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Abstract. This paper proposes a new sliding mode controller using neu-
ral networks. Multilayer neural networks with the error back-propagation
learning algorithm are used to compensate for the system uncertainty in
order to reduce tracking errors and control torques. The stability of the
proposed control scheme is proved with the Lyapunov function method.
Computer simulation shows that the proposed neuro-controller yields
better control performance than the conventional sliding mode controller
in the view of tracking errors and overall control torque.

1 Introduction

In a robot system there are many uncertainties such as dynamic parameters
(eg., inertia and payload conditions), dynamic effects (eg., complex nonlinear
frictions), and unmodeled dynamics. Traditional linear controllers have many
difficulties in treating these uncertainties. To overcome this problem, sliding
mode control has been widely used as one of the precise and robust algorithms
[1, 2]. The most distinguished property of the sliding mode control lies in its
robustness. Loosely speaking, when a system is in a sliding mode, it is insensi-
tive to dynamic uncertainties and external disturbances. One of the significant
drawbacks of the sliding mode control is that it has a discontinuous switching
function, which raises some theoretical as well as practical issues. A theoreti-
cal issue is the existence and the uniqueness of solutions and a practical one is
the chattering phenomena due to imperfections in switching devices [3]. The
chattering is generally undesirable because it involves extremely high control
activities and may excite high-frequency dynamics neglected in modeling [4].
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By this reason, we use a continuous approximation of the discontinuous switch-
ing function and thus the so-called boundary layer approach. However, there
is a trade-off between the steady-state error and boundary layer thickness [4].

In this paper, a sliding mode controller using neural networks is proposed to
solve the boundary layer problem. The multilayer neural networks with error
back-propagation learning algorithm [5] are used to learn the uncertainties in
order to reduce the tracking errors and control torques. It adaptively generates
additional input torques to reduce the tracking errors and control torques.

The following section describes the design method of the proposed sliding
mode controller using neural networks. Simulation results for a two-link planar
robot manipulator are shown in Section 3. Conclusion is given in Section 4.

2 Design of a sliding mode controller using neu-
ral networks

The dynamics of a rigid robot manipulator can be written as follows [6]:

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q ∈ Rn is the joint angle vector, H(q) is the n × n manipulator inertia
matrix (which is symmetric positive definite), and C(q, q̇)q̇ ∈ Rn represents
centripetal and Coriolis torques. g(q) ∈ Rn, τ ∈ Rn represent gravitational
torques, applied joint torques, respectively. Let us define q̃ = q − qd as a
tracking error vector where qd is a desired joint angle vector. In order to make
the system track q(t) ≡ qd(t), we define a sliding surface s,

s = ˙̃q + Λq̃ = q̇ − q̇r (2)

where Λ is a positive definite matrix, and the reference velocity vector q̇r =
q̈d − Λq̃ [4]. Let us define the Lyapunov function as follows:

V (t) =
1
2
sT Ĥs. (3)

By differentiating (3), we can show

V̇ =
1
2
sT ˙̂Hs + sT Ĥṡ (4)

= −1
2
sT (Ḣ − ˙̂H)s + sT (τ − Cq̇r − g − Hq̈r) − sT (H − Ĥ)ṡ (5)

where the skew symmetry of (Ḣ − 2C) has been used to eliminate the term
1
2s

T Ḣs. The total control input τ as shown in Figure 1 is

τ = τ eq + ∆τ + τnn (6)

where τ eq is the equivalent control input, τnn is the output of the neural
network, and the chattering control input ∆τ is as follows:

∆τ = −K1σ(s/Φ) − K2s (7)
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where K1 and K2 are positive diagonal matrices and σ(s/Φ) is defined as
follows:

σ(s/Φ) =

{
sgn(s) if ‖s‖ ≥ Φ,

s/Φ if ‖s‖ ≤ Φ
(8)

where sgn is the sign function, and Φ is the boundary layer thickness. τ eq

is the control input vector which would make V̇ equal 0 if the dynamics were
exactly known

τ eq = Ĥq̈r + Ĉq̇r + ĝ. (9)

We then have

V̇ = sT

(
∆τ + τnn + H̃q̈r + C̃q̇r + g̃ +

1
2

˙̃Hs + H̃ṡ
)

(10)

where the modeling errors H̃, C̃, and g̃ are H̃ = Ĥ − H, C̃ = Ĉ − C, and
g̃ = ĝ − g, respectively. Let us define the total uncertainty u as follows,

u = H̃q̈r + C̃q̇r + g̃ +
1
2

˙̃Hs + H̃ṡ. (11)

From (4), (10) and (11), as shown in Figure 1,

1
2

˙̂Hs + Ĥṡ = ∆τ + τnn + u. (12)

We can obtain the cost function of the neural network as follows,

E =
∥∥∥∥∆τ − 1

2
˙̂Hs − Ĥṡ

∥∥∥∥
2

= ‖−u − τnn‖2
. (13)

