ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 111-116

FlexNet
A Flexible Neural Network Construction Algorithm

Karim Mohraz & Peter Protzel

Bavarian Research Center for Knowledge-Based Systems (FORWISS)
Am Weichselgarten 7, 91058 Erlangen, Germany
mohraz@forwiss.uni-erlangen.de

Abstract. Dynamlc neural network algorithms are used for automatic network design in order to
avoid time consuming search for finding an appropriate network topology with trial & error meth-
ods. The new FlexNet algorithm, unlike other network construction algorithms, does not underlie
any constraints regarding the number of hidden layers and hidden units. In addition different con-
nection strategies are available, together with candidate pool training and the option of freezing
weights. Test results on 3 different benchmarks showed higher generalization rates for FlexNet
compared to Cascade-Correlation and optimized static MLP networks.

Keywords: network construction, generalization, Cascade-Correlation.

1. Introduction

For neural networks, it is equally important to find an optimal network topology as it is
to determine an optimal set of weights. The use of dynamic neural network algorithms
considerably speeds up the process of finding an appropriate network topology for a
given problem. Dynamic network algorithms can be divided into 3 categories: network
construction, pruning, and genetic algorithms for network design. The FlexNet algo-
rithmr presented here is a network construction algorithm. A number of network con-
struction algorithms have been developed so far: Upstart algorithm {1], Add&Remove
[2], Cascade-Correlation [3], to name a few. However, the drawback with these proce-
dures is that they either have been designed for the use of binary neurons [1] or underlie
constraints such as a limited number of layers and hidden units [2], [3]. FlexNet, on the -
other hand, creates networks with as many layers and as many hidden units as are need-
ed to solve a given problem. In addition, the user is able to choose between different
connection strategies and has the option of freezing weights.

2. The FlexNet Algorithm

The philosophy of FlexNet is based on strategles used in Cascade-Correlation
(CasCor): it starts with only the input and output layers and incrementally builds up a
complex network architecture by first training candidate neurons and then installing the
best ones. However, as the name implies, FlexNet is a highly flexible and powerful net-
work construction algorithm, which is not limited by constraints such as CasCor’s one-
neuron layers and deeply cascaded structure.

The main aspects of FlexNet can be summarized as follows:

» variable number of hidden layers and units in these layers,
+ variable cross-cut connections,

» variable candidate pool training,

» possibility of freezing weights.

111

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 111-116

2.1 Dynamic network construction

Similar to the CasCor procedure, FlexNet consists of two training phases: a main and a
candidate training phase. In the main training phase, the current network is trained until
a satisfactory performance is obtained or error stagnation is observed. In the latter case,
the algorithm switches to the candidate training: Candidate units are trained separately
at different positions in the hidden layers. The best candidate, i.e. the one that contrib-
utes to the highest error reduction rate, is permanently installed in the network. CasCor
does not consider the benefits of installing new units in existing hidden layers. Instead,
after each candidate training phase, it creates a new one-neuron hidden layer resulting
in deeply cascaded networks with poor generalization ability. FlexNet, on the other
hand, allows multiple units per hidden layer. Furthermore FlexNet does not necessarily
install candidates in the newly created layer, but also checks candidates’ performances
in existing hidden layers.

In addition, FlexNet does not only train individual candidates (as CasCor does) but is
able to train and install sets of several candidates, which has positive effects on both
convergence speed and generalization. By training not only one set of candidates, but a
pool of several sets of candidates, the chances to install weak candidate units decrease
and weight space is searched more effectively [3].

An example of network construction through FlexNet is given in Figure 1 a) - ¢):

Fig.1. The process of network construction by FlexNet.

FlexNet starts out with the input layer connected to the output layer (a). This linear net-
work is trained until error stagnation is observed. Given that the candidate pool contains
3 different sets of candidates (with weights initialized at random), and each set consists
of 2 units, these 3 candidate pairs are successively connected to the network and trained
(b). The best candidate set is then permanently installed. The newly developed network
is trained again until error stagnation is observed. Now there are 2 possible insertion
points for the candidate sets (c): either the existing first hidden layer is expanded or a
new hidden layer between output layer and the existing hidden layers is created. For ev-
ery insertion point, a new pool of candidate sets is provided and trained (at this stage
this means: 3 candidate sets in the first hidden layer and 3 candidate sets in the second
hidden layer). Again the best candidate set is installed in the network and the procedure
is repeated until a satisfactory error level is reached.

2.2 Connection strategies

Another new and valuable aspect of FlexNet is its modifiable connection structure. The
user can choose how new candidates should be connected to the input, output, and al-

112

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 111-116

ready installed hidden units. There are various connection strategies ranging from the

standard MLP (without shortcut connections) to the limited fan-in random wired meth-

od [4].

