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Abstract. For a network of spiking neurons with reasonable post-

synaptic potentials, we derive a supervised learning rule akin to tradi-

tional error-back-propagation, SpikeProp and show how to overcome the

discontinuities introduced by thresholding. Using this learning algorithm,

we demonstrate how networks of spiking neurons with biologically plau-

sible time-constants can perform complex non-linear classi�cation in fast

temporal coding just as well as rate-coded networks. When comparing

the (implicit) number of neurons required for the respective encodings,

it is empirically demonstrated that temporal coding potentially requires

signi�cantly less neurons.

1 Introduction

Ever since the work of Rashevsky and others [5] in the early sixties, the real-

valued output of a neuron is assumed to be its average �ring-rate. However,

increasingly attention has been turned to the possibility of information coding

in the timing of individual action potentials (spikes).

For networks of spiking neurons with multiple delayed synapses, Natschl�ager &

Ruf [4] have described a powerful unsupervised learning algorithm based on a

temporal version of Hebbian learning. To study the computational power of such

networks without the constraints associated with Hebbian learning, we derive an

error-backpropagation (BP) algorithm for networks of spiking neurons analogous

to the work by Rumelhart et al. [6]. To deal with the discontinuous nature of

spiking neurons, we approximate the thresholding function, which is validated

for small learning rates. The algorithm is capable of learning complex non-

linear tasks in spiking neural networks in much the same fashion as traditional

sigmoidal neural networks. This is demonstrated by the classical and extended

XOR classi�cation tasks, as well as for real-world datasets. Thus, networks of

spiking neurons with biologically plausible time-constants can perform complex

non-linear classi�cation in a fast temporal encoding just as well as rate-coded

networks. Importantly, this requires signi�cantly less neurons in the extended

XOR-problem as compared to fast rate-coding as in [3].
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2 Error-Backpropagation in a Network of Spik-

ing Neurons
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Figure 1 Network con�guration and connectivity of a spiking neural network. A) A

multi-layer feedforward network. In B) a single synaptic connection: the delayed pre-

synaptic potential is multiplied by the synaptic eÆcacy w
k
ij to obtain the post-synaptic

potential. C) Two multi-synapse connections: for every connection, the post-synaptic

potentials from all delayed synaptic terminals are summed to obtain the membrane

potential xj . A spike at tj is generated in neuron j when xj exceeds threshold �.

For a network of spiking neurons with multiple delayed synaptic terminals (as

described in [4]), we derive error-backpropagation, analogous to the derivation

by Rumelhart et al. [6]. As described in [2], leaky integrate-and-�re neurons

are modeled where the incoming, weighted post-synaptic potentials are added

up, and a spike is generated when the excitatory input exceeds the threshold

(depicted in �gure 1). Error-backpropagation equations are derived for a fully

connected feedforward network with layers labeled H(input), I(hidden) and

J(output), however the derivation works equally well for networks with more

hidden layers. Each individual connection consists of a �xed number (m) of

synaptic terminals, where each terminal serves as a sub-connection that is asso-

ciated with a di�erent delay. The delay dk is de�ned by the di�erence between

the post-synaptic �ring time and the time the pre-synaptic potential starts ris-

ing (�gure 1B). In the derivation, we treat each synaptic terminal as a separate

connection with independent weights. A spike event is modeled as a pre-synaptic

potential, which is weighted by the synaptic eÆcacy of the terminal to obtain

the post-synaptic potential.

Formally: the pre-synaptic input of neuron i � I to neuron j � J is described as

 D-Facto public., ISBN 2-930307-00-5, pp. 419-424B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



the sum of synaptic contributions:

yi(t) =

mX

k

yki (t) (1)

with m the number of delays and yki (t) representing a delayed pre-synaptic po-

tential (PSP) for each terminal.

The post-synaptic input xj of neuron j receiving input from neurons i can then

be described as the weighted sum of the pre-synaptic input:

xj(t) =
X

i

X

k

wk
ijy

k
i (t); (2)

where wk
ij denotes the weight associated with synaptic terminal k. The �ring

time tj of neuron j is determined as the �rst time when the post-synaptic input

crosses the threshold #: xj(t) � #.

The target of the algorithm is to learn a set of target �ring times, denoted ftdjg,

at the output neurons for a given set of input patterns fP [t1::ti]g. We choose

for the error function the least mean squares error function, but other choices

like entropy are also possible. Given desired spike times ftdjg and actual �ring

times ftjg, this function is de�ned as:

E =
1

2

X

j

(tj � tdj )
2: (3)

For error-backpropagation, we need to calculate:

�wk
ij = ��

@E

@wk
ij

(4)

with � the learning rate and wk
ij the weight connecting neuron i to neuron j with

delay dk. The derivative in the right hand part of (4) can be expanded to:

@E

@wk
ij

=
@E

@tj

@tj

@wk
ij

=
@E

@tj

@tj

@xj(t)

����
t=tj

@xj(t)

@wk
ij

�����
t=tj

: (5)

In the last two right-handed terms, we express tj as a function of the thresholded

post-synaptic input xj(t) around t = tj . We assume here that for an " region

around t = tj , xj can be approximated by a linear function of t. For such a small

region we can thus approximate the threshold function as Ætj = �Æxj(tj)=�,

where � equals the local derivative of xj with respect to t:
@xj(t)

@t

���
t=tj

. Thus,

the second right hand term in (5) evaluates to:

@tj

@xj(t)

����
t=tj

=
�1

�
=

�1

@xj(t)

@t

���
t=tj

=
�1

P
i;l w

l
ij

@yl
i
(t)

@t

���
t=tj

: (6)
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Note that this approximation implies that we can use only small learning rates

(see also the XOR-example in section 3). In further calculations, we will write

terms like
@xj(t)

@t

���
t=tj

as
@xj(tj)

@tj
.

