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Abstract. Multidimensional scaling algorithms (MDS) are useful to
visualize object relationships using a matrix of dissimilarities (or prox-
imities). A common assumption is symmetry: d;; = d;;. Many of these
algorithms are computationally demanding. An interesting application
is the representation of topics in text data bases. In this paper we extend
an MDS algorithm suitable to deal with textual data to the asymmet-
ric case, and propose some improvements to reduce the computational
complexity. The final algorithm can be considered an improved alterna-
tive to the Asymmetric Self Organizing Maps (ASOM) presented in the
literature. Experimental work shows the performance of the proposed
algorithm on text mining and gene expression databases.

1 Introduction

Consider a set of n objects represented as vectors in IR™ . Let D = (d;5) be
the dissimilarity matrix made up of object dissimilarities. Asymmetry arises
when 0;; # d;;. There are a large variety of problems in which object rela-
tions should be modeled by asymmetric dissimilarities [16]. For instance when
modeling word relations many people will relate “neural” to “networks” more
strongly than conversely. Similarly gene expression data should be modeled by
asymmetric similarities in the sense that broad genes that are shared by several
diseases include more specific genes but the reverse relation is weaker. Besides,
those applications are computationally demanding. Therefore any algorithm
proposed should be able to work with asymmetric dissimilarities while being
scalable with the number of patterns.

SOM [6] and MDS [10] algorithms have been widely used to generate visual
representations of object relations. In [8] it has been presented a simple ite-
rative MDS algorithm based on classic mechanics that achieves a balance be-
tween clusters separation and distances preservation. This behavior gives rise
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to maps in which overlap between groups of similar objects is reduced. However
this mapping algorithm relies on the use of symmetric similarities. This fact
degrades the map quality when object relations are asymmetric. Besides, the
computational complexity is excessively high to be applicable to large datasets.
In this paper we first extend the MDS algorithm mentioned above to deal with
asymmetric dissimilarities. Next the computational efficiency is increased by
representing the objects by a low number of prototypes. Note that this new
algorithm stands up as a fast alternative to the asymmetric SOM algorithm
presented in [11].

This paper is organized as follows. Section 2 review the symmetric spring
model and extends it to asymmetric dissimilarities. Section 3 proposes some
straightforward ideas to increase computational efficiency in a SOM-like fash-
ion. In section 4 we compare with well known alternative techniques in two real
problems and finally, section 5 gets conclusions and points out some directions
for future work.

2 Asymmetry

Let D = (d;;) be the dissimilarity matrix between the objects. Asymmetry
arises when (d;; # d;;). In this case the dissimilarity matrix can be decomposed
into a symmetric and skew symmetric component (D = S + A) [16] where
sij = (045 +9;4:)/2 and a;; = (0;5 —9;;)/2. When asymmetry is very strong, that
is (6;5 > 0;;) the symmetric component of the dissimilarity matrix gives lower
values than expected [12]. Therefore, distances between the corresponding
objects in the map become too large. To prevent this fact, object proximities
(sij) should be compensated proportionally to the value of the skew symmetric
component of the similarity matrix (a;;).

Let now compute (a;;) for the widely used fuzzy logic asymmetric similarity
measure [9],

o [aj| — | (1)

This expression shows that asymmetry is a property associated to individ-
ual objects and may be modeled by the following coefficient of asymmetry,

A

g = .
maxy, | zy, |

asymmetric dissimilarity that allows to reduce the object distances in the map

corresponding to asymmetric relations.

Notice that L; norm histogram is very skew and obeys a Zipf’s law in our

practical problems. Therefore the skew-symmetric component of the similarity

matrix (1) will take large values for certain objects becoming an important

problem that should be corrected.

This coefficient will be used in section 2.2 to define an
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2.1 Symmetric spring model: background

This MDS model has been presented in [8]. Each object is represented by a mass
point and they are connected to each other by springs of elasticity proportional
to the similarity between the objects . The mass point coordinates are updated
until convergence where the final point distances represent the dissimilarity
between the objects. Let m; be the mass of each point, Az;; = z; — x4, z;
the vector position of word j in the two dimensional Euclidean space, k; the
frictional resistance coefficient and e;; the elasticity coefficient.

Then the forces applied over particle i are: f,; = —m@;, fri = —kii, feij =
€ijAz;j . fmi is the inertia force, fi; is the frictional resistance force and f.;; is
the elasticity force that is proportional to the similarity between the words. In
equilibrium the sum of all forces over particle i has to be 0.

This equation gives after some approximations detailed in [8] a simple updating
solution for each component k,

At
¥t +1) =2F1t) + T Z eijAa:fj (2)
J

Ji; =T

where e;; = Max(7,) T - Ji; is any symmetric similarity such as the Jaccard
ij

similarity. T is an experimental parameter that controls that forces between
particles of the same cluster are attractive and forces between particles of dif-
ferent clusters are repulsive. It may be fixed by analysis of the J;; histogram.
At is the step length and k; = 1 for all particles.

