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Abstract. Kohonen's LVQI1 procedure is widely used for the classification
of patterns in a multi-class distribution. This algorithm approximates the
probability densities of vectors in each class, by updating reference
vectors at each presentation of an input pattern. It will however be shown
in this paper that the Bayes classification is only approximated by the
decision surfaces of LVQI in special cases of probability densities; we will
show how to set the decision surfaces in a more general case, and how the
relative number of reference vectors in each class can comply with their a
priori probabilities, condition which is necessary for a good
classification.

1. Introduction

LVQ algorithms [1] are used in data processing for sub-space quantization and for the
classification of patterns. The principle of LVQI is to randomly choose an initial set
of reference vectors (‘prototypes’), and to sequentially adapt these prototypes in order
to approximate first the intra-class stimuli distribution, and secondly the Bayes
decision surfaces between classes, to minimize the number of misclassifications.
Several problems however occur. First, Kohonen claims that the initial proportion of
vectors among the classes must comply with their a priori probabilities; this is true,
but not sufficient to ensure good approximations of the Bayes decision surfaces.
Furthermore, a nearest-neighbour method is not optimum to approximate the
boundaries between classes; the Bayesian criterion indeed requires to set the boundaries
at the intersection of the probability densities, and not on the mid-point between two
prototypes from different classes. These concepts will be detailed in sections 2 and 3
for 1-dimensional distributions; the results can easily be extended to multi-
dimentional stimuli spaces.

2. Learning Vector Quantization (LVQ1)
The LVQ1 algorithm can be described as follows.

Before the first iteration, P K-dimensional prototypes p(i) (i=1...P) are randomly
initialized. If a priori limits of the set of input vectors in the space are known, the
prototypes will be chosen inside these limits, in order to accelerate the convergence of
the algorithm. One possibility is to initialize the prototypes to any P of the N input
vectors. At each iteration, a K-dimensional input vector x(j) (j=1...N) is compared to
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all prototypes. We then select the prototype p(a) for which the standard Euclidean
distance between p(a) and x(j) is minimum

dist(p(a), x(j)) < dist(p(k),x(j)) Vke{l..P}\{a} 6))

(1<a<P). If vectors x(j) and p(a) belong to the same class, p(a) is moved in the
direction of x(j) following equation (2).

p(a) = p(a) + a (x(j)-p(a)) 0))

where o is the adaptation factor (O<ai<1). If the two vectors belong to different
classes, p(a) is moved in the opposite direction of x(j):

p(a) = p(a) - o (x(j)-p(a)) - 6))

The adaptation factor oo must decrease with time to obtain a good convergence of the
algorithm [2]. Usually, the same value of the adaptation factor o is kept for a whole
‘epoch’ (an epoch consists in presenting once the whole set of input patterns), and is
decreased before the next one.

3. Variable influence regions at boundaries between classes

For the sake of simplicity, let us examine the one-dimensional case of figure 1, where
two classes overlap, with linear probability densities in each class. The following of
this section is valid for probability densities that can be linearly approximated; this
condition is respected when the number of prototypes is large enough to obtain a
good approximation of the probability densities by a linearization within the
influence region of each prototype. If-we assume that the two classes have equal a
priori probabilities, and that the number of prototypes in each class is constant, a 1-
dimensional LVQ1 algorithm applied to the illustrated distributions will lead to the
two sets of centroids respectively marked by x and o.

Bayes classification

nearest-neighbour classification

Fig. 1. LVQ1 algorithm on 1-D overlapping triangular distributions

The vertical plain line in figure 1 illustrates the nearest-neighbour criterion of
equation (1). The dotted line shows the ideal Bayes boundary, minimizing the
number of misclassifications; it is obvious that a more appropriate choice of the
boundaries, instead of criterion (1), could lead to a better classification.
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3.1. Approximated difference of probability densities

Equations (2) and (3) indicate that prototypes are moved in the direction of the stimuli
if they belong to the same class, and are moved in the opposite direction if they
belong to different classes. In figure 2, we first suppose that a nearest-neighbour
criterion is not used to determine the boundaries between classes, but that another
appropriate criterion makes it possible to separate the classes respecting the Bayes
boundaries (intersection of probability densities, to minimize the number of
misclassifications).

Bayes boundary
pl p2
- ————— . - -
influence regions

Fig. 2. LVQ1 with optimal decision boundaries

The hatched area on the left of the Bayes decision line represents the probability
density of the stimuli from class B, which influence the position of prototype pl
according to equation (3). Since the probability density of class A is greater than the
probability density of class B in the whole influence region of prototype p1, it may
be approximated that the influence of the B-class stimuli represented by the hatched
area is canceled by an identical density area of A-class prototypes (dotted area in figure
3), the prototype moves determined by equations (2) and (3) having identical
amplitudes and opposite signs. Let us mention that this is only an approximation,
since the compensation of moves induced by equations (2) and (3) depends on the
order of presentation of stimuli and of the initial location of prototypes.

Bayes boundary

Fig. 3. Approximated equivalent distribution
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The plain line in figure 3 then represents an equivalent probability density for the
LVQI; with the above-mentioned assumptions, the resulting distribution of
prototypes will be similar.

