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Abstract. The problem of determining the “best” functional form for a model
is ill-posed because of the always finite amount of data available. Hence the
simplified problem of finding “good” basis functions (among candidates) in a
stationary environment is addressed. Candidate basis functions can be generated
by standard optimization techniques. A suboptimum simple method to select
among these candidates is presented and tested with a filtering application.

1. Introduction

1.1. Models and estimation rules

Consider the problem of building a mathematical model of an input-output system
(X(-), Y (-)) (joint stochastic process) from a realization of the data set

Z" 2 {(X(), YD), ..., (X(n), Y(m)} . W

One of the main issues is how to select in practice an appropriate form for the mapping
(in fact the estimation rule) f : R" — R, X —> ¥ = f(X), where ¥ denotes the pre-
diction of Y. From a pragmatic point of view, one would like to obtain a parsimonious
approximation to the optimum estimation rule, i.e., the Bayes rule, which, in the case
of the mean squared error (MSE)

£ =E[(Y - 1), | )

is given by the conditional mean fBayes(x) = E(Y|X = x). Inreality fpayes is unknown;
known are only n pairs (x(k), y(k)) which can be viewed as points (x(k), fBayes(x(k)))
perturbed by some noise. Thus in general we must abandon the hope of finding “the
best” predictive model and accept the more modest objective of finding a “good” f,
i.e., one which is close to fBayes. A natural parametrization for f is an expansion in b
basis functions, such that

b
fE0)=co+ Y cithix). 3)

i=1
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The vector & contains the coefficients ¢; and possible adjustable parameters of the (non-
linear) basis functions ;. Recently, results have been published about the rate of con-
vergence of adjustable basis functions (such as parametrized sigmoids) compared to
fixed basis functions (such as polynomials) [1]. The bounds indicate a clear advantage
of adjustable basis functions when compared to fixed basis functions. The former are
less susceptible to the curse of dimensionality, according to which the required number
b of basis functions increases exponentially with the input space dimension m.

1.2. Model flexibility and generalization

In principle, the more basis functions used (i.e., the more flexible the model), the more
precisely f(-;8) can approximate an arbitrary fayes(-). One reason of a theoretical
nature speaks against too flexible models though. Since we must estimate the parame-
ter values from a finite set of n training data, there are two terms that account for the
expected MSE of the model class { f(-;8)}. The first term corresponds to the smallest
- error &, achievable by an element of the class. It corresponds to the bias and can be
reduced by increasing the flexibility of the model class (e.g., the number of free para-
meters). Conversely, the second term of the expected MSE grows with flexibility. It
corresponds to the model variance. The trade-off between bias and variance depends
on the data set size n. For n — o0, the variance of the parameter estimate vanishes and
the best model of the class is obtained with probability one.

The above considerations suggest the following strategy. Begin the search with
basis_functions that are signal-adaptable. This allows a small bias. In a second step,
reduce the variance by selecting a limited subset of the adapted basis functions. Finally,
one may compensate for the small increase of error by slightly readapting the retained
functions.

2. Selection of basis functions among candidates

2.1. The basic idea

We propose the following method, which has been found to be sound in practice. In a
first step, B candidate basis functions ¥, ..., ¥p (possibly of different type) are gen-
erated in several optimization runs. In a second step, the candidates which contribute
at least to reducing the error are eliminated iteratively. This is done until a subset of
b (« B) basis functions is found such that the error is only slightly larger than for the
complete set.

At first sight, the computational task appears to be prohibitive, because there are
initially 28 — 1 possible subsets. Even by avoiding an exhaustive search using the above
method, we still have in principle to recalculate the best linear combination for each
candidate subset. In the case of the MSE, however, this can be done very efficiently as
follows.
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2.2. A suboptimal simple algorithm

Consider a subset of b fixed basis functions and let ¥(x) £ [1, Y1(x), ..., ¥p(x)1". De-
fine the correlation matrix Ry and the crosscorrelation vector syy by

Ry 2 EW(X)¥ (X)) @
syy 2EP(X)Y). &)

The minimum MSE achievable by the subset ¥ is equal to
so =B(r®) —syyRysuy ©)

(c.f. [3]). In principle the matrix Ry and the vector syy should be recomputed for
each of the 28 — 1 possible subsets ¥. Note, though, that element (i, j) of Ry is the
correlation E{; (X)v;(X)]. Thus if later we consider another candidate subset which
contains the functions v; and ¥;, we need not recompute the corresponding term. In
fact it is sufficient to compute the (B -+ 1)(B +2)/2 different correlations once, thereby
" obtaining the symmetric correlation matrix R. Then for any subset ¥, the matrix Ry
is immediately given by picking the corresponding submatrix from R. The same holds
for swy and the (B +1) x 1 crosscorrelation vector s of elements E{y,(X)Y] [3].
The algorithm can be described as follows:

e Step 0. Collect the B candidate basis functions v, ... ,¥p. Set b := B.
o Step 1. Using (1), compute

A 1,
Oy == Yk )
n k=1
. 1 < :
Ry := =3 ¥ (XW)YXK)' ®)
k=1
. 1«
Swr = ¥ X®)Y ). )
k=1

e Step 2. For each of the b remaining basis functions v;, do

ﬁg,) = (ﬁq, without row and column of label i) (10)
Sg,)y := (Swywithout element of label i) (1n
NG 1T @ ain -1

&= m(QY —Sur (RY) S\IIIY)~ (12)

e Step 3. Set j := argmin; é‘(lz) andupdate b:=b—1,
Ry :=R{, (13)
Sey =89 (14)

If {-A‘\(If ) < Emax, O to step 2, otherwise end.
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In practice, if two candidate basis functions are (almost) identical, then a numeri-
cal problem due to the ill-conditioning of Ry may appear for the computation of the
quadratic form in (12). Using the singular value decomposition (SVD) algorithm typi-
cally solves this problem or at least allows one to determine which basis functions are
causing the problem.