If the neural network successfully learned the total uncertainty u, the error
dynamic equation becomes

u + τnn = ε (14)

where ε denotes a functional reconstruction error. Therefore, the derivative of
the Lyapunov function (10) becomes

V̇ = sT (u + τnn + ∆τ ) = sT (ε − K1σ(s/Φ) − K2s)

≤ −λmin(K2)‖s‖2 + ‖ε‖ · ‖s‖ − sT K1σ(s/Φ) (15)

where λmin(K2) denotes the minimum eigenvalue of K2. If ‖s‖ ≥ ‖ε‖/λmin(K2),

V̇ ≤ −sT K1σ(s/Φ). (16)

It means that the surface ‖s‖ = ‖ε‖/λmin(K2) will be reached in a finite time.
Bounds on s can be directly translated into bounds on the tracking error vector
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Figure 1: The proposed sliding mode controller using neural network.

q̃. By equation (2), the tracking error vector q̃ is obtained from s through a
first-order lowpass filter [4]. From ‖s‖ ≤ ‖ε‖/λmin(K2) we get

‖q̃‖ ≤ ‖ε‖
λmin(K2)λmin(Λ)

, ‖ ˙̃q‖ ≤ ‖ε‖
λmin(K2)

(
1 +

λmax(Λ)
λmin(Λ)

)
. (17)

If the neural network successfully learned uncertainties so that ε → 0, it means
that s → 0, and the tracking error vector q̃ → 0 and ˙̃q → 0. Also, ∆τ → 0
from (7).

3 Simulation

In order to show the performance of the proposed controller, we performed
the computer simulation using a two-link planar robot manipulator, whose
dynamics can be written explicitly as [6][

H12 H12

H21 H22

] [
q̈1

q̈2

]
+

[−C12q̇2 −C12(q̇1 + q̇2)
C12q̇1 0

] [
q̇1

q̇2

]
+

[
g1g
g2g

]
+

[
f1

f2

]
=

[
τ1

τ2

]
(18)

where H11 = (m1 + m2)l21 + m2l
2
2 + 2m2l1l2 cos(q2), H12 = H21 = m2l

2
2 +

m2l1l2 cos(q2), H22 = m2l
2
2, C12 = m2l1l2 sin(q2), g1 = (m1 + m2)l1 cos(q2) +

m2l2 cos(q1+q2), g2 = m2l2 cos(q1+q2), f1 = c1sgn(q̇1)+v1q̇1, f2 = c2sgn(q̇2)+
v2q̇2, and g is the acceleration of gravity. f1 and f2 are nonlinear frictions. The
parameter values are selected as c1 = c2 = 0.2, v1 = 3, v2 = 2, l1 = 1[m],
l2 = 0.8[m], m1 = 1[kg] and m2 = 0.8 → 1.5[kg] where the payload m2 is
changed at 5 seconds after simulation begins. The desired trajectories are
qd(t) =

[
π
6 (1 − cos(2πt)) π

4 (1 − cos(2πt))
]T . The initial states are chosen

as q(0) =
[
0 0

]T , q̇(0) =
[
0 0

]T . The control parameters used in the
proposed method are Φ = 0.2, K1 = K2 = I, Λ = 10I where I is an identity
matrix. We used the two-layer neural network with eight hidden neurons and
qd1, qd2, q̇d1, q̇d2 as the inputs of the neural network. The outputs of the neural
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Figure 2: Tracking trajectories and control torques. (a) The tracking trajectory
of the conventional sliding mode controller. (b) The tracking trajectory of the
proposed controller. (c) The control torque of the conventional sliding mode
controller. (d) The control torque of the proposed controller.

network generate the input torques to compensate for the uncertainties. Initial
weights are chosen as small random values bounded by ±0.05. The fourth-order
Runge-Kutta method with 10[ms] sampling time is used to solve the differential
equation (18). Figure 2 shows the tracking performances of the conventional
sliding mode controller using boundary layer method [4] and the proposed
controller, where the dashdot lines show the desired target trajectories and
the solid lines represent the controlled results. Table 1 shows the comparative
performances of the conventional sliding mode controller and the proposed
controller. The tracking performance of the proposed controller is better than
that of the conventional controller in tracking errors and overall control torque.
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Table 1: Numerical comparisons between the conventional sliding mode con-
troller and the proposed controller.

The conventional The proposed
sliding mode controller controller
First link Second link First link Second link

Tracking error* 18.4336 102.576 0.0109 0.0042
Control torque* 1,900,990 282,340 1,843,480 302,413

* This is a sum-squared value.

4 Conclusion

In this paper, the sliding mode controller using neural networks is proposed
for a robot manipulator. The proposed method used the neural network to
compensate for the system uncertainties. According to the simulation results,
the neural network, if trained successfully on-line, compensates for the uncer-
tainties, and reduces tracking errors and overall control torque. As a further
work, an experiment for more realistic robot manipulator using the proposed
controller is under investigation.
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