explore and to 
evaluate ideas quickly [1]. It also assists the designer’s short-term memory and 
facilitates communication with other people. When designers sketch shapes on a sheet 
of paper, they start with a fuzzy concept, which is then progressively refined. While 
numerous iterations are undertaken, the salient properties of the original idea are 
usually maintained. Recently, the desire to automate the early phase of the conceptual 
product design have given impetus to the development of intelligent tools to simulate 
the natural way of sketching, [2-4]. However, most existing approaches are restricted 
to two-dimensional and polygonal shapes, [5]. The generation of complex free-form 
surfaces is a challenging process, which surprisingly has received little attention in the 
literature. 

2 Theoretical Framework  

A planar sketch is produced by a projection of a 3D object onto an arbitrary 2D plane. 
Reconstruction attempts to get the 3D geometry from the 2D sketch, i.e., to recover 
the lost depth information from the inherently planar sketch. This process can be 
regarded as the inverse process of such projection. Obviously, inferring a 3D surface 
from a 2D curve is mathematically indeterminate, so the reconstruction should need 
additional information such as general assumptions or experiences. Humans seem to 
be able to accomplish this task with minimal difficulty and most observers of a sketch 
will agree on a particular interpretation. We demonstrate how an MLP neural network 
can be trained with backpropagation with momentum on a database of 2D-3D 
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dependencies to approximate the inverse map in a compact and computationally 
efficient form.  
 A neural network has the ability to be trained to learn to solve a certain pattern 
recognition problem. It does this by trying to mime the way that a human identifies an 
object without using any sort of rules or recipes, [6]. The reason that neural networks 
are chosen over other means is that they have a remarkable ability to derive meaning 
from complicated or imprecise data. They can also be used to extract patterns or 
discover trends that may be too complicated to be recognised by eye or other 
computational techniques.  

2.1  Back Propagation with momentum 

In the backpropagation algorithm learning the weight changes are proportional to the 
gradient of the error. The larger the learning rate is, the larger the weight changes on 
each iteration, and the quicker the network learns. However, the size of the learning 
rate can also influence whether the network achieves a stable solution. If the learning 
rate is too large, then the weight changes n o longer approximate a gradient descent 
procedure and hence oscillation of the weights would often result. 
 The backpropagation learning algorithm is in essence a gradient descent 
optimisation strategy of a multidimensional energy surface in the weight space. Such 
strategy has inherently slow convergence.  This trait becomes more pronounced when 
the eigenvalues of the corresponding Hessian matrix exhibit large spread. In such 
cases, the change in the cost function between successive iteration becomes 
oscillatory leading thus to slow convergence. One way to circumvent this problem is 
to add a momentum term. The momentum term has the following effects: 1) it 
smoothes the weight changes, that it smoothes the oscillations across the error valley; 
2) when all the weights change in the same direction the momentum amplifies the 
learning rate thereby causing a faster convergence; and 3) enables the algorithm to 
escape from small local minima.  
 The momentum term introduces a kind of ‘inertia’ in the movement of the 
weight vector. Once the weights start moving in a particular direction in the weight 
space, they tend to continue moving along same direction. If the weight vector has 
sufficient momentum, it will be able to bypass local minima continue down the hill. 
This increases the movement speed along the ravine, and helps to prevent oscillations 
across it. This effect can also be regarded as a linear low-pass filtering of the gradient 
delta. The effect becomes more pronounced as the momentum term approaches 1. 
However, one has to be conservative in the choice of momentum because of an 
adverse effect of the momentum term: the ravines are normally curved, and in a bend 
the weight movement may be jump over a ravine wall, if too much momentum has 
been previously acquired.  
 The momentum parameter has to be appropriately selected for each problem. 
Typical values of the momentum are in the range 0.05 to 0.95. Values below 0.05 
usually contribute little improvement relative to the backpropagation without 
momentum, while values above 0.95 often tend to cause divergence at bends. The 
momentum technique may be used both in batch and on-line training modes. In this 
paper the batch version is used. 
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3 Data Generation 

