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Abstract. We present a new pyramidal decomposition of images for
compression purposes. This new transformation is based on the Lapla-
cian transform, where the classical half-band interpolators have been
replaced by multi-layer perceptrons. The obtained scheme allows still
a multiresolution access to the image, while its decorrelative properties
have considerably been improved. Experimental results on real pictures
show the validity of this approach.

1 Introduction

Pyramidal decomposition introduced by Burt and Adelson [1], has emerged as
a powerful tool for signal analysis and compression. It has been shown in [2]
that such a representation is consistent with the human visual perception. The
pyramidal structure, as illustrated in Figure 1, has two operators.

— Operator D is a decimator, which takes a sequence  and produces a low-pass
time-compressed version y. We will concentrate here on two-fold decimators.
Generally the decimators are implemented by an half-band filter followed
by a downsampler. The aim of the filter is to avoid aliasing artifacts on the
decimated signal [3].

— Operator I is an interpolator, which produces an upsampled version z of
its input y. We will also concentrate on two-fold interpolators. Generally,
interpolators are implemented by upsamplers (which merely inserts zero-

valued samples between adjacent samples of the input sequence y) followed
by an half-band filter.

A difference signal d is computed between z and 2; d can be viewed as
the unpredictable information from the lower resolution. An important feature
of the pyramidal decomposition is that the output signals, y and d permit a
perfect reconstruction of the original signal =. A multiresolution representation
is achieved by recursively applying the structure to y.

An important application of the Laplacian pyramid is image compression.
For such an application, the encoded signals are d and y rather than z for the
following reasons:

— d is largely decorrelated and so may be represented pixel per pixel with many
fewer bits than z.
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Fig. 1. Laplacian pyramid

— y is a low-pass version of ¢ with a reduced sample rate on which the same
decorrelative process can be applied.

— When d is more roughly encoded, in order to achieve higher compression
rate, the coding artifacts are less visible because the d signal is tuned with
the multiresolution structure of the human visual system.

The Laplacian pyramid was the first description of a multiresolution image
compression scheme : the code is constitued by an image at a low resolution
and by the details at each further resolution. Such a coding is, as an example,
very important for compatible high-definition TV coding [3] (the TV signal is
directly reachable without decoding the whole bit stream of the HDTV signal).
Further refinements of multiresolution image coding schemes were proposed in
the litterature, among which the most popular is the wavelet transform [4].

Recently, it has been proposed to adapt the multiresolution transform to the
signal contents : the main idea was to minimize the energy of the d signal by
taking into account the correlation factors of the original signal, z. This work
was performed either for wavelet transforms [5] and for Laplacian pyramid [6].
In both those two cases the decimators and the interpolators are implemented
by linear filters. We suggest here to follow the same path (minimize the variance
of d) by using

— linear decimators, in order to keep the low-pass version of z without anoying
aliasing artifacts,

— interpolators implemented with multi-layer perceptrons, in order to improve
the minimization of the variance of d.

As it will be shown, the aim is reached, with furthermore, an interpolated
version of z, namely 2, considerably more significant.

While other transforms implemented by artificial neural networks have al-
ready been studied for image compression purposes, as in [7} and [8], our ap-
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proach is original in the sense that it keeps the multiresolution decompsition free
of aliasing artifacts by using linear decimators.

The interpolators presented in this paper have been studied in the frame of
the Laplacian pyramid for image compression. However they lead also to useful
tools for image zooming.

2 Linear half-band Interpolators

In classical Laplacian pyramids the decimators and interpolators are imple-
mented by linear filters. Those operators are generally described in the Fourier
domain. Let us denote by w the impulse response of the interpolation and
decimation filters (we suppose as in [1] that they are the same). Denoting by
X(92), D(2), Z(12) and W(2) the (2-D) Fourier transforms of z,d, z and w we
have the following relations

Z(2) = W(2) (W(2)X(£2) + W(2 — ) X(2 — 7)) )

and
D(R2) = X(2) (1- W) - W(2)W(2 — x)X(2 — ) (2)

We see that the first term of D is a half-band highpas filtered version of X,
while the second term is due to aliasing. Therefore, the D signal represents more
or less the information of the input signal X in the pulsation interval [x/2, 7).
According to the Fourier description, and in accordance with the Cramer-Loéve
theorem, the successive D signal would be perfectly decorrelated if the w filters
are perfect half-band.

