
Learning by geometrical shape changes of  
dendritic spines 

 
A. Herzog1, V. Spravedlyvyy1, K. Kube1, R. Schnabel2,  

E. Korkotian3, K. Braun2, B. Michaelis1 
 

1 Institute of Electronics, Signal Processing and Communications, 
2 Institute of Biology; Otto-von-Guericke University Magdeburg,  

P.O.Box 4120, 39016 Magdeburg, Germany  
3 The Weizmann Institute, Department of Neurobiology,   

Rehovot 76100, Israel  
herzog@iesk.et.uni-magdeburg.de 

 
Abstract. The role of dendritic spines in neuronal information processing is 
still not completely clear. However, it is known that spines can change shape 
rapidly during development and during learning and these morphological 
changes might be relevant for information storage (memory formation). We 
demonstrate the impact of shape variations on electrical signal propagation via 
dendritic spines using a biologically realistic electrical simulation procedure. 
Basic properties of electrical signal transduction of single spines are estimated 
and approximated in relation to their individual shape features. Learning proc-
esses to adjust specific electrical properties are discussed and a possible mecha-
nism is introduced.  
 

1 Introduction 
The input region of artificial neurons is often simplified by using a weighted superpo-
sition of incoming signals. But biological neurons display a nonlinear behavior with a 
large variability to modulate and integrate input signals. Besides the synaptic boutons 
which contact the cell body and the dendritic shaft, many types of neurons display 
synaptic boutons which are located on dendritic spines of specific geometry (see Fig. 
1). Although the existence of dendritic spine is known for centuries [1], their precise 
functional role in the brain is still widely unclear [2,3]. Morphological studies re-
vealed that the density and spatial distribution of spines, and also their size and shape 
are quite variable and can change during brain development and during learning proc-
esses within minutes or hours [4,5]. Whereas the geometrical properties of individual 
spines can be estimated by analyzing high resolution microscopic images [6,7], the 
influence of geometry on the signal transmission is not clear yet due to shortcomings 
of electrical measuring techniques in this small dimensions.  
By applying a biologically realistic numeric simulation of neuronal signal transduc-
tion, which takes the relevant properties of membrane, ion channels and geometry 
under consideration, we are able to demonstrate the influence of systematic variation 
of spine geometry on the range of input signal modulation on a single spine. Using this 
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approach fundamental electrical properties and their relation to geometric parameters 
can be identified and characterized. Furthermore, a possible role of this link between 
electrical and morphological features in a learning process is introduced. 

2 Simulation Model 
A simplified part of a dendrite with a single spine (Fig. 1 right) was used to study 
transduction of electrical signals arriving at the spine head to the stem dendrite. The 
geometry of the spine is reduced to four basic parameters: length ln and diameter dn of 
neck and length lh and diameter dh of head. The simulations are performed by a com-
partment model [8]. In contrast to other models [9,10] the spine neck is modeled by a 
number of compartments and not by a single resistor, in order to include effects of 
dynamics caused by the distribution of capacities along the spine neck. Thus, the spine 
is divided into 10 compartments (3 for head, 7  for neck) and the dendrite into 20 
compartments. A special compartment is added to the dendrite to simulate proximal 
parts and the soma. In the first compartment of the spine head a glutamatergic synapse 
is integrated to simulate the synaptic input. 

2,5 µm

spine

dendrite

head

neck
Ra

CmRmspine position

compartment

proximal

dendrite +
soma 

basedistal

dh

lh

ln

dn

2,5 µm

spine

dendrite

head

neck
Ra

CmRmspine position

compartment

proximal

dendrite +
soma 

basedistal

dh

lh

ln

dn

 
Fig. 1 Part of a dendrite with spines (left), Model of a dendrite with spine (right) 

Electrical properties of membrane and environment are set to standard values (Rm = 
0.333 Ohm/m²; Ra = 0.3 Ohm/m; Cm = 0.1 F/m², Er = 0.07 V). The concentration of 
active ionic (HH) channels (only in spine head; neck and dendrite are passive) is set to 
a sub-threshold level. These values are kept constant during the simulation experi-
ments. Investigations in which varying values were applied did not reveal qualitative 
differences in the results as long as the concentration of active channels was kept 
below threshold. Possible biochemical mechanisms of synaptic plasticity such as long-
term potentiation and long-term depression (LTP, LTD) are not included since this 
study was focused on the role of morphological features. For numerical simulations of 
the compartment model the program GENESIS [11] was used. Data provision and 
analysis was done in C++ and MATLAB. All calculations were run in parallel on a 
Beowulf PC-Cluster using Linux.  

3 Experiments and Results 

3.1 Identification of electrical properties 
An incoming spike at the spine head evokes a temporary change in membrane conduc-
tance. Depending on potential differences a current will flow and produce a post-
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synaptic-potential (PSP) which spreads through the spine and dendrite. The PSP could 
be observed at the junction of spine and dendrite. Fig. 2 illustrates the curves of mem-
brane potentials for different spine shapes. On one hand the membrane potentials 
could differ significantly, on the other hand spines of different shape displaying nearly 
the same PSP were also observed (spine 2 and 3 in Fig. 2).  
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Fig. 2 Curve of membrane potential (PSP) on different spine shapes (see text) 

Various aspects of the PSPs can become important for the spatial or temporal signal 
integration depending on the localization of the spine on the dendritic tree and the 
function of the cell. To condense information from the potential curves, we defined 
three characteristic electrical properties: the peak-value Vpeak, area A, peak-time tpeak. 
The peak-value is important to stimulate a local action potential. The area is propor-
tional to the overall impact and the peak-time is important if coincidence detection is 
in focus of interest.  

