ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 193-198

Neural Model for Visual Contrast Detection

Enno Littmann*, Heiko Neumann*, and Luiz Pessoal

*Abt. Neuroinformatik, Universitit Ulm, D-89069 Ulm, Germany
P Universidade Federale, Rio de Janeiro, RJ 21945-970, Brazil

Abstract. Most approaches that model biological early vision systems per-
form at the cortical level of simple cells a linear integration of the activity
from visnal ON and OFF pathways. Based on empirical as well as theore-
tical investigations we propose a nonlinear neural network model that is
selectively responsive to contrast magnitude as well as to the sharpness of
luminance transition. The nonlinear circuit allows for accurate and reliable
detection of contrast changes even in noisy images. Simulations with artifi-
cial and camera images show higher positional selectivity for local contrasts
than an equivalent linear device. Furthermore, in a multiscale hierarchy
the nonlinear circuit produces a unique maximum response in scale-space
where scale directly relates to the width of the luminance transition.

1. Introduction

Processing of visual stimuli begins with the segregation of data streams selec-
tively sensitive to light-on and light-off signals, respectively. These ON- and
OFF channels are segregated at the retinal bipolar cell level (feeding ganglion
cells of opposite antagonistic center-surround organization) and run separately
to the first stages in primary visual cortex (V1). It is still unclear how these
pathways are recombined at the cortical level of simple cells and what kind of
functionality is precisely supported by the pooling of transferred activity.

An overview of empirical background and the discussion of simple cell functio-
nality has already been given elsewhere [9]. Computational investigations have
supported evidence of nonlinear combination of activity in ON and OFF subfields
[6]. Within the broader context of unified contour and brightness perception
([4]), the need for bifurcating the response properties in a nonlinear feedback
system has been justified [10].

In this paper, based on previous work of [9], we propose a neural circuit for non-
linear integration of ON and OFF data that is based on evidence derived from
empirical investigation as well as functional modeling. Specifically, the model
i) makes explicit local contrast changes of specific polarity, i) shows linear and
nonlinear response properties to make the processing architecture selectively re-
sponsive to stimulus features such as local contrast and sharpness (abruptness)
of contrast change, and #i1) incorporates multiple spatial frequency (scale) se-
lectivity operating on a single scale input. The gating of juxtaposed activity
from both ON and OFF pathways extends the functionality of local contrast
“detection”. In addition, a new feature dimension is incorporated that deno-
tes the scale-dependent sharpness of local transitions. The nonlinear approach
is compared to the associated first order linear model in which the input from
excitatory and inhibitory subfields is combined by linear integration only.
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2. Model Circuit for Pooling ON and OFF Data Streams

Center-surround Antagonism and ON- and OFF-channels. The in-
itial processing of the input luminance distribution utilizes isotropic antago-
nistic center-surround interaction of both polarity. The responses are trans-
mitted by segregated ON and OFF channels. Local contrast information is ge-
nerated by cross-channel inhibition, yielding activations cz+ = [:c —z7]* and
¢; = [¢7 — «}1* (¢F denote ON- and OFF-channel activation of the model
retinal; []"‘ = max( 0)).

Simple Cell Responses. The input to subfields of simple cells is generated
by blurring the activity distribution in the ON and OFF contrast channel with
elongated Gaussian weighting functions. Multiple spatial frequency selectivity
is achieved by using weighting functions of different spatial extent in length
and width. According to [5], (blurred) activities in the segregated ON and OFF
channels compete at each spatial position before they are 1ntegrated in simple cell
subfields. This stage is modelled by computing pi.* = (> (c —¢; )25 ]t and

i =%, (¢ = ct A% ]t where A%, denotes an elongated Gaussian weighting
function oiz scale 54 and onentatlon €.
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Figure 1 (a) sketches the circuit of a simple cell with light-dark contrast sensiti-
vity. The circuit itself has 4 stages and contains two streams (ON and OFF). The
first stage receives the blurred contrast activities from (scale dependent) offset
positions relative to the spatial reference location. The second stage contains
an opponent interaction of the opposite channel activity as well as direct excita-

1The equilibrium activity is determined by shunting interaction, yielding ¢.g. an ON channel
response a:;" = (Bnet;" — Cnet) /(A + net;{' + net;”). Thus the activity is always normalized
with respect to the local average luminance resulting in an asymmetry of ON and OFF channel
activity for odd-symmetric intensity profiles.
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tory inputs from each subfield. The third receives channel-specific inputs from
both the first (excitatory) and second (inhibitory) stages. Finally, ON and OFF
channels are pooled producing the final response in stage four. The opponent
inhibition associated with the within-channel inhibition provides a mechanism
for disinhibition. As a consequence, the output of the circuit will be large only
when the inputs from both channels are strong, thus allowing for disinhibition
of activation in each subfield.

The model employs both light-dark and dark-light odd-symmetric simple cells.
These are obtained by collecting contrast information from spatially different
branches. For a light-dark cell at position 7, ON information originates from the
“left” and OFF information from the “right” relative to the symmetry axis of
the local reference coordinate systern (rotation angle ¢; “left” and “right” spatial
offsets denoted by (*) =i — 75 and (7) = i+ 75, 75 scale-dependent constant).
Simple cell responses are computed in two steps, with intermediate variables
gt (stage 2) and r}f (stage 3) for the ON subfield and ¢;; and r}, for the OFF
subfield (Fig.1 (a)). The equations for the ON channel activations are

G =—agt +pf - Bt p, and it =—yrf +pt-srtgt, (1)

where «, B, v, and § are constants (OFF channel activations are obtained by
exchanging ‘4’ and ‘-’ indices). In order to achieve a symmetry in the response
properties of both channels the constants must obey the identity § = 8. The
output response of a light-dark simple cell is computed by z5P = —2LP +rit+ri';.
All of the above processes are assumed to reach equilibrium fast. Thus the overall
response of the circuit may be evaluated at steady-state, yielding

