
Pruned Lazy Learning Models
for Time Series Prediction

Antti Sorjamaa1, Amaury Lendasse1 and Michel Verleysen2 *

1- Helsinki University of Technology - Neural Networks Research Center
P.O. Box 5400, FI-02015 - Finland

2- Université catholique de Louvain - Machine Learning Group
Place du Levant, 3, B-1348 LLN - Belgium

Abstract. This paper presents two improvements of Lazy Learning. Both methods
include input selection and are applied to long-term prediction of time series. First
method is based on an iterative pruning of the inputs and the second one is
performing a brute force search in the possible set of inputs using a k-NN
approximator. Two benchmarks are used to illustrate the efficiency of these two
methods: the Santa Fe A time series and the CATS Benchmark time series.

1 Introduction

Time series forecasting is a challenge in many fields. In finance, one forecasts stock
exchange courses or stock market indices; data processing specialists forecast the
flow of information on their networks; producers of electricity forecast the load of the
following day. The common point to their problems is the following: how can one
analyse and use the past to predict the future?
 Many techniques exist: linear methods such as ARX, ARMA, etc. [1], and
nonlinear ones such as artificial neural networks [2, 3]. In general, these methods try
to build a model of the process. The model is then used on the last values of the series
to predict future values. The common difficulty to all methods is the determination of
sufficient and necessary information for a good prediction. The nonlinear model that
is used in this paper is based on a linear piecewise approximation method called the
Lazy Learning [4, 5].
 This method has many advantages: it is very fast and doesn’t suffer from the
problem of local minima (in example some neural networks give the minimum that is
not a global one, but a local instead). Lazy Learning also provides good
approximations for time series prediction. Input selection is a problem common to all
approximators and, in this paper, we will present two improvements, which include
the selection of the inputs in the Lazy Learning method itself.
 The Lazy learning is presented in Section 2 and the improvements in Section 3.
Finally, the results obtained with the Lazy Learning and both its improvements are
summarized in Section 4.

* Part the work of A. Sorjamaa and A. Lendasse is supported by the project of New
Information Processing Principles, 44886, of the Academy of Finland. M. Verleysen
is a Senior Research Associate of the Belgian National Fund for Scientific Research.

2 Lazy Learning Model

Lazy Learning model (LL) is a linear piecewise approximation model based on
PRESS statistics and recursive least squares algorithm introduced by Aha [4]. Around
each sample, the k-nearest neighbors are determined and used to build a local linear
model. This approximation model is the following:
 (1))x,,x,LL(x=y n2 ...ˆ 1

with ŷ the approximation of the real output y and x1 to xn the n selected inputs. The
number of inputs and the inputs itself must be determined a priori in LL models.
The optimization of the number of neighbors is crucial. When the number of
neighbors is small, local linearity assumption is valid, but small number of data won’t
allow building an accurate model. On the contrary, if the number of neighbors is
large, local linearity assumption is not valid anymore but the model is more accurate.
For an increasing size of the neighborhood, a leave-one-out (LOO) procedure is used
to evaluate the generalization error of each different LL model [6]. LOO procedure
takes each of the neighbors out one at a time. The neighbors that remain are used to
build the local linear model and the error is evaluated with the data taken out. The
generalization error is the average of the model error computed with each neighbor
absent.
 Once the generalization error for each neighborhood size is evaluated, the
number of neighbors that minimizes this generalization error is selected.
 The main advantages of the LL models are the simplicity of the model itself and
the low computational load. Furthermore, the local model can be built only around the
ones for which the approximation is requested.
 Unfortunately, as mentioned above, the inputs have to be known a priori.
Several sets of inputs have to be used to select the optimal one. The error has to be
evaluated around each data point for each set of inputs. The optimal input set is the
one that minimizes the generalization error. This procedure is long and reduces
considerably the advantages of the Lazy Learning. In Section 3, we will present two
different methods, which include the selection of the inputs in the Lazy Learning
method itself.

3 Input selection methodology

3.1 Pruned Lazy Learning Model

Pruned Lazy Learning method (PLL) is a modified version of the LL that has been
presented in the previous section. This method leaves out (prunes) the least important
inputs in the same way than widely known backward pruning algorithm. The initial
model is build according to (1) with all the available inputs. Then each input from x1
to xn is taken out one at a time. The basic LL is applied to each pruned input set and
the generalization error is obtained. Then the pruning that minimizes the
generalization error is selected and the corresponding input is permanently taken
away. This operation is repeated until an optimal set of inputs is found. This optimal
set of inputs is the one that minimizes the generalization error obtained with the
Leave-one-Out procedure.

 With this method at most n(n-1)/2 PLL models are built and evaluated. This is
significantly less than the number of possible input sets that can be built (2^n).
However it is not guaranteed that this selected input set is the optimum. This
disadvantage is common to all pruning methods [2].

3.2 K-NN Approximator

In this method, all the 2^n possible input sets are built and evaluated. To avoid an
unrealistic computational time, local constant models are used instead of local linear
models. So the output of (1) is the arithmetic average of the outputs of the k nearest
neighbors (with k selected with the LOO procedure). This is an extended version of
the traditional k-NN, which is used for classification tasks [7]. The selected set of
inputs will be correct if this approximator is able to provide an enough accurate
approximation of the output. If this is the case, a comparison between the 2^n tested
input sets, will be valid.
 Function approximation capability of the k-NN is illustrated with a toy example.
Fig. 1. represents an approximation obtained with the k-NN. The approximated
function is y=sin(x)+sin(5*x)+sin(15*x)+e with e an uniform noise in [-0.5, 0.5]. The
inputs that are selected by k-NN are afterwards used with normal LL model.

