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Abstract. Since the mid-1980s, researchers have been pursuing the goal
of neurosymbolic integration, i.e., the construction of systems capable of
both symbolic and neural processing. We distinguish two major avenues
toward this goal: the unified and the hybrid approaches. Whereas the
unified approach claims that full symbol processing functionalities can be
achieved via neural networks alone, the hybrid approach is premised on
the necessity and complementarity of symbolic and neural structures and
processes. This paper attempts to clarify and compare the assumptions,
mechanisms as well as the open problems of both approaches.

1. Definitions

Since the resurgence of connectionist research in the mid-1980s, neurosymbolic
integration (Ns1)—the incorporation of symbolic and neural processing func-
tionalities in a single system—has been a persistent research goal. Attempts
at NsI can be classified into two major approaches according to the particular
blend of symbolic and neural structures and processors involved.

In the unified approach, more widely known as connectionist symbol process-
ing (csP) [6], neural networks are used as building blocks to create a cognitive
architecture capable of complex symbol processing. The unified approach is
premised on the claim that there is no need for symbolic structures and pro-
cesses as such: full symbol processing functionalities can be achieved using
neural networks alone.

The hybrid approach integrates complete symbolic and connectionist mod-
ules: in addition to neural networks, it implements both symbolic structures
and processors—e.g., rule interpreters, parsers, case-based reasoners and the-
orem provers. The hybrid approach rests on the assumption that only the
synergistic combination of neural and symbolic structures and processes can
attain the full gamut of cognitive and computational powers which is beyond
the reach of a single paradigm.
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In this paper, we will focus on the basic opposition between the unified and
the hybrid approaches. Sections 2. and 3. will elaborate further on each of these
approaches, while Section 4. will discuss open problems and research issues.

2. The hybrid approach

Hybrid systems can be classified according to their integration mode, i.e., the
way in which the symbolic and neural components are configured in relation to
each other and to the overall system. We distinguish four integration modes:
chainprocessing, subprocessing, metaprocessing and coprocessing.

2.1. Chainprocessing

In chainprocessing mode, one of the modules—either symbolic or neural—is the
main processor while the other takes charge of pre and/or postprocessing tasks.
In one example of symbolic preprocessing [9], decision trees are used as feature
selectors to limit the number of input nodes in feedforward neural networks and
thus accelerate the learning process. The reverse setup is neural preprocessing:
in [5], for instance, the main processor is a respiratory monitoring expert system
which recommends actions to be taken to avoid breathing complications. Rules
are of the form: “If qualitative-state then action”, where qualitative-state is a
symbolic representation of a change in lung pressure over time (e.g., “pressure
is rising rapidly”). Experts found it extremely difficult to formulate rules to
determine these qualitative states, so a backpropagation network was used to
accomplish this task; its output was then stored as a fact in the expert system’s
working memory. With neural preprocessing, development time was cut down
from 3 to 2 months and accuracy rose from 74.5 % t6'97.5 %.

2.2. Subprocessing

In subprocessing mode, one of the two modules is embedded in and subordi-
nated to the other, which acts the main problem solver. In INNATE/QUALMS
[2], the symbolic module is the main processor whose task is fault diagnosis in
a distillation plant. It is a classical expert system linked to a simulation model
of the process to be monitored. To diagnose a process fault, the expert sys-
tem subcontracts the task of generating a set of candidate faults to the neural
component, composed of several multilayer perceptrons cascaded in two layers.
Each output neuron is associated with a particular fault and its activation is
interpreted as the rating of the corresponding fault. The expert system then
either confirms the neural diagnosis or proposes another hypothesis.