It can be easily shown that the second term of equation (2) optimizes an index
similar to a correlation measure. This suggests that the improvements proposed
in this paper may be easily extended to a broad class of MDS algorithms.

2.2 Asymmetric spring model by incorporating asym-
metric distances

A natural way to incorporate asymmetry and that is related to the work devel-
oped by the MDS community [14], is to define asymmetric distances between
the mass points. In this case distances can be expressed as a symmetric compo-
nent (for instance Euclidean distance) plus a skew symmetric one. For the sake
of clarity let examine one example in which asymmetric distances arise and
that we encounter everyday. It is not the same to walk the hill up than down
although we move the same distance. So we may define an effective distance
that include the effect of the gravity force. This distance will be asymmetric
and has to be larger when going up than when going down.

We then define the asymmetric vector of difference coordinates between two
mass points as

—_— — =1 \__
Koy = |[Kaas| = (Kl + 5 ) 75 ®
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where ||Aza;;|| is the asymmetric distance defined over the visual map and @;;
is a unitary vector in the direction of the line joining i and j. [; is the asymmetry
coefficient of object i defined in section 2. The symmetric component of df; =
[|Aza;;|| reduces to the Euclidean case. On the other hand the skew-symmetric
component is proportional to [; — [; and so to the asymmetric component of
the fuzzy logic similarity defined by (1). This term allows that df; > df; if j has
larger asymmetry coefficient than i. By substituting Aza;; into the expression
of the elastic force (see section 2) we get

5= (13l + b !
feij = € (H $z1||+2maa?k(lk)>u” W

where eg;) is the symmetric component of the similarity matrix. This expression
allows to explain better how the new dissimilarity reduces the Euclidean dis-
tances in the map associated to asymmetric relations. Equation (4) shows that
forces due to terms with large asymmetry coefficient get stronger due to asym-
metry. Therefore, Euclidean distances between objects that verify (I; — ;) 1
(corresponding to asymmetric relations) get smaller in the map.

Notice that this feature reduces also the percentage of dissimilarities that are
close to 1. Therefore it avoids partially that specific words concentrate strongly
around the center map due to the indiferenciation effect (see [3] for more detail

about this problem).

3 An efficient alternative to asymmetric SOM
and MDS algorithms

Computational complexity of the MDS algorithm presented in section 2.2 is
quadratic with the number of patterns, O(N?). In this section we propose two
methods that achieve linear complexity with the number of patterns. The ideas
proposed reduce the number of prototypes used by the MDS algorithm in such
a way that asymmetry is preserved. This fact will improve the maps generated
by the asymmetric MDS algorithms.

Note that both methods are suitable to work with any dataset that verifies
Zipt’s law for L; norm histogram.

The first method is related to [7] but asymmetry is better preserved. We
propose to generate a low number of prototypes by a k-means algorithm that
take into account term frequency distribution. Only the 50% of larger L; norm
terms are submitted to the quantization algorithm. Rare terms are neglected
because they hardly provide information about word map structure and are
very noisy [15]. This term set is divided into r regions according to the L;
norm histogram . The number of regions and the cut-points between regions
are chosen experimentally (see [12] for details).

Besides, as we have mentioned in section 2 asymmetry is related to term’s
L1 norm. Therefore, to avoid that asymmetry is partially lost, each region
is independently submitted to the quantization algorithm with a number of
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prototypes proportional to the number of patterns per region. Finally each
vector is represented by the nearest prototype image provided by the mapping
algorithm in a SOM like fashion.

The second method selects a small proportion of the larger L; norm terms
(usually p < 10% ). Points that have not been used by the MDS algorithm
are interpolated using any standard method proposed in the literature [10].
Computational complexity for the first technique is roughly O(K?) + O(KdN)
where K is the number of prototypes computed, d is the vector space dimension
and N is the number of data. The first term corresponds to the complexity
of the asymmetric MDS algorithms proposed in section 2.2. The second term
is due to the k-means clustering algorithm. However it reduces to O(N) if we
make use of the sparsity of our document vector space and apply any of the
accelerating techniques proposed in [13]. So for K < N the whole algorithm
complexity is roughly O(N). Notice also that complexity of the alternative
SOM algorithm is significantly larger, O(K N?) [6].

Computational complexity for the second technique is roughly O(K?) with K
the number of patterns selected. For K <« N this yields great computational
savings. Experimental results show that values as low as 5% of N give excellent
outcomes.

4 Experimental results

In this section we apply our algorithms to the construction of word maps that
visualize word relations. Next we carry out some preliminary experiments
to check the applicability of our asymmetric model to DNA microarray data
analysis [4].

