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Abstract. In some important applications such as speaker recognition
or image texture classification, the data to be processed are sets of vectors.
As opposed to standard settings where the data are individual vectors, it
is difficult to design a reliable kernel between sets of vectors of possibly
different cardinality. In this paper, we build kernels between sets of vec-
tors from probability density functions level sets estimated for each set of
vectors, where a pdf level set is (roughly) a part of the space where most
of the data lie.

1 Introduction

Various practical situations involve the comparison of two sets of vectors. A
first usual approach consists of comparing each vector in one set to each vector
in the other set using a kernel, leading to various algorithms such as the two
class classification support vector machines. In a second approach, each of the
two sets of vectors is seen as a single data point, and a higher level kernel is
designed so as to compare the two sets. In the first situation, the similarity of
the two sets is summarized in the so-called kernel matrix, whereas in the second
situation, the similarity is summarized by a single real value. Many applications
require such high level kernel defined on sets of vectors. Important examples are
speaker recognition (where one speaker is represented by a set of vectors in the
20-30 dimensional space of cepstral coefficients) or image texture classification.

Such applications share several important properties. Firstly, all vectors in
the two sets lie in the same space (denoted X ). Secondly, there may not be
the same number of vectors in the two sets. In the following, we denote by
x = {x1, . . . xm} with size m and x

′ = {x′
1, . . . x

′
m′} with size m′ the two sets to

be compared using a kernel denoted K(x,x′).
Several previous approaches have been proposed to build the kernel K(·, ·).

The most popular one consists of 1) estimating the probability density functions
(pdfs) according to which x and x

′ are distributed, and 2) applying to them a
kernel defined on the space of such pdfs. More verbosely, one may estimate, say,
Gaussian mixtures from the set of vectors, and then derive a kernel based on
a divergence measure or a likelihood ratio between the estimated pdfs. These
approaches suffer however from several drawbacks. In particular, estimating
pdfs in a space X of large dimension is tough, especially when the number of
data (m or m′) is smaller than the dimension of X . A usual (unsatisfactory)
solution consists of replacing pdfs by histograms and building the kernel from
the similarity measures based on histograms [1]. It may be emphasized that



numerical computation of similarity measures between pdfs can be difficult when
the pdfs do not belong to the exponential family. Another argument may be that
if underlying pdfs can be approximated well enough, a more natural way to use
them would be to adopt a Bayesian framework.

In this paper, we propose to derive a kernel K(·, ·) between sets of vectors
based on level sets1 of the underlying pdfs. Briefly, this work builds on the
following idea: two sets of vectors are essentially similar if they occupy the same
part of the space X . In other words, the similarity between the sets x and x

′

can be evaluated as the similarity between level sets estimated from the vectors
in x and x

′. This approach, first proposed in [2] as a contrast function between
sets of vectors, does not require the estimation of densities in possibly large
dimension spaces.

This paper is organized as follows. Section 2 recalls some necessary elements
about level sets and presents a level set estimation algorithm (one-class Support
Vector Machine). Section 3 proposes some metrics between sets of vectors. These
metrics are built using estimated level sets, and they are computed extrinsically
in feature space. They will be used in Section 4 to derive kernels K(·, ·). In
Section 5, we discuss various aspects of the proposed kernels K(·, ·). Section 6
presents some simulation results and conclusions.

2 Level sets of probability density functions

Let p(·) a pdf over X . The ε-level set of p(·) is the subset S of X defined as
S = {x ∈ X s.t. p(x) ≥ ε}. As p(·) is usually unknown, it is more convenient
to define (equivalently) the level set S in terms of the distribution P which
p(·) derives from: S is the minimum (Lebesgue) measure subset of X with P -
measure 1− ν, where ε and ν are of course related. This definition makes easier
the estimation of S from a set x = {x1, . . . xm} as, asymptotically with m, one
only needs to counts how many of the xi’s actually are in S. Of course, for
purposes of decision involving two, or more, level sets, these have to be defined
with fixed ν, not for fixed ε.

As P is unknown, one needs to estimate the set S; we denote Sm an estimate
of S based on the learning set x = {x1, . . . , xm}, where the samples xi’s are
distributed i.i.d. according to P . Using a pdf pm(·) estimated from x so as to
define Sm as {x ∈ X , pm(x) ≥ ε} is irrelevant insofar as the density estimation
step is precisely what we want to avoid when comparing the sets x and x

′.
A classical approach is then to select Sm in a predefined class of sets (balls,
ellipsoids, convexes), or, alternatively, to define its boundary as {x ∈ X , fm(x) =
0} and select fm in a class of functions (piecewise polynomials, poor classes in
reproducing kernel Hilbert spaces).