The other terms in (5) can easily be calculated, and (4) evaluates to:

�wk
ij(tj) = ��

yki (tj) � (t
d
j � tj)

P
i;l w

l
ij

@yl
i
(tj)

@tj

: (7)

For convenience, we de�ne Æj :

Æj �
@tj

@xj(tj)

@E

@tj
=

(tdj � tj)
P

i;l w
l
ij

@yl
i
(tj)

@tj

: (8)

We now continue with the other layers: for error-backpropagation in other layers

than the output layer, the generalized delta error in layer I is de�ned by:

Æi �
@ti

@xi(ti)

@E

@ti
=

@ti

@xi(ti)

X

j

@E

@tj

@tj

@xj(tj)

@xj(tj)

@ti

=
@ti

@xi(ti)

X

j

Æj
@xj(tj)

@ti
(9)

Here, we apply the same approximated chain rule as in (5), albeit for t = ti.

Simple calculations yield:

Æi =

P
j Æjf

P
k w

k
ij

@yki (tj)

@ti
g

P
h;l w

l
hi

@yl
h
(ti)

@ti

: (10)

Thus, for a hidden layer, the weight adaptation reads:

�wk
hi = ��

ykh(ti)
P

jfÆj
P

k w
k
ij

@yki (tj)

@ti
g

P
n;l w

l
ni

@yln(ti)

@ti

(11)

In this derivation, a critical approximation of the post-synaptic potential xj(t)

around tj is made. This obviously only holds for small perturbations, hence only

for small learning rates.

3 XOR

The classical example of a non-linear problem requiring hidden units to perform
the transformation required is the exclusive-or (XOR) problem. Associating a
\0" with �ring time \late" and a 1 with �ring time \early", we propose the
following version of this problem for time-coded networks:
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Input Patterns Output Patterns

0 0 ! 16

0 6 ! 10

6 0 ! 10

6 6 ! 16

The numbers represent spike times in milliseconds; a third input neuron is added,

which always �red at t = 0 to designate the reference start time (otherwise the

problem becomes trivial).

For the network we used the feed-forward network described, with connections

with a delay interval of 15 ms, such that the available synaptic delays are 1� 16

ms. The PSP is modeled by an � function with a membrane-potential decay

time � = 5ms, but larger values up to at least 15 ms also worked (well in line

with estimates of the e�ective decay time in cortical neurons). The network was

composed of three input neurons (2 coding and 1 reference neuron), 4 hidden

neurons (of which one inhibitory) and 1 output neuron. Only positive weights

were allowed. In this con�guration, the network reliably learned the XOR pat-

tern within 500 cycles with � = 0:001.

After [3], we also tested the network on an interpolated XOR function. Using

3 input, 6 hidden and 1 output neurons, the function shown in �gure 2A was

presented to the network. As shown in �gure 2B, the network proved capable of

learning the presented input with accuracy of the order of the internal time-step

of the algorithm (0.2 ms). We observe that for a time-coded network, 10 neurons

suÆced for encoding the function, in contrast to the 200 spiking neurons used

in [3] to emulate a fast rate-coding.

As noted in section 2, the approximation of the dependence of the �ring time

tj on the post-synaptic input xj is only valid for a small " space around tj . We

emperically con�rmed this as we found that larger learning rates were associated

with longer learning times due to increased uctuations in the error.
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Figure 2 Interpolated XOR function f(x1; x2) : [0; 1]
2
! [0; 1]. A) Target function.

B) Network output after training.
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Other data-sets. By encoding input variables over a number of input-neurons

with graded overlapping receptive �elds, we tested the algorithm on a number

of benchmark problems: the Iris, the Wisconsin Breast Cancer and the Statlog

Landsat dataset. For these problems, accuracies comparable to sigmoidal neural

networks were obtained (data not shown, see [1]).

4 Discussion

In this paper, we derived a learning rule for feedforward spiking neural networks

by back-propagating the temporal error at the output. By linearizing the re-

lationship between the post-synaptic input and the resultant spiking time, we

were able to circumvent the discontinuity associated with thresholding. The re-

sult is a learning rule that works well for smaller learning rates, which implies

that we have shown in a direct way that networks of spiking neurons can carry

out complex, non-linear tasks in a temporal code. As the experiments indicate,

the SpikeProp algorithm is able to perform correct classi�cation on non-linearly

separable datasets with accuracy comparable to traditional sigmoidal networks,

albeit with potential room for improvement.

Given the explicit use of the time-domain for calculations, we believe that the

network is intrinsically more suited for learning and evaluating temporal pat-

terns, as the network is virtually time-invariant in the absence of reference spikes.

Applications of this t ypeare the subject of future research.
At this point there is no conclusive biological evidence that spike-based temporal
coding is actively employed in the cortex. The results presented here suggest
that in principle networks of spiking neurons with biologically plausible (e.g.
relatively long) time-constants can perform complex non-linear classi�cation in
temporal code. In the case of fast processing of information, it has also been
shown to be an order of magnitude more eÆcient in terms of neurons required
for the extended XOR problem. Thus, there could be an advantage for the brain
to use such temporal coding.
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