In this version of FlexNet, 3 connection strategies are implemented:

* Adjacent Layers: Like in standard MLPs only adjacent layers are connected. (Due
to FlexNet’s incremental network construction a limited number
of shortcut artefacts to the output layer will remain.)

e Full; Units in fully connected networks have direct weight connections
to all other neurons in the network, except for the neurons in the
same layer.

* Medium: Every new unit is connected to the output units as well as to all
units in the lower layers. This strategy is a compromise between
Full and Adjacent Layers.

Weight freezing is also possible in FlexNet. To tackie the moving target problem, input
weights of hidden units are frozen (after they are installed in the network) to prevent the
unlearning of previously learned features [3]. The freezing option is used only with the
Medium connection s'trategy.

3. Benchmarks
FlexNet is tested on 3 benchmark problems. The results are compared to static MLPs

and CasCor. For a fair comparison to the dynamic networks, an appropriate MLP net-
work, with its architecture and parameters hand-tuned [8], had to be found for each
benchmark. Note that the number of runs needed to obtain these optimized MLPs is not
reported here. Resilient Propagation (RP) [6] and Quickprop (QP) [5] were used as
learning paradigms. The neural network simulator used was FAST [7], which contained
the MLP and CasCor algorithms. 10 runs with both Rprop and Quickprop were made
for each of the MLPs, CasCor, and the FlexNet flavors (named after their connection
strategy): FlexAdj, FlexFull, FlexMed, and FlexFreeze. The number of candidate sets
in the pool was generally set to 3 sets, but the number of candidates per set was varied.
The main criterion to evaluate network performance was the classification error. In ad-
dition, training time (epochs) and an estimate of the network size (average number of
hidden units) are provided.

3.1 2-Spirals

The network’s task in this benchmark is to distinguish between two intertwined spirals,
which coil around each other three times [9]. Each spiral is represented by 96 training
points. The test data has the same size as the training set, with each test point lying be-
tween two training points on the same spiral. Table 1 shows the results for each network
category. FlexAdj was not able to solve this task possibly because of missing shortcut
connections. Note that the 2-5-5-5-1 MLP was fully connected, containing all shortcut
connections. FlexFull, FlexMed, and FlexFreeze had up to 30% less classification error
than the static MLP and CasCor. FlexFull and FlexMed had to install = 45 hidden units,
but needed fewer training epochs than the optimized static MLP. Freezing weights with

113

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 111-116

FlexNet did not affect generalization but needed about twice as many epochs to con-
verge.

An interesting result can be seen when the receptive fields [7] of the trained networks
are plotted as shown in Fig. 2. While the MLP and CasCor did not extrapolate the shape
of the spirals beyond the training data, all FlexNet networks produced outer spiral rings
even in those areas, where no training data had been presented.

Paradigm Classification error @ Epochs {¢ Hidden units
MLP 2-5-5-5-1 RP 8.5% 7440 15
CasCor RP 9.3% 2808 14
FlexFull QP 6.1% 4551 43
FlexMed QP 6.2% 4590 46
FlexFreeze QP 6.1% 6907 50

Tab. 1. Network performances on the 2-spirals benchmark

Fig. 2.

Receptive Fields
of the trained net-
works,

(a) FlexFull and
(b) “static MLP

3.2 Mexican Hat

2 2 - 45"
The function z = —(4(x"+y") ~2)e 972 | to be approximated by the networks,
is shaped like a Mexican Hat (Fig. 3). The networks were trained until the sum squared
approximation error fell below 0.1. The training data were taken from a 40 x 40 grid of
the Mexican Hat function within the interval -2.5 < x, y < 2.5.

Paradigm ¢ Epochs ¢ Hidden units
MLP 2-14-10-1 QP 875 24
CasCor (mixed activation fcts.) QP 150600 55
FlexAdj RP 5251 49
FlexFull RP 2872 33
FlexMed RP 3796 23
FlexFreeze RP 5246 57

Tab. 2. Network performances on the Mexican Hat benchmark

The static MLP required 875 epochs for a satisfactory approximation of the Mexican
Hat function. However, it took a considerable amount of time in order to find the opti-
mal architecture.

FlexAdj, FlexFull, and FlexMed required between 3000 - 5000 epochs and installed

114

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 111-116

more than 24 hidden neurons except for FlexMed, which reached about the same di-
mension as the static MLP, but used crosscut connections. Weight freezing once again
slowed down FlexNet and an average of 57 units had to be installed. CasCor could not
converge in 15000 epochs. Only with mixed activation functions [3] (candidate units
were assigned at random Bessel, Cosine, Sine, Gaussian, and Sigmoid activation func-
tions) could CasCor converge in 8000 epoch with an average of 70 hidden units in 70
cascaded layers! The generalization result is very poor as can be seen in Fig. 3b, espe-
cially when compared to the smooth approximation of the other network types.

a

Fig. 3. Approximation of the Mexican Hat Function, by (a) FlexMed and (b) CasCor

3.3 Breast cancer classification

The breast cancer database was initially obtained from the University of Wisconsin [12]
and arranged as a neural network benchmark in the Proben1 collection [11]. A tumor is
to be classified as benign or malignant depending on input attributes such as clump
thickness, uniformity of cell size and shape, the amount of marginal adhesion, and the
frequency of bare nuclei. The data set consists of 9 input and 2 output attributes. 65.5%
of the examples are benign. The training set contains 350 data sets and the test set 349
data sets.