A suitable level-set estimation technique must be (strongly) consistent, achieve
fast rates of convergence (if possible, independent of the dimension of X ) and
lead to a practicable and computationally cheap algorithm. As our final objec-
tive is to build K(x,x′) as a kernel between estimated level sets Sm and S′

m, we

1A level set of a pdf can be seen as the part of the space that contains a given fraction of
the probability mass indicated by the pdf. This is more precisely defined in Section 2.



need to be able to define and compute a dissimilarity measure between Sm and
S′

m. These sets being subsets of X in possibly large dimension whose similarity
(based, say, on their intersection) can be extremely difficult to compute.

In the following, we show that the reproducing kernel Hilbert space (r.k.h.s.)
framework enables an easy and aesthetic solution to these problems. We briefly
recall that, in the context we address, a r.k.h.s. H is a vector space of real-
valued functions defined over X , in which the evaluation functional is a kernel
k : X × X → R with the reproducing property 〈f(·), k(x, ·)〉H = f(x),∀f ∈
H,∀x ∈ X . We assume that k is such that k(x, x) = 1∀x ∈ X . In X , we select
the boundary of the estimated level set Sm (which is equivalent to considering
Sm itself) such that it follows {x ∈ X , fm(x) = 0}, where fm is a function in H
obtained as the solution of the optimization problem:

min
f∈H

1

m

m
∑

i=1

c(xi, f(xi)) + λ‖f‖2
H (1)

where c is a cost function such as the hinge loss. Examples of such boundary
estimators from a function in H are one-class Support Vector Machines (SVMs),
see [2] and references therein. In this framework, the P -measure (1 − ν) is
directly related to the regularization parameter λ of the optimization problem.
Whatever the framework adopted, solving (1) implies that Wahba’s representer
theorem holds, that is:

fm(x) =

m
∑

i=1

αik(x, xi) − b with the αi’s and b in R (2)

At this step, we have characterized (independently) x and x
′ by estimated level

sets Sm and S′
m of underlying densities, rather than by the densities themselves.

Strong motivation about the soundness is provided in [2]; briefly, this is mainly
because estimating a level set is easier than estimating the pdf. However, we now
need to be able to compute a dissimilarity measure between these sets, which is
addressed in next section. In the remainder of this article, we further assume
that k is such that the kernel matrix between xi’s (i = 1, . . . ,m) is with rank m

whatever m is2.

3 Metrics and other dissimilarity measures between level

sets

In this section, we build dissimilarity measures (e.g., metrics), between the two
subsets of X respectively defined as Sm = {x ∈ X ,

∑m

i=1 αik(x, xi)−bm ≥ 0} and

S′
m = {x ∈ X ,

∑m′

i=1 α′
ik(x, x′

i)− b′m′ ≥ 0}. The main difficulty is, however, that
Sm and S′

m are, say, unions of connected subsets of X , which makes extremely
difficult the computation of their dissimilarity3. This difficulty can be overcome

2This assumption is made only to ensure a simpler presentation, and the results presented
here hold for more general kernels.

3We do not consider the dissimilarity d(S, S′) = 1

m+m
′ #(x /∈ S′

∪ x′ /∈ S) because it is too
poor in most situations.



by computing similarity between Sm and S′
m in H rather than in X . We denote

Sm and S′
m the respective images of Sm and S′

m in H.
In H, all k(xi, ·)’s and k(x′

i, ·)’s lie on a sphere with radius one as ‖k(xi, ·)‖
2
H =

〈k(xi, ·), k(xi, ·)〉H = k(xi, xi) = 1. This remark together with the reproducing
property enables easy computation of dissimilarity measures between Sm and
S′

m. In the following of this section, we focus on three dissimilarity measures,
namely the symmetric difference measure d1(·, ·), Hausdorff measure d∞(·, ·) and
a contrast measure dc(·, ·). Both d1(·, ·) and d∞(·, ·) are metrics if defined over
compact sets.

Most of the following calculations are geometrically derived from Fig. 1,
which is a simplified two-dimension view of Sm and S′

m in H. In particular,

bm
||fm||H

b′
m′

||f′
m′ ||H

c′
m′

cm

0

pm

p′
m′

{g ∈ H, 〈f ′
m′ , g〉H − b′m′ = 0}

radius= 1
S

P

{g ∈ H, 〈fm, g〉H − bm = 0}

Fig. 1: Estimation of the level sets Sm and S′
m in H using ν-one class support

vector machines.

most derivations arise from the fact that the arc distances darc(cm, c′m′) and
darc(cm,pm) can be computed in input space, see [2].

