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Abstract. Recently, the Kohonen algorithm has been largely used to provide
representations of large data sets and to complete the already extended range
of data analysis technmiques. In this paper, we address the problem of
improving the graphical representation to avoid some classical difficulties of
interpretation.

1. Using Kohonen Maps for Data Analysis

The Kohonen algorithin (Kohonen, 1982, 1989, 1995; Cottrell, Fort, 1987;

Cottrell, Fort, Pages, 1994) is a well-known unsupervised learning algorithm which
produces an organized map composed of a fixed number of units.

" Data analysis constitutes a classical field of applications for Kohonen maps.
Oja (1982), Blayo and Demartines (1991), Cottrell, de Bodt and Henrion (1995) and
others have shown that Kohonen maps can be perceived as a kind of principal
component analysis, allowing the reduction of the number of dimensions of the
studied data space and performing, in this sense, a projection (we refer to this
application of Kohonen map as KACP). Cottrell and Letremy (1993) have shown
that the Kohonen algorithm can be applied to contingency tables to implement a
kind of Factorial Correspondence Analysis (Kouplet algorithm) and Cottrell and
Ibbou (1995) have extended this idea to Multiple Correspondence Analysis (KMCA).
Kohonen maps are also a quantification method. As mentioned above, at the end of
the learning process, the weight vectors of the map units represent the mean profile
of individuals which are (more or less) similar. The units of the map can therefore be
considered as a set of prototypes representative of the total population. As such,
Kohonen maps appear to be an unsupervised classification algorithm, where each
unit represents a class (the interpretation is realized a posteriori by the observation of
the weight vectors). Numerous applications have been made of these approaches.

However, drawing the Kohonen map after organization is not so obvious as

it might seem at first sight. The classical square representation is only based on the
physical ordering of the units. In the case of KACP, some authors put the number of
individuals in each square (which gives the frequency information). In the case of
Kouplet or KMCA, it is common practice to put the label of the individuals in the
square. Based on the well-known feature of Kohonen maps of preserving the local
topology of the input space, the map is then interpreted in terms of proximity of the
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individuals (similar individuals tend to lie in adjacent units and vice-versa). This
kind of interpretation may however be seriously misleading. The classical
representation gives no idea of the local distances between the adjacent units and two
neighbors can be, in the input space, very far from each other. In other words, the
classical representation gives no idea of the eventual clusters that can exist on the
map (Kohonen, 1995, p. 116). Two alternative approaches have been proposed to
plot the Kohonen map.

s The first one is to use shades in a gray scale to put into light the clusters. The
idea is the following : the closer two neighbor units are to each other, the darker
is the shade chosen to plot them. The main problem with this representation lies
in the fact that each unit has eight neighbors (except the border line units). Some
authors (eg, Kohonen, 1995) suggest the use of the average of the distances
between the umit and its neighbors. Others (eg, Kraaijveld, Mao and Jain, 1995)
propose the use of the “maximum distance in the feature space of the
corresponding unit to its four neighbors (East, West, North and South) in the
network™' ., While it is true that, if all the (chosen®) neighbors of a unit are close
to that unit, a dark color will be used to plot it, this approach suffers from one
main criticism. If, for example, in the set of the neighbors taken into account, one
of the neighbors is far from the unit (in term of distance in the input space) while
the other ones are close, using either criteria (mean or maximum), the chosen
level of gray will be really misleading. Moreover, those kind of situations are
impossible to detect without a closer look of all the local distances between all the
neighbors on the map.

* An alternative proposal has been made by Demartines (1994). He introduces the
“curvilinear” representation. The basic ideas are the following : for a 2-D
Kohonen map, an arbitrarily chosen row of unit is designated as the horizontal
axis and an arbitrarily chosen column will be the vertical one. The unit at the
intersection of the two axes is plotted at point (0,0). The vertical (horizontal)
coordinate of the units located on the horizontal (vertical) axis is 0. The vertical
(horizontal) coordinate of a unit is then defined as the sum of the vertical
(horizontal) coordinate of its bottom (left) neighbor and the distance, in the input
space, between the considered wmit and its bottom (left) neighbor. The
Tepresentation obtained can also be seriously misleading. The diagonal distances
between neighbor units on the representation are, in fact, only a geometric
consequence of the cumulated horizontal and vertical distances and have no
significance in terms of local proximity between the units.

! Kraaijveld, Mao and Jain, 1995, p. 551.
> We do not in fact understand why the authors limit the concept of the set of
neighbors to the horizontal and vertical ones.
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2. A Kohonen Map representation that combines frequency and
local distance information

The representation of the Kohonen map that we propose in this paper allows
two kinds of information to be taken into account :
¢ the count of individuals for each unit of the map (the frequency information);
s the local distances between units.

The frequency information will be represented by a level of gray on the
map. The darker the cell is, the higher is the number of individuals attached to the
unit (a specific very light level of gray is chosen for a unit having no individuals
attached to it).

The representation of the distances of a wmit 4 to its neighbors is described
in fig. 1 and derived as follows :
o The distances between all the pairs of neighbor units are calculated and the
maximum & is determined as :

® = max “w,. -w;
i, j neighbors

where w; and w; are the weight vectors of units 7 and j of the Kohonen map.
For the two-dimensional map (grid), we consider the 8 neighbors and for the one-
dimensional map (string), we only consider 2 neighbors.