The neural network requires training with a record of input and output data. This 
permits to set the network parameters (i.e. synaptic weights and biases). Training the 
net is accomplished through a learning algorithm that iteratively adjusts the network 
parameters until the mean squared error (MSE) between the predicted output and the 
desired output reaches a minimum.  
 A training set was generated from a family of freeform surfaces whose 
boundaries that consist of four planar curves are arranged orthogonally. Each curve is 
governed by four independent control points and is represented as a Non Uniform 
Rational B-Spline (NURBS). Two control points are associated with the ends of the 
curve whereas the remaining ones control its general shape. It is worth noting that the 
control points need not intersect the curve and can be positioned anywhere in the 3D 
space. The parametric curve is uniformly sampled and the coordinates of the sample 
points form the input features for the neural network.  
 The curves were placed in the x-z plane or the y-z plane and their control points 
were only moved in the z-direction. Such action maintains their planar property.  
Along each boundary curve 10 sample points were selected. Hence a surface, whether 
in 2D or 3D, is represented by 40 sample points.  A point in the 3D surface is 
represented by the coordinates x, y and z. whereas in 2D, is represented by the x, y 
coordinates. Therefore a 3D surface is represented by 120 features and its respective 
2D with 80 features.  
 An iterative algorithm was used to vary the position of the control points to 
produce a class of unique freeform surfaces. Each surface was then projected onto a 
plane to produce the respective 2D curves. The training set is composed of pattern 
pairs, each containing a 3D surface and its corresponding 2D shape.  
 Most applications of neural networks include normalisation of the data sets in 
order to ensure that the values lie within the characteristic bounds of the activation 
functions. Therefore after the data set was generated, the maximum and minimum 
points were identified and the whole set was scaled accordingly by subtracting every 
point from the minimum value in that set and then dividing by the maximum value. 
Therefore the input 3D pattern would fit within a unit cube and its respective 2D 
pattern within the unit square.  
 Figure 1 shows an example of a typical normalised pattern pair that was used to 
train the neural network. A 2D input pattern is depicted in Figure 1 (a) whereas its 
corresponding 3D output pattern can be seen in Figure 1 (b). It can be seen that the 
boundary of the surface is described by a series of sample points and fits within a unit 
square for 2D and unit cube for 3D. 
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Figure 1: Example of 2D input pattern and corresponding 3D output pattern 

 
 Notice that the camera is positioned for the 3D pattern according to view of the 
2D input pattern where the axes are positioned in a way that it resembles the 2D view 
of the 3D surface.  
 The entire data set cannot be used to train the network as a whole because there 
would be no data left to test the network’s ability to generalise into fresh inputs. 
Therefore the data set was randomly split, using a proportion of 70%, 20% and 10% 
into three subsets that are used for training, validation and testing. The size of the 
whole data set contained 4096 patterns and was generated as mentioned using the 
procedure above. Accordingly, the number of training, validation and testing patterns 
pairs were therefore 2867, 819 and 410 respectively. The generated set covered a 
wide range of the possible forms that the surface could take and provided good 
results. 

3.1 Experimental Results  

From the above information regarding the dimensions of the input patterns the 
number of neurons used in the input and output layers were set to correspond to the 
dataset used to train it. A three-layer MLP network was employed in our research. 
The input and output layer dimensions of the neural network were determined from 
the number of features in the data set. The input layer consists of 80 nodes and while 
the output layer consists of 120 nodes. The number of nodes in the hidden layer is 
freely adjustable and results in different network performance depending on the 
number of hidden nodes used. 
 The number of hidden nodes indicates the network complexity and governs how 
accurately it learns the mapping from the input patterns to the outputs. It also affects 
the time it takes the network to perform each training cycle. The higher the number of 
hidden nodes the more computation is required and hence a longer training time. The 
same number of hidden nodes as the output layer were used resulting in the network 
architecture having 80 input nodes, 120 hidden nodes and 120 output nodes. The 
network was trained and validated for a fixed number of training cycles using the 
back propagation learning algorithm with momentum and validated at regular 
intervals. The learning rate and the momentum term are 0.7 and 0.4 respectively. At 
the end of 250 training cycles the net was saved the test set was applied to the 
network. 
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 The purpose of validation is to check the network ability to generalise with new 
patterns that are not in the training set. This is an important activity to prevent the 
problem of overfitting, [7]. This was achieved by creating a copy of the neural 
network and freezing its parameters. The validation set was then applied and the 
validation error recorded. The original network allowed to train further until the 
specified training cycles were reached. The final training error was 0.067 and 
validation error was 0.012. 
 After the training was completed, the test set was applied to the neural network. 
The obtained results show that the neural network was able to infer the 3D shape of a 
freeform surface from its respective 2D input pattern.   
 

 
(a)  

(b) 

Figure 2: Test input pattern with predicted and desired output 

 
The test pattern that was applied to the trained network is shown in Figure 2 (a). The 
predicted pattern and the expected pattern that corresponds to the 2D surface from 
Figure 2 (a) are shown in Figure 2 (b). The predicted pattern is depicted in green 
whereas the desired pattern is in blue. It can be noticed from Figure 2 (b) that the two 
surfaces are almost identical and hence that the neural network has inferred the 
correct shape that was desired. However, small deviations in the predicted pattern can 
be observed. They relate to the network’s ability to predict the desired surface. The 
distribution of error presented in Figure 3. This shows the Euclidean distance between 
each point from the predicted surface and its corresponding point on the desired 
surface.  The RMS error for this pattern was 1.97%. 
 

 
Figure 3: Distribution of squared errors between predicted output and expected output 
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3.2 Conclusions  

In this paper a neural network approach for the inference of 3D freeform surfaces 
from 2D data has been presented. A dataset was generated by iteratively adjusting 
control points of freeform surface boundary curves and sampled uniformly along the 
curves. The dataset was normalised and randomly split into subsets. An MLP was 
employed and trained with a representative family of 2D and 3D pattern pairs and 
applied to another subset of patterns it had not encountered before. Results showed 
that the network was able to train well and reproduce the desired freeform surface 
from a 2D input pattern. Future work will involve extending sketch-based recognition 
techniques to more complex shapes and skinning over the inferred surface. 
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