3 Limits of the half-band approach

The half-band approach results from the Fourier analysis. In the Fourier do-
main, it is supposed that the signals are stationary and unlimited in the spatial
domain. Such a model is however very poor when it is required to describe fea-
tures like contours, blobs or fractal textures. In such cases the image features
generate a wide range of non-structured frequencies. This is the reason why we
have searched for a wider range of operators than linear filters. Using multi-
layer perceptrons, we hope to handle the signal with an internal representation
in the operators taking into account non-linearities like contours and particular
textures.

At this stage of our study we have used a three-layer perceptron as an inter-
polator in a given direction. We have applied it separately in the vertical and
horizontal directions. The operators are adapted to the signal (minimization of
the variance of the d signal) by the backpropagation algorithm [9]. Further stud-
ies are planned in order to bind internal states of the interpolator to the features
of the image.
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4 Multilayer Perceptrons for Interpolation

We have implemented separable interpolators using one hidden layer percep-
trons. Each of the vertical and horizontal direction interpolators have 5 inputs
20 internal nodes and 2 ouputs. The weights of these NN are adapted by the
well-known backpropagation algorithm. The output of the i-th neuron in the
k-th layer is given by

w(i)="f [Z we—1(7, i)i’k-l(i)] (3)

where w_1(j,%) is the weight associated to the link between the nodes w(7)
and vi-1(z) and f[] is the hyperbolic tangent function.

The inputs and ouputs are in the range [-1, 1].
Our aim is to minimize the mean square of d, i.e.
PR . o\ 3
o3 = (a(i,5) = 2(5,3)) (4)
i!j
Such an error function allows to use the backpropagation algorithm and the
weights can then be adjusted by

Aw(j,3) = n 83(5) va(3) ()
where
&G =f [Z w1 (j, 1)”1(1)] > w(k, j)ba(k) (6)
1 k
and
Awy(j,3) = n 63(3) v2(3) )
where

83(j) = f'

3 ws(l, z)vz(n] (v3(3) ~ #(+.)) (®)
1

Some improvements have been made in order to increase the convergence speed
of the algorithm.

5 Experiments

The multilayer perceptrons described in the previous section have been used
as interpolators in the Laplacian pyramids. Figure 2 shows the KIEL picture,
which is a CCIR 601 image (576x720 pixels of 8 bits). Figure 3 shows the
corresponding decimated signal, obtained with a linear (gaussian) filter. Figure
4 is the interpolated image with the same linear filter in the interpolator. The
difference between the original image and the linear interpolation is shown on
Figure 5. Figure 6 and 7 show the image interpolated by multilayer perceptrons
and the corresponding difference with the original.
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Fig. 2. Kiel original

6 Conclusions

The main conclusion is that the multi-layer perceptrons perform a better inter-
polation than a linear filter. The entropy gain is noticable (about 20% in the case
of lossless compression). The interpolated image is considerably more pleasant
to see.

As a second conclusion, it has been noticed that the network learns to inter-
polate every image and is not specially suited to a particular picture.

Further study should analyse more in deep the theoretical behaviour of the
network for this particular task (Fourier analysis, handling of particular features,
internal states, ...).
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Fig. 3. Decimated Kiel
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Fig. 4. Linearly interpolated Kiel

Fig. 5. Difference between original and linearly interpolated Kiel
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Fig. 6. Neural Network interpolated Kiel

Fig. 7. Difference between original and neural network interpolated Kiel
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