• Symmetric difference measure d1(·, ·): This metric is defined as d1(Sm,S′
m) =

µ ((Sm\S′
m) ∪ (S′

m\Sm)), thus it can be evaluated by computing a volume in
H. Though H is infinite-dimensional, the k(xi, ·)’s and k(x′

i, ·)’s actually lie in its
subspace spanned by {k(x1, ·),. . .,k(xm, ·),k(x′

1, ·),. . .,k(x′
m′ , ·)} where Lebesgue

measure is properly defined. As a result, the volume is proportional to, e.g., when

cm, p′
m′ , pm and c′m′ are ordered : (darc(cm,p′

m′) + darc(c
′
m′ ,pm))

(m+m′)
.

Embedding in a subspace of dimension (m+m′) is only a matter of convenience,
to define the measure properly: whatever m and m′, what we compare are the
arc distances, therefore we may consider instead:

(darc(cm,p′
m′) + darc(c

′
m′ ,pm)) (3)

which makes it possible to compare sets of different cardinality without any
further normalization. The other relative positions of the points cm, p′

m′ , pm

and c′m′ (which can easily be determined) lead to similar expressions.



• Hausdorff measure d∞(·, ·): It is defined as follows:

d∞(Sm,S′
m) = max

(

max
g∈Sm

min
g′∈S′

m

‖g − g′‖H, max
g′∈S′

m

min
g∈Sm

‖g − g′‖H

)

= max (darc(cm,pm) + darc(cm,p′
m′), c′m′ ,p′

m′) + darc(c
′
m′ ,pm))

where the second equality is again derived for the same relative position of cm,
p′

m′ , pm and c′m′ .

• Contrast measure dc(·, ·): Finally, we also use a contrast measure between S

and S′, defined as:

dc(S,S′) =
darc(cm, c′m′)2

darc(cm,pm)2 + darc(c′m′ ,p′
m′)2

(4)

This contrast function was first introduced in [2] to achieve change detection.

4 From dissimilarity measures to kernels

Using exponentiated dissimilarity measures as, e.g., in [3, 4], we define a ker-
nel between sets of samples as a kernel between level set of their underlying
distribution:

k(S, S′) = exp

(

−
d(S, S′)2

2σ2

)

(5)

with d(·, ·) any dissimilarity measure between sets such as, e.g., d1(·, ·), d∞(·, ·) or
dc(·, ·). Eq. (5) clearly defines a symmetric positive similarity measure between
level sets. The remainder of this section deals with positive definiteness of those
kernels.

Symmetric difference measure. Rewriting d1(S, S′) as: d1(G,G′) =
µ ((G\G′) ∪ (G′\G)) =

∫

x∈X
(

�
G(x) −

�
G′(x))2dµ(x) = ‖

�
G(x) −

�
G′(x)‖2

L2(X )

makes it possible to conclude (by [5]) of the positive definiteness of the kernel
built on d1(·, ·).

Hausdorff and contrast measures. We were not able to conclude w.r.t.
to positive definiteness of the kernels based on d∞(·, ·) and dc(·, ·), however
developments in [6] makes it possible to use such kernels with corresponding
theoretical framework. Practical results further confirm this.

5 Discussion

Pdf level sets based decision. The idea of plugging in pdf level sets instead
of the pdf themselves is not new. It was proposed as a theoretical approach in [7]
for outlier detection (with density support estimates using balls), and in [2] for
a practical and efficient change detection approach. Theoretical argument for
this choice is related to the corresponding rates of convergence (see [8]).

Other approaches. Many approaches propose a kernel between densities.
However, computing a dissimilarity between densities can somewhat be very
difficult. As a result, authors are force to use very simple density estimates
(histograms in [1]), or make unnecessary crude assumptions such as gaussianity
in H (see, e.g., [10]).



Fig. 2: Two-class SVM classification between sets of 2D points with different
size, using the kernel built on dc. Toy examples correspond to linearly (left) and
non-linearly separable situations.

6 Toy examples and Conclusion

In figure 2, we illustrate the use of a pdf level-set based kernel between sets
of points. The data are sets of 2D points with different size : a SV level-set
estimator is first trained independently on each of them. These level sets are the
regions in white for one class and in black for the other. They are then used as
the inputs of a classic two-class SVM which yields the frontier plotted in black.

Further work include extensive simulations to compare the efficiency of the
proposed kernels wrt density-based kernels such as those described in, e.g., [10,
1]. Relevant fields applications includes image processing tasks such as object
recognition, and speech processing.
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