ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 43-48

Input Parameters' Estimation via Neural Networks
Igor V. Tetko, Alexander 1. Luik

Biomedical Department, Institute of Bioorganic & Petroleum Chemiistry,
Murmanskaya, 1, Kiev-94, 253660, Ukraine, tetko@bioorganic.kiev.ua

Abstract

We propose simple heuristic methods that can evaluate the relevance of
input parameters afler completing of neural networks training. Besides that,
these methods allow correct computation of inputs' contribution to each
problem, when learning multiple tasks simultaneously. The estimations are
done on statistical base and are independent of learning procedures and cost
functions. Our simulation on three different tasks shows that these approaches
are eflective.

L Introduction and Background

When learning an artificial neural network the researcher is ofien faced
with the problem of understanding the contribution of each parameter to the final
relationship between inputs and outputs. Using only the most important parameters
theoretically results in better generalization by all pattern recognition methods.

Hypothetically, the search of the best subset of parameters can be done by
training the net under all possible subsets of the set of parameters. However, this
exhaustive search is computationally unfeasible, unless dealing with a very small net
and few training patterns. The problem is even more hard if we recall the difficulties
with local minimum, initial random weights' initialization. The described here a
simple procedure that can be useful for solving of such problems.

The estimation of input parameters' importance is in close relation to the net
pruning. Several methods that were proposed for neural networks (NN) pruning can
be related to the problem of input parameter estimation. By Siestma and Dow [1], for
example, we should remove at the end of the training each unit from the input set
and investigate if the network can retrain itself. This procedure must be applied
dynamically, during the work of one network. Such pruning of input parameters can
fall due to local minimum or insufficient number of neurons in hidden layers or-we
can delete by mistake the most relevant parameter. More preferable approaches, by
our opinion, are those that can evaluate the performance of input parameters after
completing NN learning. The least pertinent parameters should be deleted and NN
be re-learned on diminished parameters' set. This concept was suggested by Mozer
and Smolensky [2] who have introduced the idea of estimating the sensitivity of the
error function due to eliminating of each unit.

Before brief describing the method of Mozer and Smolensky we'll introduce
some notation. Let us consider neural network as in standard back-propagation. Unit
i on layer s connected to unit j on layer s+/ via a synapse of strength w;, and the jith
unit computes:

+1_
aj —f(>’_:w,.j~af) (1)

43

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 43-48

The activation function /') most frequently used is the logistic function
1

S(x)= m 2)

or ils symmelric version /(x) = tanh(x) 3
2

The global error of the net is defined as £ = 2, 2.,(a =) @

where the inner summation is over all neurons that are considered as output units of
the net, 1; is the desired output upon presentation of pattern p and the outer sum is
over patterns of the training set.

In terms of connection elimination Sy, the sensitivity with respect to Wy will
be defined as

(w,j =0)- E(w,j —wf)
Here w;; fare fmal values of wenghts Mozer and Smolensky estimate S; by

Sy=-2E1 . WS
oW y
wuf.
They pointed, however, at the problem arising especially from gradient descent
algorithm - partial derivatives tend to zero when error decreases. Authors suggested

changing the cost function into
E=zg|a;'_,,-|)
pi

and described the usefulness of their estimation procedure on some examples. E. D.
Karnin (3] described a simple "shadow procedure" for weight sensitivity estimation
that overperformed Mozer and Smolensky method when the quadratic error function
was used. He approximated the equation by summation, taken over all the discrete
steps that the network passcs while learning (for details see [3]):

S

N w

JE

Sij = -; v (n)Aw;; (n)—‘;-f———:;,— (6)
y y

where N is the number of training epochs, w, i ! initial value of weight. The application
of method was successfully demonstrated on a number of problems.
We proposed here a new simple approach based on some heuristic
assumption about NN operation.
IL. The estimation methods
Let us consider the possible states of neuron ;j on layer s. Unit j can work in

different modes depending from the sum: Z Wij ~af
I
1) if the sum is great (positive or negative) a unit works near saturation;
2) if the sum is small it works in a linear mode (see Figure 1).