» For each neighbor B, an axis is built from the center of unit 4 in the direction of
the center of unit 5.

¢ For cach neighbor B, on the axis, a point a is plotted proportionally to the
distance between the two unit vectors w, and wp. More precisely :

da= Aﬂ(l amml ;)WB “)

If units 4 and B are very close, 4 is approximately in H and conversely, if they
are far from each other, o is near 4.

o The same thing is repeated in the 8 directions and 8 points like a are found.
The 8 points are connected to form an irregular octagon and the inside is colored
as described above.

The result is a representation of the Kohonen map in which, in each square, each
unit is represented by an octagon. The bigger it is, the closer the unit is to its
neighbors (and vice-versa), so clusters appear to be regions in which octagons tend to
be big and frontiers are regions largely unshaded. All the local distances can be
compared because a common metrics has been used for all the units of the map (from
0 to the maximum of the local distances). In the next section, we will show three
applications.
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It should be noted that the scale in the vertical and horizontal axes and in the
diagonal axes are not the same. This introduces a slight visual distorsion. One way to
overcome this difficulty could be to use a hexagonal lattice.

Unit B

fig1

3. Applications

sets™:

\ To test the validity of the proposed representation, we have used three data
the first one is composed of 15 simulated firms for which two financial ratios are
computed : the Return On Investment (ROI) and the Total Debts on Total Assets
(DTPT). Tab. 1 shows the data and fig. 2 demonstrates the three sub-groups
(A,B,C) obtained. Fig. 3 presents the results of the projection on a one-
dimensional Kohonen map using the approach described above and fig. 4, on a
two-dimensional Kohonen map (in this case, without reduction of the number of
dimensions). Fig. 3 clearly stresses that group B is farther from group C than
group A, and that group C inclndes the greatest number of firms (unit 3 is the
darkest). On fig. 4 and fig. 5, we see that group A is located in the left-bottom
side of the Kohonen map, group C in the left-upper one and group B, in all the
right one (the location of each unit is presented in fig. 5). The three areas tend to
be separated by empty and distant units.

the second one is the classical Iris data set (Fisher, 1936). Fig. 6 shows the results
of the projection on a 4x4 Kohonen map. Results correspond to the a prioni
knowledge that we have about Iris data set. Setosa form a clearly distinct kind of
Iris while Versicolor and Virginica are nearer to cach other. These features are
clearly shown up by our representation.

* Details on the implementation of the used Kohonen algorithm can be asked to the
authors.
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¢ the third one is composed of 9.659 Belgian firms for which 13 financial ratios

have been computed on the basis of their 1991 financial statements (cf. tab. 4).
The fig. 7 shows that the frequency information is well represented by our
approach (cf. tab. 5), but it also stresses a difficulty met when using large real
data sets. As underlined above, we use a common metrics for all the units which
is based on the maximum of the local distances. If one of those distances is very
large (in other words, if one individual is very atypical), the maximum is very
large and therefore, all the other distances seem graphically to be very small. A
solution to this problem could be, as proposed by one of the referees, the use of a
logarithmic transformation of the distances.

We should like to express our thanks to Patrick Letremy and Ismail Ibbou for the
“tips and tricks” that they provided to us for the implementation of the Kohonen
algorithm and for their constructive advice.
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fig. 6
[Count Col |
Line Indiv 1 2 3 4 |GrandTotal
1 Setosa 12 21 0 O 3
Virginica 0 0 9 10 19
1 Total 12 21 9 10 52
2 Setosa 16 0 0 0 16
Versicolor 0 0 9 0 9
Virginica 0 0 0 7 7
2 Total 16 0 9 7 32
3 Setosa 1 0 0 0O 1
Versicolor 0 13 10 1 24
Virginica 0 0 1 8 9
3 Total 113 11 9 34
4 Versicolor 4 11 2 0 17
Virginica 1 1 5 8 15
4 Total 5 12 7 8 32
Grand Total 34 46 36 34 150
tab. 3
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Ratio

Description

ROE
ROA
REAE
TNPT
CFFT
BFRPT
FRNPT
DLTPT
DTPT
VDAC
RRPTP
EF
DFG

Return on Equity

Return on Assets

Operating income on operating assets
Cash position on total asset

Cash flow on short term liabilities
Needs in working capital on total assets
Net working capital on total assets
Longterm debt on total assets

Total liabilities on total assets

Cash on current assets

Retained earnings on total assets
Financial debt on total assets
Financial mortgage on total assets

tab. 4
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fig. 7

Count of Indiv|Col |

Line 1 2 3 4 5 6 7 8 Grand Total
1 3 9 216 269 6 4 48 182 737
2 151 9 152 7 5 3 3 7 337
3 47 590 666 65 17 216 148 3 1752
4 4 330 250 57 64 2 151 19 877
5 43 215 45 47 10 457 34 8 859
6 2 11 439 394 440 461 28 9 1784
7 1 798 405 128 91 30 21 783 2257
8 5 210 414 145 272 2 4 1 1053
Grand Total | 256 2172 2587 1112 905 1175 437 1012 9656

tab. 5
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