Paradigm Classification error ¢ Epochs | ¢ Hidden units
MLP 9-8-4-2 RP 6 % 2568 12
CasCor QP 5.4 % 2448 13
FlexAdj RP 5 % 3100 33
FlexFull RP 5.4 % 3212 37
FlexMed RP 4.5 % 3015 38
FlexFreeze RP 4.7 % 5442 49

Tab. 3. Network performances on the breast cancer benchmark

FlexMed obtained the lowest percentage of classification error with an average of 3015
epochs and 38 hidden units, followed by FlexFreeze, which required, due to its weight
freezing technique, an additional 2500 epochs as well as 10 hidden units. Classification
error of FlexAdj was 1 percentage point lower than the error of the static MLP, using
an average of 33 hidden units. MLP and CasCor required the least number of epochs
and hidden units, at the same time however, produced the highest classification error.

4. Conclusion
The design of neural networks is a difficult and time-consuming job. The new algorithm

presented here significantly reduces the amount of time and effort needed in order to

115

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 111-116

find an optimized network topology. Unlike other network construction methods, no
constraints are imposed on the FlexNet procedure regarding the number of hidden lay-
ers and hidden units in these layers. Features such as different connection strategies,
candidate pool training, and the option of freezing weights enables FlexNet to build op-
timal networks for a given problem. In the tested benchmarks, networks created by
FlexNet achieved higher generalization rates than static MLP and CasCor networks, al-
though a considerable amount of time was spent on fine-tuning the MLPs. FlexNet, us-
ing Medium connection strategy, consistently obtained a high generalization accuracy
with acceptable convergence speed as well as number of required hidden units. This
shows, that high order feature detectors and fully connected networks containing all
shortcut connections are not always needed in order to solve a problem. CasCor’s gen-
eralization ability was impaired by its one-neuron hidden layers. FlexFreeze, which also
used the weight freezing technique but allowed more hidden units per layer, did not suf-
fer from generalization problems. However, convergence took somewhat longer and a
greater number of hidden units were installed compared to FlexMed.

The objective of future work is to incorporate crossvalidation training into FlexNet in
order to increase generalization. The performance of candidate sets will then be evalu-
ated on an additional validation set instead of the training set.

References

(11 Frean, M.: “The Upstart Algorithm, A Method for Constructing and Training
Feedforward Neural Networks” , Neural Computation 2, 1990,

[2] Hirose, Y., Yamashita, K., Hijiya, S.: “Back-Propagation Algorithm which varies
the Number of hidden Units” , Neural Networks, Vol. 4, pp 61-66, 1991.

[3] Fahlman, S., Lebiere, C.: “The Cascade-Correlation Learning Architecture”,
Technical Report CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, PA,
August 1991.

[4] Klagges, H., Soegtrop, M.: “Limited Fan-in Random Wired Cascade-
Correlation” , IBM Research Division, Physics Group, Munich.

[5] Fahlman, S.: “An Empirical Study of Learning Speed in Back-Propagation
Networks”, CMU-CS-88-162, Carnegie Mellon University, Pittsburgh, PA,
September 1988.

[6] Riedmiller, M.: “Rprop - Description and Implementation Details” , Technical
Report, Institut fiir Logik, Komplexitit und Deduktionssyteme, Universitit
Karlsruhe, 1994.

[71 Mohraz, K., Arras, M.: “Forwiss Artificial Neural Network Simulation Toolbox” ,
Bavarian Research Center for Knowledge-Based Systems (FORWISS), Internal
Report, Erlangen, 1994.

[8] Arras, M., Protzel, P.: “Assessing Generalization by 2-D Receptive Field
Visualization” , Bavarian Research Center for Knowledge-Based Systems
(FORWISS), Internal Report, Erlangen, 1993.

[91 Mohraz, K.: “Neuronale Netze mit dynamischer Architektur” , Thesis, Research
Center for Knowledge-Based Systems (FORWISS), Erlangen, 1994.

[10] Lang, K., Witbrock, M.,: “Learning to tell two spirals apart”, Proceedings of the
1988 Connectionist Models Summer School, M. Kaufmann Publ., 1988.

[11] Prechelt,L.: “PROBENI - A set of Neural network Benchmark Problems and
Benchmarking Rules” , Technical Report 21/94, Universitit Karlsruhe, 1994.

[12] Mangasarian, O., Wolberg, W.: “Cancer diagnosis via linear programming”,
STIAM News, Volume 23, Number 5, 1990.

116