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

x

y

Fig. 1: Toy Example and its approximation (solid line).

4 Applications

4.1 Santa Fe A Benchmark

We illustrate the methods described in the previous sections on a standard benchmark
in time-series prediction. The Santa Fe A time series [3] has been chosen mainly
because of the large number of data available for the training stage (1000) as well as
for the test stage (9000). The learning set is represented in Fig. 2.

0 200 400 600 800 1000
0

100

200

300

t

Sa
nt

a
Fe

 A

Fig. 2: Santa Fe A time series.

The results obtained with LL, PLL and k-NN + LL are summarized in Table 1.

 Learning Calculation time Test Prediction
40 steps

 k LOO error Minutes MSE MSE
LL 56 42.32 2.58 42.0746 1765.6
LL pruned 59 19.42 13.95 20.6037 148.37
k-NN 3 57.71 33.78 53.5387 1252.1
k-NN + LL 15 33.57 0.20 31.4548 1770.1

Table 1: Results for Santa Fe A.

 The selected inputs for continuous LL are (t-1, t-2, t-3), for LL pruned (t-1, t-2,
t-3, t-11) and for k-NN (t-1, t-2, t-12). In k-NN + LL the inputs selected with k-NN are
used with the Lazy Learning method for comparison.
 The best method is LL pruned and it is used for a long-term prediction. Input set
is selected only once and prediction is done recursively (running forecast). The results
for the long-term prediction are presented in Fig. 3 and in the last column of Table 1.

0 5 10 15 20 25 30 35 40
0

100

200

300

t

Sa
nt

a
Fe

 A
:

R

un
ni

ng
 F

or
ec

as
t

Fig. 3: Results obtained with running forecast on Santa Fe A test set.

4.2 CATS Benchmark

The CATS Benchmark is an artificial time series with 5000 data [8]. Within those,
100 values are missing. These missing values are divided into 5 blocks: from 981 to
1000, from 1981 to 2000, from 2981 to 3000, from 3981 to 4000 and from 4981 to
5000. Dataset from 1 to 980 is illustrated in Fig. 4.

0 200 400 600 800 1000
-400

-200

0

200

t

C
A

TS
 B

en
ch

m
ar

k

Fig. 4: CATS Benchmark time series.

The results obtained with LL, PLL and k-NN + LL are summarized in Table 2.

 CATS Learning Calculation
time

CATS test

 k LOO error Minutes MSE
LL 242 96.18 144.37 87.67
LL pruned 242 96.18 249.81 87.67
k-NN 9 101.60 494.15 98.41
k-NN + LL 234 99.74 3.29 92.23

Table 2: Results for CATS Benchmark.

 The selected inputs are (t-1 to t-16) for continuous LL and LL pruned, and for k-
NN (t-1, t-2, t-3, t-4, t-6, t-7, t-9, t-10, t-11, t-13, t-14, t-16).
 The best method is again LL pruned and it is used to predict the 100 missing
values and the results are presented in Fig. 5.

970 975 980 985 990 995 1000 1005 1010
50

100

150

200

t

C
A

TS
 B

en
ch

m
ar

k

1970 1975 1980 1985 1990 1995 2000 2005 2010
200

300

400

500

t

C
A

TS
 B

en
ch

m
ar

k

2970 2975 2980 2985 2990 2995 3000 3005 3010
0

50

100

150

t

C
A

TS
 B

en
ch

m
ar

k

3970 3975 3980 3985 3990 3995 4000 4005 4010
200

300

400

t

C
A

TS
 B

en
ch

m
ar

k

4970 4975 4980 4985 4990 4995 5000
-200

-100

0

100

t

C
A

TS
 B

en
ch

m
ar

k

Fig. 5: CATS Benchmark: real values (solid) and approximations (dashed).

5 Conclusions

Two extensions of LL, which include input selection, have been presented and both of
them provide satisfactory performance. Nevertheless, the most promising method is
PLL, which is not only the most accurate but also the fastest.
 A comparison between the selected sets of inputs performed by PLL and other
input selection methods (for example methods which use mutual information) will be
studied next.

References

[1] L. Ljung, System Identification—Theory for User, Prentice-Hall, Englewood CliPs, NJ, 1987.

[2] Cottrell, B.Y. Girard, M. Mangeas, C. Muller, Neural modeling for time series: a statistical stepwise
method for weight elimination, IEEE Trans. Neural Networks 6 (6), pages 1355–1364, 1995.

[3] A.S. Weigend, N.A. Gershenfeld, Times Series Prediction: Forecasting the future and
Understanding the Past, Addison-Wesley, Reading, MA, 1994.

[4] D. W. Aha, Editorial of Special Issue on Lazy Learning. Artificial Intelligence Review, vol. 11,
number 1-5, pages 1-6, 1997.

[5] G. Bontempi, M. Birattari and H. Bersini, ed. I. Bratko and S. Dzeroski, Local learning for iterated
time series prediction. Machine Learning :Proceedings of the Sixteenth International Conference,
pages 32-38, Morgan Kaufmann Publishers, San Francisco, CA, 1999

[6] B. Efron and R. J. Tibshirani, An introduction to the bootstrap, Chapman & Hall, 1993.

[7] C. M. Bishop, Neural Networks for Pattern Recognition. New York: Oxford, 1995.

[8] A. Lendasse, E. Oja, O. Simula, M. Verleysen, Time Series Prediction Competition: The CATS
Benchmark, IJCNN 2004, International Joint Conference on Neural Networks, Budapest (Hungary),
25-29 July 2004, vol. II, pp. 1615-1620.