44

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 43-48

Both modes are important for net functioning. The neurons working in 1st mode
primarily have larger inputs than those working in 2nd mode. The relative strength

W,'j 'af "
sij between i and j neuron is in dependence from the S = 5[- The neuron
max wkj -a &
k
having the greatest s;=1 exerts the most significant influence on neuron j in next

layer and vice versa. Hear m;x is taken over all weights ending at neuron j, "" is

used norm taken over all pattern p=1,....N of the training set. We used square of
Euclidean norm, but other norms should be investigated. The sensitivity of a unit
due to outgoing weights can be introduced as:

$12 52
: WS .af (W) '2":"
s _ 2 os+l _ y 1 s+1 _ P s+1
S _E(s;.) S =X — 5 =y S (N
J J maxiw, . -a; J 532)
Pl M) max|(v};) Yo
P

This is a recurrent formula calculating the sensitivity of a unit on layer s via
the neuron sensitivities on layer s+/. The sensitivities of output neurons are set to 1.
All sensitivities in a layer are usually normalized to a maximum value of 1. If we set
only one neuron on the output layer to 1 and others to 0, we'll obtain on inputs the
relevant significance of parameters to the considered pattern. If we set all output
neurons to 1, we'll calculate the relevance of each input to the whole task. Here, no
assumptions were made about the forms of error function or learning procedure.

The equation (7) can be applied when both finite and infinitive numbers of
training examples are used. In first case we should run all samples from training set

2
and in second case estimate Zlais I statistically, using reasonable number of
p
examples. However, we can simplify the equation (7) in assumption that

2 2 2
s s s
z'ai ' is practically the same for all neuron in layer s > a;| = 2l il ®
p . - p
w.s.)2 .
We'll obtain S’s = z(s;)2 Sj+l = z___y:__z_sjs-f-l (9)
J J m;':x (wkj) I

Both forms of equation were used to evaluate the performance of input parameters,
as demonstrated in next section.
II1. Examples
We have initialized the networks with small random weights in a range [-
1,11, then applied back-propagation (with momentum) for supervised learning of a
training sequence. The outputs of each node, as well as input to the net, were in the

45

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 43-48

1 T T T L
/ saturation B
08 - 2 (positive input)
0.6 |- . / B
Linear mode
f(x)
04 7]
02 F saturation —
’ * (negative input) ~
0 1 1 |] 0
-5 5
2
Figure 1. Modes of an activation function f(x)= S in dependence of 2<a?)
1+exp(-x) !

p
input from lower layer nodes.

range [0,1] and logistic activation function (2) was used. We made 20 attempts in
order to obtain statistically significant results.
Example 1

This example is adopted directly from [2] and [3]. Mozer and Smolensky
termed it "the rule-plus exception problem” and the same designation was used by E.
D. Kamin. The method of [2] fails to find correct sensitivities when used in
conjunction with quadratic error function (4), while being successful with linear cost
function (5). E. D. Karnin demonstrated successful application of its sensitivity
estimation by (6) with quadratic function. We will demonstrate that our method
shows the result similar to [3].

The problem is to learn the Boolean function AB +A4 BC D. Clearly, the

"rule" (AB) is more important than the "exception" (3 BC D) accounting only 1
decision (out of 16). Four inputs, two hidden, and one output network (4-2-1 net)
was trained to learn the function. The same net was used by E. D. Karnin (except he
used activation function (3) and bias neurons). The criterion to complete training
was AE<0.1 (learning rate =0.1 and momentum =0.8). All first layer sensitivities had
been calculated by both methods (7) and (9) were ranged from 1 (biggest) to 4
according to their magnitude (herc and below sensitivities calculated by (7) are
shown outside the parentheses and by (9) inside):

46

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 43-48

Input node The ranks of calculated sensitivities
1 2 3 4
A 10(11) 9(8) 1(1) 0(0)
B 10(9) 10(10) 0(1) 0(0)
C 0(0) I(1 12(10) 7(9)
D 0(0) 0(1) 7(8) 13(i1)

The sensitivities of input neurons C & D calculated by both methods were
statistically less (preliminary rank 3,4) in comparison with those of neurons A & B
(preliminary rank 1,2),

Example 2.