1
zLD —_ + 9 +
e T 5 - o ig + i€ + 1etie
( ;t ie) ( (p D, ) /6 P, epz ) (2)

The dark-light response, z2%, is obtained in a similar manner. This demon-
strates the nonlinear interaction of activity between the two branches. Input
is integrated linearly from both channels; juxtaposed activity in the ON and
OFF pathway is signalled by an additional correlational (gating-type) compo-
nent. The relative contribution of additive and gated activity is controlled by
the shunting parameters « and 8 in Eqn. 1. The activity self-normalizes with
respect to the total input activity from the ON and OFF channel. The model
thus resembles properties of the scheme proposed by [1] to normalize activity of
cortical neurons through division of pooled activity from a large number of cells.

Mutual Inhibition of Cells. Simple cells of opposite polarity and same spatial
location are postulated to undergo mutual inhibition ([2, 7], see Fig.1 (b)). The
final step to compute light-dark responses is given by

2P =[PP —PMT amd ZPE=[PPoGEP)T. (3
Complex Cell Responses. Complex cell responses are, in vivo, insensitive to

direction of contrast [3] and are obtained in the model, for simplicity, by pooling
light-dark and dark-light simple cell responses.
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Fig. 2: Elliptic region with step contrast: Upper row: Input luminance distribution
corrupted by additive Gausian noise with 50% amplitude of contrast height (a); pooled
activity of all orientation fields generated by the nonlinear circuit (b) and the linear
model (c). Bottom row: Luminance profile of the input image (d); profiles of activation
generated by the nonlinear circuit (e) and those generated by a linear cell (f).
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Fig. 3: Gradual transition: A ramp profile (dashed) is processed using a number of
orientation selective blurrings viz scales. Responses were generated by the nonlinear
circuit (upper row) and the linear model (bottom row). Boxes from left to right are
generated for increasing scale parameters; responses for LD transition (solid) and DL
transition (dotted). The asymmetries in response at different luminance levels occur
due to initial shunting center-surround processing.

196



ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 193-198

Fig. 4: Processing a real camera image at scale o = 3 {a): Pooled activity of all
orientation fields generated by the nonlinear circuit (b) vs. the linear model (c).

3. Computer Simulations

A set of computer simulations demonstrate the functionalivy of the model. The
nonlinear processing results are compared with a model that integrates activity
from left and right branches in a linear fashion®. In all simulations, simple
cell responses are shown after mutual inhibition (Z£P and Z2L). The model
paraineters of the nonlinear circuit wereset toa = 1.0, 7= 2.0,y = (0.5, and § =
1.0. The Gaussian weighting functions were elongated by a 2:1 ratio; the variance
7 is measured at the short axis (in pixels). The separation 7 grows linearly with
the variance. Eight discrete, equally spaced orientations were processed.

Figure 2 shows the model behavior when presented with an elliptic region. The
luminance distribution has been corrupted by Gaussian noise (half width 50%
contrast amplitude, Fig. 2a). Activity of all orientations has been pooled yiel-
ding an “energy” distribution of simple cell activity (Fig. 2b-¢). The profile of
the nonlinear activity distribution (Fig. 2e) shows higher positional selectivity
than in the linear case (Fig. 2f). While the average noise activity is similar, the
activity close to the contrast edge is apparently suppressed.

The multiple spatial frequency selectivity is demonstrated on the basis of pro-
cessing a ramp transition. Figure 3 shows the results generated by the nonlinear
cireuit (top row) in comparison to the linear cell responses (bottom row). Increa-
sed scale-dependent blurring of ON and OFF input together with an increased
spatial separation of input branches eventually generates a juxtaposition of ON
and OFF activation for a contrast cell that is located at the center of the ramp.
The maximum response of the linear model still occcurs at a fine scale and has
its peak at the left and right end of the ramp transition (bottom left). In con-
trast, the nonlinear circuit produces a unique maximum response in scale-space
at the ramp edge; the corresponding scale is directly related to the width of the
luminance transition (Fig. 3 (top center)).

Stmilar results are achieved for processing a camera unage (Fig. 4). The response
of the nonlinear model (at the scale of o = 3) shows again higher positional selec-
tivity than the response of the corresponding linear model. Edges are detected
sharper and more accurately, and the overall noise level appears to be reduced.

2 This model can be realized by replacing eq. (2) with zf‘sﬁ = p;'; + pi.- The linear
integration model with elongated Gaussian lobes for ON and OFF subfields approximates a
first order derivative operation [8].
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4. Summary

A neural network model is described that realizes nonlinear pooling of visual
ON and OFF pathways. The investigation serves as a framework for the func-
tional modeling of early stages in mammalian visual information processing. It
is argued that the role of pooling ON and OFF activation in static form percep-
tion goes beyond local linear contrast detection. The experiments show that the
nonlinear pooling leads to higher positional selectivity of local contrast changes
and, in a multi-scale hierarchy, to a unique, scale-dependent maximum response
where scale directly relates to the width of the luminance transition. Our si-
mulations indicate that the nonlinear circuit is more robust given noisy images.
This property has to be verified by further experiments.

The functionality of the corresponding 1D model has also been justified in a
broader context of grouping and brightness perception. The measurement of
contrast magnitude (strength) and sharpness (correlation) allows for categorial
switching in the control of brightness perception [10]. Thus, the model includes
several functional aspects that have been treated separately in previous contri-
butions to model simple cell behavior. The approach will be further pursued to
incorporate the pracessing of even-symmetric luminance variations and end-stop
characteristics for proper processing of corners and curvature.
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