2.3. Metaprocessing

In metaprocessing mode, one module is the baselevel problem solver and the
other plays a metalevel role (such as monitoring, control, or performance im-
provement) vis-a-vis the first.
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‘Symbolic metaprocessing is illustrated in the Robotic Skill Acquisition Ar-
chitecture [4]. Its goal is to develop robots which accomplish complex tasks us-
ing designer-supplied instructions and self-induced practice. The architecture’s
base level is itself hybrid: a rule-base provides a declarative representation of
human expert knowledge whereas neural networks embody reflexive procedural
knowledge that comes with practice. The metaprocessor is a rule-based execu-
tion monitor which supervises the training of the neural network and controls
the operation of the system during the learning process.

An example of neural metaprocessing is a system in which the baselevel
symbolic processor solves high school physics problems, and the connectionist
component enforces search control [3]. Object-level rules encode equations
such as velocity = initial-velocity + acceleration x time. If several of the
needed variables are unknown, the metalevel connectionist module is called on
to make a choice. This is a previously trained net whose inputs are the current
goal variable as well as the known and unknown variables; it outputs the next
(unknown) variable to solve for, in effect guiding the problem-solving process.

2.4. Coprocessing

In coprocessing, the symbolic and the neural modules are equal partners in
the problem solving process: each can interact directly with the environment,
each can transmit information to and receive information from the other. Neu-
rosymbolic coprocessing has been applied to the improvement of arrhythmia
diagnosis via intracardial defibrillators, devices implanted in people with heart
disorders [7]. These devices detect abnormal rhythms or arrhythmias, which
can be clustered into three groups depending on the type of action they call
for: continue monitoring, pace the heart, or-apply high-voltage electric shock.
Classification accuracy is of course crucial in this application. In one hybrid
model used, incoming signals are channelled to a decision tree which acts as
a timing classifier and to a multilayer perceptron which performs morphology-
based classification. The outputs of both modules are fed into an arbitrator
which determines the class of the arrhythmia. On a multipatient database, the
decision tree/neural network hybrid attained an accuracy rate of 99%.

3. The unified approach

Unified neurosymbolic models aim at performing all cognitive tasks using neu-
ral networks alone. The unified approach comes in two flavors, depending on
where the bulk of the research effort is placed. The first is biologically ori-
ented: its main goal is neurophysiological plausibility. It is still in its infancy,
and though successes have been scored at the perceptual level, it will take some
time before a frontal attack on symbol processing can be envisaged. The second,
symbol processing version will be the focus of the following subsections. Here,
the main emphasis is on building connectionist architectures for symbol pro-
cessing. Depending on the underlying knowledge representation scheme, these
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architectures can be classified as localist (each node in the system corresponds
to a single concept, and vice-versa), distributed (each concept is encoded us-
ing several nodes, and each node participates in the representation of several
concepts), or combined localist/distributed.

3.1. Localist models

A connectionist architecture for rule-based reasoning and variable binding is
described in [1]. Knowledge is represented in a localist fashion using several
types of nodes: predicate nodes (for predicate names), role nodes (for predicate
arguments or variables), and filler nodes (for possible role values). Rules are
encoded by interconnection patterns between predicate and role nodes. Vari-
ables and constants are bound if their associated role and filler nodes fire in
synchrony as activation spreads throughout the network. This idea of using
synchronous or in-phase activation to represent the binding of distinct features
and concepts is supported by neurophysiological evidence. However, the model
has significant difficulties in scaling up to complex, high-level reasoning; more
importantly, it fails to give any convincing account of the learning process.

3.2. Distributed models

BOLTZCONS [11] uses distributed representations of linked lists to implement
symbolic structures like trees and stacks. One cell of a linked list is encoded
as a triple of symbols of form (tag, car, cdr). Since memory is assumed to
be sparse, only a fraction of these triples can be present in memory at any one
time. A coarse coding technique, the description of which is beyond the scope of
this paper, reduces the number of units required to store a triple while adding
a measure of representational redundancy. Pointer traversal is implemented
via associative retrieval, and a connectionist maintenance system adds, deletes
and updates memory. triples. Fault tolerance and robustness are side benefits
of this distributed representation: like biological networks, BOLTZCONS will not
crash abruptly if some cells cease to function.

