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Abstract. This paper presents two improvements of Lazy Learning. Both methods 
include input selection and are applied to long-term prediction of time series. First 
method is based on an iterative pruning of the inputs and the second one is 
performing a brute force search in the possible set of inputs using a k-NN 
approximator. Two benchmarks are used to illustrate the efficiency of these two 
methods: the Santa Fe A time series and the CATS Benchmark time series. 

1 Introduction 

Time series forecasting is a challenge in many fields. In finance, one forecasts stock 
exchange courses or stock market indices; data processing specialists forecast the 
flow of information on their networks; producers of electricity forecast the load of the 
following day. The common point to their problems is the following: how can one 
analyse and use the past to predict the future?  
 Many techniques exist: linear methods such as ARX, ARMA, etc. [1], and 
nonlinear ones such as artificial neural networks [2, 3]. In general, these methods try 
to build a model of the process. The model is then used on the last values of the series 
to predict future values. The common difficulty to all methods is the determination of 
sufficient and necessary information for a good prediction. The nonlinear model that 
is used in this paper is based on a linear piecewise approximation method called the 
Lazy Learning [4, 5].  
 This method has many advantages: it is very fast and doesn’t suffer from the 
problem of local minima (in example some neural networks give the minimum that is 
not a global one, but a local instead). Lazy Learning also provides good 
approximations for time series prediction. Input selection is a problem common to all 
approximators and, in this paper, we will present two improvements, which include 
the selection of the inputs in the Lazy Learning method itself. 
 The Lazy learning is presented in Section 2 and the improvements in Section 3. 
Finally, the results obtained with the Lazy Learning and both its improvements are 
summarized in Section 4. 
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2 Lazy Learning Model 

Lazy Learning model (LL) is a linear piecewise approximation model based on 
PRESS statistics and recursive least squares algorithm introduced by Aha [4]. Around 
each sample, the k-nearest neighbors are determined and used to build a local linear 
model. This approximation model is the following: 
  (1) )x,,x,LL(x=y n2 ...ˆ 1

with ŷ the approximation of the real output y and x1 to xn the n selected inputs. The 
number of inputs and the inputs itself must be determined a priori in LL models. 
The optimization of the number of neighbors is crucial. When the number of 
neighbors is small, local linearity assumption is valid, but small number of data won’t 
allow building an accurate model. On the contrary, if the number of neighbors is 
large, local linearity assumption is not valid anymore but the model is more accurate. 
For an increasing size of the neighborhood, a leave-one-out (LOO) procedure is used 
to evaluate the generalization error of each different LL model [6]. LOO procedure 
takes each of the neighbors out one at a time. The neighbors that remain are used to 
build the local linear model and the error is evaluated with the data taken out. The 
generalization error is the average of the model error computed with each neighbor 
absent. 
 Once the generalization error for each neighborhood size is evaluated, the 
number of neighbors that minimizes this generalization error is selected. 
 The main advantages of the LL models are the simplicity of the model itself and 
the low computational load. Furthermore, the local model can be built only around the 
ones for which the approximation is requested. 
 Unfortunately, as mentioned above, the inputs have to be known a priori. 
Several sets of inputs have to be used to select the optimal one. The error has to be 
evaluated around each data point for each set of inputs. The optimal input set is the 
one that minimizes the generalization error. This procedure is long and reduces 
considerably the advantages of the Lazy Learning. In Section 3, we will present two 
different methods, which include the selection of the inputs in the Lazy Learning 
method itself.  

3 Input selection methodology 

3.1 Pruned Lazy Learning Model 

Pruned Lazy Learning method (PLL) is a modified version of the LL that has been 
presented in the previous section. This method leaves out (prunes) the least important 
inputs in the same way than widely known backward pruning algorithm. The initial 
model is build according to (1) with all the available inputs. Then each input from x1 
to xn is taken out one at a time. The basic LL is applied to each pruned input set and 
the generalization error is obtained. Then the pruning that minimizes the 
generalization error is selected and the corresponding input is permanently taken 
away. This operation is repeated until an optimal set of inputs is found. This optimal 
set of inputs is the one that minimizes the generalization error obtained with the 
Leave-one-Out procedure.   