3.2 Systematic variation of spine shape 
Each of the four geometric parameters was varied in 10 steps resulting in 10000 dif-
ferent combinations. Fig. 3 summarizes the results for peak values and peak-time of 
PSP of all geometric combinations.  
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Fig. 3 Summary of the characteristic values by systematic variation of geometry 
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Each combination of length and diameter for a spine head is represented by one plane 
in the figure. The shape of the spine head had no large effect to signal transmission, 
but it allows small variations without changing neck geometry, a mechanism which 
might be relevant for learning processes. Quite remarkably, a variety of possible com-
binations of shape parameters result in nearly identical electrical behaviors. The simu-
lation results reveal that a spine is capable of adjusting the incoming energy per spike 
(area A), that can be considered as part of the synaptic weight. Additionally, the spine 
can modulate the shape of a PSP to achieve a precise adjustment of coincidence detec-
tion in a temporal integration mode by setting the delay (peak-time). And it can adjust 
its peak potential to reach the threshold to trigger a local action potential.  
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Fig. 4 Change of peak-size by variations of head shape with constant neck value 

For further detailed analysis, the calculation of electrical values from geometric values 
can be approximated to reduce the high numerical effort for compartment simulation. 
A multilayer perceptron (4-10-10-3) is trained by a standard backpropagation algo-
rithm and by the calculated data from compartment simulation with a sufficiently 
small error. This approximation allows to calculate fast projections of the four-
dimensional parameter space with high resolution (see Fig. 4) and to increase the 
speed for the analyses of iterative learning mechanism (see next section).  

3.3 Adaptation of electrical properties 
Is it possible for a spine to obtain specific new electrical properties by changing its 
geometry? Could this mechanisms play a role in learning events, e.g. learning a new 
behavior in the real brain? Instead of searching for specific parameter combinations in 
our database we focused on mechanisms which are involved in the transition from one 
type of electrical behavior to another type. In order to keep the conditions as close as 
possible to “real” biology we must consider that spines have neither a memory to 
perform a global search nor do they receive detailed feedback signals. However, it is 
known, that spines undergo rapid dynamic changes of shape by fast twitching move-
ments [12] with decreasing amplitudes over time [3]. The statistics of this rapid 
twitching is not known. If we assume that this motility reflect a mechanism to adapt 
spine geometry, we postulate that these twitches may not occur completely at random. 
All we need is a slightly higher likelihood to change the shape in the direction of the 
‘target’ properties that are reached iteratively. A mechanism which is very similar to 
that has to be described as ‘simulated annealing’ (SA) [13]. SA is used in image proc-
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essing to adapt geometric models to complex noisy images [14] and it requires only 
alterations in the quality as feedback signal but no additional internal memory. SA 
works simple: all free (here the four geometric) parameters twitch around a center 
value randomly with a defined maximum amplitude. If a new parameter combination 
offers a better quality the twitching stops and the new combination is used as the cen-
ter value. Otherwise, it twitches back most time, but stay sometimes with small prob-
ability to have a changes to escape local minima. Maximum amplitude of twitching 
decreases over time to ‘freeze’ the final properties.  
To tryout the algorithm in simulation we selected a starting geometry (ln, dn, lh, dh) of 
spine (spine 1 in Fig. 2) with corresponding electrical properties (Vpeak, A, tpeak). The 
goal is to reach different electric properties (V’peak, A’, t’peak), which were obtained 
from another spine of different geometry (spine 3 in Fig. 2). In this way we are sure 
that there is a possible solution. The actual quality of a combination of geometric 
parameters was determined by the weighted sum square error of the electrical proper-
ties calculated by the ANNs. The importance of each electrical property can be modi-
fied by the weights depending on the task of the spine (temporal vs. spatial integra-
tion). The maximum amplitude of twitching is set individually for each geometric 
parameter to include the cost or energy of changing this geometric parameter.  
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Fig. 5 Changing geometric and electric values by simulated annealing  

Fig. 5 shows a progress of learning in 2000 iterations. The resulting PSP (spine 3 in 
Fig. 2) comes very close to the target behavior. The target behavior was obtained in all 
tests. Despite of reaching the electrical target properties the adjustment of geometric 
properties by this learning mechanism depends on the initial geometry, the parameters 
of the SA algorithm and also on the statistics of the twitching. Experiments are under-
way in which more than one spine is analyzed, where the interaction between spines 
has to be taken under consideration.  

4. Discussion and Conclusion 
The information processing in dendrites and spines using nonlinear temporal and 
spatial integration of input signals is highly complex and depends on many parame-
ters. One of them is the geometry of the spines. Our results are in line with our hy-
pothesis that already a single spine is able to modulate the signal transmission by 
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changing its shape, i.e. it can learn a new behavior. There is a crossover from one to 
any other possible electrical property which can be found by simple mechanisms like 
simulated annealing. Biological mechanisms may use a change in statistics of twitch-
ing parameters. If twitching is considered as added noise with zero sum over time. A 
feedback signal may depress this noise for a short time. This is sufficient to change the 
overall mean value in right direction. Our results may provide one further step to un-
derstand the information processing inside a single synapse, and also of an entire neu-
ron in more detail. Moreover, this theoretical approach may help to design new learn-
ing rules for artificial (and perhaps also natural) neural networks. However, it has to 
be pointed out that geometrical changes of spines are only one aspect in this highly 
complex game. Changing of dendrite geometry, spine frequency and biochemical 
changes in synapses and membrane have also an important influence and must be 
considered in this context.  
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