Assessing the performance of algorithms that produce word maps is not an easy
task. We will use a thesaurus to check if neighboring words in the map are
related in the thesaurus. Notice that there is no a priori classification of words
into topics for large document collections. Therefore we have built a database
made up of 1000 documents that group in 7 topics according to the available
thesaurus.

To check the quality of the mapping algorithm we will first evaluate if neighbor’s
order in the original document space is preserved in the word map. To this aim
we will use the Spearman correlation coefficient [2]. Next we check if words
belonging to the same cluster according to the map are assigned to the same
group by the thesaurus. For this purpose, we first run the MDS algorithms and
cluster the word map into 7 groups using PAM algorithm [5]. Word clusters are
evaluated using the following measures: The F measure [1] shows if words from
the same class according to the thesaurus are clustered together. The entropy
measure [1] gives the uncertainty for the classification of words from the same
cluster. Small values suggest little overlapping in the map between words
belonging to different classes. Finally Mutual Information [1] is a nonlinear
correlation measure between the word classification induced by the thesaurus
and the word classification given by the clustering algorithm. This measure
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gives more weight to specific words and therefore informs about changes in the
position of specific terms.

Documents are represented using the vector space model [1]. First a low number
of prototypes are generated using any of the methods proposed in section 3.
Next the prototype vectors are mapped and clustered into 7 groups using a
PAM clustering algorithm . FEach object is classified to the cluster of the
nearest neighbor prototype in a SOM-like fashion. Object coordinates for the
asymmetric algorithms are updated by equation (2) where Az;; incorporates
the asymmetric dissimilarity given by equation (3). The parameter T for the
spring model is taken for all experiments as the 0.75 quantile of the similarity
matrix.

|| Text mining data || MDNA
Sp F Ent. M. Inf Sp.
(1) Symmetric SOM 0.55 0.52 0.53 0.19 0.52
(2) Symmetric spring (over all data) 0.27 0.50 0.51  0.20
(3) Asym. SOM 0.58 0.54 0.50 0.20 0.55
(4) Asym. Spr. ( 10% random sample) || 0.40 0.50 0.44  0.15 0.39
(5) Asym. Spr. (k-means 10% cent. || 0.70 0.56 0.48  0.20

over 50% data )

(6) Asym. Spr. (k-means 5% cent. over || 0.73 0.54 0.46  0.20 0.60
50% data )

(7) Asym. Spr. ( 10% larger L; norm ) || 0.61 0.60 045  0.22 0.67

Table 1: Comparison of asymmetric spring models (5) (6) (7) with some alter-
natives proposed in the literature for text mining data and Microarray DNA
data (MDNA).

Table 1 shows that the first asymmetric mapping algorithm (5) with a k-means
preprocessing step (see section 3) outperforms both symmetric (1) and asym-
metric (3) SOM [11] algorithms. Our algorithm allows to capture better the
word clustering structure improving F measure up to 7.7% and reducing clus-
tering overlapping (Entropy) up to 9.4%. Spearman coefficient supports that
distances are also better preserved. Our algorithm (5) outperforms the sym-
metric counterpart (2) as well. In this case F measure increases up to 12%,
entropy is reduced up to 5.9% and distances are preserved much better. Row
(6) shows that results hardly degrade when the number of prototypes is re-
duced. Row (4) shows that selecting a low number of prototypes by random
sampling gives poor results. Last technique (7) in which 10% of larger L1 norm
words have been selected yields excellent results.

Finally last column of table 1 gives the Spearman coefficient for DNA Microar-
ray data. We point out that results are promising and similar to those obtained
for text mining data. We have not computed supervised measures due to the
lack of an expert that provides gene relations.

Notice that as has been mentioned in section 3 our algorithms (6) (7) (8) are
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computationally efficient and so may be applied to large datasets.
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Figure 1: Word map generated by the asymmetric MDS model proposed.

Finally we show in figure 1 the visual map generated by our asymmetric MDS
algorithm. Each class according to the classification induced by the thesaurus
has been shown with different gray intensity. The boundaries between classes
have been drawn in bold line. For the sake of clarity only a small sample of
words is shown. The word map suggests successfully which words belong to
the same topic and the semantic relations between different topics. Note that
overlapping between term clusters in the map is small.

5 Conclusions

In this work we have extended a class of MDS algorithm to deal with asym-
metric dissimilarities. Next we have proposed some straightforward techniques
to make the resulting algorithm suitable to work with large datasets. Results
show that the proposed algorithms outperform both SOM and other MDS
based techniques according to several objective measures. Besides, our algo-
rithm scale linearly with the number of data. Future research will focus on the
study of asymmetric efficient models that work directly from the dissimilarity
matrix.
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