 With this method at most n(n-1)/2 PLL models are built and evaluated. This is 
significantly less than the number of possible input sets that can be built (2^n). 
However it is not guaranteed that this selected input set is the optimum. This 
disadvantage is common to all pruning methods [2]. 

3.2 K-NN Approximator 

In this method, all the 2^n possible input sets are built and evaluated. To avoid an 
unrealistic computational time, local constant models are used instead of local linear 
models. So the output of (1) is the arithmetic average of the outputs of the k nearest 
neighbors (with k selected with the LOO procedure). This is an extended version of 
the traditional k-NN, which is used for classification tasks [7]. The selected set of 
inputs will be correct if this approximator is able to provide an enough accurate 
approximation of the output. If this is the case, a comparison between the 2^n tested 
input sets, will be valid.  
 Function approximation capability of the k-NN is illustrated with a toy example. 
Fig. 1. represents an approximation obtained with the k-NN. The approximated 
function is y=sin(x)+sin(5*x)+sin(15*x)+e with e an uniform noise in [-0.5, 0.5]. The 
inputs that are selected by k-NN are afterwards used with normal LL model. 
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Fig. 1: Toy Example and its approximation (solid line).  

4 Applications 

4.1 Santa Fe A Benchmark 

We illustrate the methods described in the previous sections on a standard benchmark 
in time-series prediction. The Santa Fe A time series [3] has been chosen mainly 
because of the large number of data available for the training stage (1000) as well as 
for the test stage (9000). The learning set is represented in Fig. 2. 
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Fig. 2: Santa Fe A time series.  



The results obtained with LL, PLL and k-NN + LL are summarized in Table 1.  
 

 Learning Calculation time Test Prediction 
40 steps 

 k LOO error Minutes MSE MSE 
LL 56 42.32 2.58 42.0746 1765.6 
LL pruned 59 19.42 13.95 20.6037 148.37 
k-NN 3 57.71 33.78 53.5387 1252.1 
k-NN + LL 15 33.57 0.20 31.4548 1770.1 

Table 1: Results for Santa Fe A. 

 The selected inputs for continuous LL are (t-1, t-2, t-3), for LL pruned (t-1, t-2, 
t-3, t-11) and for k-NN (t-1, t-2, t-12). In k-NN + LL the inputs selected with k-NN are 
used with the Lazy Learning method for comparison. 
 The best method is LL pruned and it is used for a long-term prediction. Input set 
is selected only once and prediction is done recursively (running forecast). The results 
for the long-term prediction are presented in Fig. 3 and in the last column of Table 1. 
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Fig. 3: Results obtained with running forecast on Santa Fe A test set.  

4.2 CATS Benchmark 

The CATS Benchmark is an artificial time series with 5000 data [8]. Within those, 
100 values are missing. These missing values are divided into 5 blocks: from 981 to 
1000, from 1981 to 2000, from 2981 to 3000, from 3981 to 4000 and from 4981 to 
5000. Dataset from 1 to 980 is illustrated in Fig. 4. 
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Fig. 4: CATS Benchmark time series.  

The results obtained with LL, PLL and k-NN + LL are summarized in Table 2.  
 



 
 

 CATS Learning Calculation 
time 

CATS test 

 k LOO error Minutes MSE 
LL 242 96.18 144.37 87.67 
LL pruned 242 96.18 249.81 87.67 
k-NN 9 101.60 494.15 98.41 
k-NN + LL 234 99.74 3.29 92.23 

Table 2: Results for CATS Benchmark. 

 The selected inputs are (t-1 to t-16) for continuous LL and LL pruned, and for k-
NN (t-1, t-2, t-3, t-4, t-6, t-7, t-9, t-10, t-11, t-13, t-14, t-16).  
 The best method is again LL pruned and it is used to predict the 100 missing 
values and the results are presented in Fig. 5. 
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Fig. 5: CATS Benchmark: real values (solid) and approximations (dashed).  

5 Conclusions 

Two extensions of LL, which include input selection, have been presented and both of 
them provide satisfactory performance. Nevertheless, the most promising method is 
PLL, which is not only the most accurate but also the fastest.  
 A comparison between the selected sets of inputs performed by PLL and other 
input selection methods (for example methods which use mutual information) will be 
studied next. 
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