3.3. Localist/distributed models

CONSYDERR [10] is a unified system aimed at modelling common-sense reason-
ing (e.g., Can a duck fly? A duck is like a sparrow, so I guess it can fly.). It
uses a dual but purely connectionist representation scheme. At the conceptual
level, domain concepts are encoded as nodes in a localist network and rules
are represented by links between these nodes. At the subconceptual level, a
distribution network performs finer-grained and less structured processing, i.e.,
associations and pattern matching. Each concept known to the system is repre-
sented in the two networks. The localist network performs classical rule-based
inferencing while the distributed network performs similarity-based reasoning.
With these two levels, CONSYDERR can handle a number of difficult issues, such
as partial or inexact information, in one integrated framework.
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4. Open research issues

Unified and hybrid approaches share the same assumption: symbol processing
functionalities are needed to perform high-level cognitive tasks. They also
share the same goal: to overcome the well-known shortcomings of symbolic and
connectionist Al models. In this section, we briefly review the strengths and
weaknesses of both approaches, identify the key issues involved, and compare
the results obtained so far.

The hybrid approach is based on a psychologically plausible distinction
between two types of cognitive operations: automatic, reflexive or low-level
(e.g., perception) vs controlled, deliberative or high-level (e.g., reasoning) [8].
Typically, in hybrid systems, reflexive tasks are assigned to the connectionist
subsystem and deliberative tasks to the symbolic subsystem. Another advan-
tage of the hybrid approach is that it can directly benefit from previous work
in both symbolic and connectionist processing: the construction of a hybrid
model will will not always have to start from scratch. However, hybrid sys-
tems do not reflect biological reality since, at a sufficiently fine grain level, the
architecture of the brain is uniform.

On the contrary, the unified approach—whether in its biologically oriented
or in its symbol-processing oriented version—can legitimately claim a certain
degree of biological plausibility, and further progress of the approach could be
triggered by new biological data. Another strength of the unified approach is its
use of massively parallel processing with its dual advantage—biological fidelity
as well as computational efficiency. However, unified systems inherit a recurrent
problem of connectionism, namely its lack of scalability: as applications grow,
neural networks rapidly reach their asymptotic performance level.

Both approaches are faced with an impressive array of research issues, of
which we briefly mention three. A fundamental issue is knowledge represen-
tation: whereas the aim of the unified approach is to find new ways of rep-
resenting knowledge, the hybrid approach strives to interface known connec-
tionist and symbolic representational schemes in order to facilitate communi-
cation or knowledge-sharing between the two subsystems. A specific subprob-
lem is the transition between opposite representation modes such as qualita-
tive/quantitative, discrete/continuous, deterministic/statistical. Another im-
portant issue is that of reasoning power: neural networks have yet to demon-
strate reasoning capacities at least equal to that of first-order predicate logic.
On this point, the hybrid position is certainly more convenient, as symbolic
modules can be used wherever neural nets fall short of the reasoning power
required by a given task. Learning is a third key issue: the unified approach
bears the burden of showing how the diversity of symbolic machine learning
methods can be implemented in neural networks, whereas hybridists are faced
with the task of integrating symbolic and neural learning strategies into a vi-
able and hopefully synergistic whole. These three issues remain widely open
on either side.

When we compare the results of the two approaches, it seems that the hybrid
approach has led to more convincing results so far: some industrial applica-
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tions are already operational while unified models are still far from achieving
the representational power of symbolic systems. However, considering biologi-
cal evidence, it is certain that the unified approach has not said its last word.
Thus, it is not clear at the moment which approach will turn out to be the most
fruitful. The hybrid approach may be viewed as a short-term engineering expe-
dient, whereas the unified approach may be viewed as leading to fundamental
breakthroughs which are, however, still out of reach.
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