3. Example

The illustration is a problem of filtering (noise reduction, Fig. 1) from [2]. A beam-
former with two microphones, M) and M5, records the acoustic environment consisting
of a stationary source S(-) (equidistant from M; and M) and an independent jammer
signal J(-) reaching M, with a certain delay after M;. The goal of the system is to
reduce the jammer noise that is superposed to the original source signal by exploiting
the assymetry of the jammer with respect to the microphones.

e J&)

M,
Ol
M,

® Sk

J[X(k):6]

Figure 1: Beamformer for noise reduction

In this case, the target is the mean Y(-) of the two microphone signals. The difference
U(-) of both signals is correlated with the noise component and can thus be used to
estimate it. Depending on the probability distribution of the jammer, the Bayes rule is
linear or nonlinear.

3.1. Experiment with a linear Bayes rule

First we tested our algorithm in the case of a Gaussian distributed jammer, where it can
be proved that the optimum basis functions are in fact linear {2]. To see whether the
algorithm could identify these optimum basis functions, the system was simulated and
a data set of size n = 510 was generated. From the m = 5-dimensional vector X
(consisting of past values of U), monomials (i.e., polynomial terms) up to third degree
were considered, giving a total of B = 55 candidate basis functions.

The results of the backward elimination algorithm are plotted in Figure 2, which
represents the (normalized) mean squared error vs. the number of selected basis func-
ttons. (Since the algorithm backward-eliminated the basis functions, the curve was
actually obtained from right to left, with &pax = E(Y?) = 1.) The first ten selected basis
functions are listed in Table 1 together with the value of their coefficient and the error
achievable by combining the first-rank monomials. The error clearly saturates from the
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Figure 2: Beamforming with Gaussian jam- Figure 3: Selection among 10 monomial, 20
mer: selection among 55 monomials sigmoidal, and 20 radial functions

five first monomials (see Fig. 2). Note that the algorithm ranked indeed the linear terms
first (c.f. Table 1) in accordance with theory [2]. Moreover, the weights ¢; of the next
terms are much smaller than for the linear terms.

In another situation, the algorithm was presented with the 10 monomials of Table 1
together with 20 sigmoidal and 20 radial basis functions obtained by nonlinear regres-
sion. The results are reproduced in Figure 3. The linear terms were again ranked first,
thereby indicating the irrelevance of sigmoidal and radial basis functions in this case.

{Rank [ ¢ix) | ¢« [ Cumul& | [Rank [ i) [ ¢ [ Cumulf, |

1T x 1.360 0.758 1] x 1.335 0.750
2| x 1.014 0.672 2] x5 | 0337 0.639
3] x 0.678 0.505 3 . 0.656 0.446
4] x 0.676 0.407 41 x 1.002 0.364
50 x 0.345 0.342 51 0.675 0.308
6| xixz; | 0019 0.342 6| xi 0.343 0.251
71 xixs | 0011 0.342 71 x5 0.346 0.221
8] xyxs | —0.048 | 0342 8| xf 0.201 0.205
9 [ xixoxs | —0.043 | 0342 o1 x| 0204 0.194
10 | xjxs | —0.041 [ 0342 10 | x{x | —0.073 [ 0.185

Table 1: Selected basis functions for the Table 2: Selected basis functions for the
beamformer with Gaussian jammer (corre- beamformer with exponential jammer (corre-
spond to b=0 ...10 in Fig. 2) spond to » =0...10 in Fig. 4)

3.2. Experiment with a nonlinear Bayes rule

The experimeht was repeated for an exponential distributed jammer. In this case, the
Bayes rule is nonlinear [2]. The selection among the same B = 55 monomials as in 3.1.
resulted in Fig. 4 (compare with Fig. 2). The first ten basis functions selected by the
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algorithm are listed in Table 2. Note that there are now nonlinear terms that contribute
significantly to reducing the error.
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In another case, candidates of different type were mixed and submitted to the algo-
rithm (10 monomial, 20 sigmoidal, and 20 radial basis functions), which gave Fig. 5.
Comparison with Fig. 4 indicates that a smaller error could be reached. For instance,
the subset of b = 10 basis functions selected by the algorithm consisted of 5 sigmoids,
3 radial functions, 1 polynomial and 1 linear term.

4. Conclusion

Selecting a functional structure (infinite information) from a finite number of samples
(finite information) is in essence an ill-posed problem. If a nonlinear model is needed,
care must be taken to avoid over-parametrization, which leads to overfitting and bad
generalization. A simple method was suggested to select basis functions from a set of
candidates which may be of different type. The method was illustrated by simulation
of a noise reduction system.
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