3.2. Estimation of optimal separation

We assume that the probability densities we have to estimate are represented by the
plain line in figure 3, according to the hypotheses of section 3.1. The challenge is
now to define how to set the decision boundary line between prototypes pl and p2.
Nearest-neighbour criterion of equation (1) is not optimum; a better criterion will take
‘into consideration the slope of the two probability densities near the boundary, and
divide the [p1,p2] segment in an appropriate way.

To estimate where the segment [p1,p2] must be divided, two hypotheses must be

done :

- the probability density must be linear into the influence regions of prototypes pl
and p2 (i.e. a linear approximation of the initial distribution must be possible, and
the number of prototypes must be sufficient to avoid that the influence regions of
p1 and p2 extend to the breakpoints of the probability densities)

- the proportion of prototypes between classes must comply with their a priori
probabilities (equally probable classes are thus not required).

Bayes boundary

———— breakpoints
S1 \

S2

X, &
¥ \v4

p1 p2

- —p 1 -
L1 L2

Fig. 4. Estimation of optimal separation

Let us define now (see figure 4) :

- S1 and S2 respectively the slopes of A and B probability densities near the
boundary '

- L1 and L2 respectively the dimension of the influence regions of prototypes pl
and p2

The second above-mentioned hypothesis assumes the same probabilities to find a

stimulus in the influence regions of pl and p2. The surfaces under the probability

densities lines are thus equal :
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2 2
According the equilibrium point of equation (2), prototype p2 will be sitnated at a
distance C from the origin given by:

@

C L2
J'x.(c—x) = jx.(x—C)
0 C (5)

which gives C=(2/3).L.2. The average of the distances between stimuli x and p1 can
now be estimated by:

C L2
f(%.LZ—x).SZ.x dx + J(x—%.LZ).SZ.x dx = %.32.1,23 ©)

This equation is of course also valid for class A, replacing S2 and L2 respectively by
- S§1and L1. We can then compute the ratio of these distances averages, using equation
4):
s1.L1® L1
T T T )]
S2.L.2 L2
On the other hand, the ratio R can easily be repeatedly computed during the adaptation
of the prototypes location following equations (2) and (3). Each prototype memorizes
a supplementary information D(a), besides its coordinates and its class, which is
repeatedly adapted each time equation (2) is used according to:

C(a) = C(a) + o Ix(j)—p(a)l ®)

After a sufficient number of iterations, C(a) will represent the distance average
between prototype a and all stimuli falling in its influence region. The ratio of
parameters C for two prototypes gives thus L1/L.2, according to equation (7). By this
way, the distances from p1 and p2 where the boundary is to be fixed are known (these
distances are proportional to L1 and L2, according to the result of equation (5)).

3.3. Estimation of prototype density in each class

In the previous sections, it was mentioned that the number of prototypes in each class
must be proportional to their a priori probabilitiecs. To achieve this goal, the P
prototypes are generally chosen as the first P samples of the distribution (the first P
stimuli), assuming a good representation of this set. This is however not always
true, especially if P is small; in this case, adaptation of the class of some patterns
must be achieved.

A simple and relatively good way to adapt the class of the prototypes is illustrated

here for a two-class distribution (classes A and B), and can easily be extended to more
classes.
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(

Let us assign to each prototype a two-bits class vector v(a), whose initial value is
(0,0). Let us have a 'global class vector' V also initially set to (0,0). Each time a
stimulus is presented, the nearest prototype must be determined to allow adaptation
according to equations (2) and (3). Having determined this nearest prototype, we take
this opportunity to adapt its class vector by adding an increment of (1,0) if the
stimulus belongs to class A, and (0,1) if the stimulus belongs to class B. The global
class vector V is also adapted in the same way. The vector V continuously represents
thus the proportion of stimuli from both classes. Each K iterations (K being a
parameter to be adjusted depending on the size of the stimuli set), the proportions
estimated by V are compared with those of the actual prototypes. If there is a
difference, let us say that the number of prototypes in class B is too big with regards
to class A, one prototype of class B must change its class and be assigned to class A.
This prototype is determined among the prototypes in class B by taking the one
whose class vector v(a), after normalization to 1, is the most different from (0,1); this
prototype is indeed the one which was the most often influenced by prototypes of
class A, and thus the closest from the boundary.

This principle can be extended to more classes, by choosing the dimension of the
class vectors equal to the number of classes, and by adding vectors like (0, 0, 0, 1, 0)
at each presentation of a stimulus.

4, Conclusion

The enhancements described in this paper were applied to 1-D and 2-D pattern
classifications, with overlapping distributions. The performances are much closer
from the optimal Bayes classification than with the standard LVQ1 procedure, in
terms of number of correct classifications. Simulations were made on distributions
where the Bayes limit for correct classifications is about 95%, with about 20% of the
stimuli in overlapping regions. The average of our simulations gave approximately
13% of misclassifications with the LVQ1 algorithm, and 8% with our suggestions.
The 'optimal separation’ derived in section 3.2 is of course only valid for linear
approximations of the probability densities; this approximation is however generally
verified when the number of prototypes is sufficient. Further simulations will
evaluate the proposed enhancements of the LVQ1 algorithm on real multi-
dimensional and multi-class databases.
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