We made example 1 more difficult and used the network (4-4-2) to learn
simultaneously "the rule-plus-exception" problem and parity function

1, if x—odd

The first output neuron corresponds to
0, if x~even,

p)=p(B+C+D): p(x)=<

Boolean function 4B + 4 BC D and the other to p(x) accordingly. The same as in
Example 1 learning and ranging procedures were done. The input parameters'
contribution to each function was calculated as mentioned above: we set to 1 the
output node corresponding to analyzed function while others to 0. The number of
attempts when input nodes were recognized as the most important - rank 1,2 for first
or rank 1,2,3 for second function were:

Number of attempts when node was recognized as
the most important
fnput node 4B+ABCD pB+C+D)
A 18(18) 0(1)
B 20(20) 20(20)
C 0(1) 20(19)
D 2(1) 20(20)

Statistical analysis by majority shows us redundancy of C and D neurons for function

AB+ABCD and A neurons for parity function.
Example 3 .
Another example is from the field of continuous functions' approximation. We tried
to fit a network to data originating from the functions

' Si0)=a'sin2mwx)+b, a=0.25, b=0.6

S(x) =ax?+b, a=08, b=01
Two input data sets were used:
st x,[i], i=1,...N; N=50 values randomly distributed on {0.1,0.9] and 2nd the same
as 1st but with a noise distributed by normal law. On the output nodes we also used
noised by normal distribution data yli] =fj(xj[i])+noise, j=1,2.
Cross sums of square error .ij=2(6~(xk[i])-yj-[i])? were:

47

¢

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 43-48

Input node The ranks of calculated sensitivities
1 2 3 4
A 10(11) 9(8) (D 0(0)
B 10(9) 10(10) ohH 0(0)
C 0(0) 1(1) 12(10) 7(9)
D 0(0) o) 7(8) 13(11)

The sensitivities of input neurons C & D calculated by both methods were
statistically less (preliminary rank 3,4) in comparison with those of neurons A & B
(preliminary rank 1,2).

Example 2.

We made example ! more difficult and used the network (4-4-2) to learn
simultancously “the rule-plus-exception” problem and parity function

1, if x—odd

The first output neuron corresponds to
0, if x—even,

px) =p(B+C+D): px)= <

Boolean function 4B + 4 BC D and the other to p(x) accordingly. The same as in
Example 1 learning and ranging procedures were done. The input parameters’
contribution to each function was calculated as mentioned above: we set to 1 the
output node corresponding to analyzed function while others to 0. The number of
attempts when input nodes were recognized as the most important - rank 1,2 for first
or rank 1,2,3 for second function were:

Number of attempts when node was recognized as
the most important
fnput node AB+ABCD pB+C+D)
A 18(18) 0(1)
B 20(20) 2020)
C 0(1) 20(19)
D 2(D) 20(20)

Statistical analysis by majority shows us redundancy of C and D neurons for function

AB+ABCD and A neurons for parity function.
Example 3 '
Another example is from the field of continuous functions’ approximation. We tried
to fit a network to data originating from the functions

' Jix)=asinrx)+b, a=025 b=0.6

Sox)=ax?+b, a=08 b=01
Two input data sets were used:
Ist x,[i], i=1,..,N; N=30 values randomly distributed on [0.1,0.9] and 2nd the same
as 1st but with a noise distributed by normal law. On the output nodes we also used
noised by normal distribution data yj[i] =fj(xj[if)+noise, j=1,2.
Cross sums of square error .ij=):([,-(xk[i])-yj[i)2 were:

47

