
 
 
 
 
 
 
 
 
 
 
 
Abstract - Fuzzy measures are monotonic set functions used for 
modelling strength of coalition of criteria in multicriteria 
decision-making. However, the practical application of fuzzy 
measures is difficult. The problem of fuzzy measures acquisition 
can be thought as an engineering problem. In our study, we have 
investigated the issue of fuzzy measures acquisition from an 
engineering perspective. Many methods have been suggested for 
resolving this issue. We are presenting our theoretical study on 
these methods. We extend the state-of-art by proposing 
similarity-based methods for fuzzy measure acquisition. 
 
Index Terms - Fuzzy measures, multicriteria decision-making, 
similarity 
 

I.  INTRODUCTION 
 

Fuzzy measure is an important and fundamental concept 
used in many theories. It has emerged from the concept of 
capacities [1]. It is the extension of the classical measure 
theory [2]. Fuzzy measures are mainly used to model either 
uncertainty (as in the Dempster-Shafer theory of evidence or 
in possibility theory) or the strength of coalition of elements 
(as in game theory or multicriteria decision making) [3]. 
Dempster-Shafer theory of evidence deals with means of 
manipulating degrees of belief. It is based on the belief 
functions, which is used to combine separate pieces of 
information to calculate the probability of an event. Fuzzy 
measures model the belief functions in the Dempter-Shafer 
theory. 

 Fuzzy measures are considered conceptually important in 
these theories. However, their pragmatic determination can be 
problematic. This is mainly due to 2n-1 coefficients.  

We studied some data driven methods for fuzzy measure 
determination. We propose some new methods. One is using 
the concept of semantic similarity and the second one is using 
difference of weights between the attributes. We also propose 
an approach based on case-based reasoning.  
 

II.  LITERATURE REVIEW 
 

We are addressing the issue of fuzzy measure determination 
in the context of multicriteria decision-making (MCDM). 
MCDM is a systematic and formal decision model. It consists 
of evaluation of given set of alternatives against a given set of 
criteria. The chosen criteria can be dependent or independent. 
They can be positively or negatively related with each other.  
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This phenomenon of interaction is well explained in the 

literature [4][5]. 
The interaction between the criteria should be considered 

while aggregating the criteria evaluations. Normally, additive 
measures such as weighted average are used for aggregation. 
Due to the additive nature of these measures, the importance 
of the sub-set of criteria is equal to algebraic summation of 
their individual importance. However, this is not true in the 
presence of interactive criteria [6]. Also while determining the 
global evaluation of the objects, along with the individual 
importance of criteria, the importance of sub-sets of criteria 
must be considered. Hence additive measures are inadequate 
to model the phenomenon of interaction.  
 
A.  Non-additive measures  
 

Non-additive measures such as fuzzy measures and fuzzy 
integrals have the ability to model the issue of dependence of 
criteria.  
 
B. Fuzzy measures   
 

Fuzzy measures model the combined importance of a sub-
set of criteria. These are monotone set functions defined over a 
universal set C and a non-empty family ρ of sub-sets (i.e. 
power set) of C. It is defined as ]1,0[: →ρμ , where  

1)(&0)( == Xμφμ  
The fuzzy measures possess the property of super additively 

and sub additively, which models the positive and negative 
type of interaction respectively. For more detailed description 
of these properties, readers are kindly referred to the literature 
[2]. 
 
C.  Fuzzy integrals 
 

Fuzzy integrals are the incremental summation of the 
product of the criteria evaluation and its fuzzy measures. 
There are two types of commonly used fuzzy integrals viz 
Choquet integral [1] and Sugeno integral [7]. Choquet integral 
is used for a quantitative setting whereas Sugeno integral is 
proposed for a qualitative setting. Since we have assumed a 
quantitative setting, we would use Choquet integral for this 
work. Let C = {c1, c2,…..,cn} be the set of elements. μ be the 
fuzzy measure on C. The elements of C can be criteria in 
MCDM, players in cooperative games or set of beliefs in 
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Demester-shafer theory. The Choquet integral of the function f 
is   f : C  [0,1] with respect to μ is given by. 
          n 
Chμ = ∑  {f (c (i))– f(c (i-1))} μ (A (i))                                     (1) 
        i =1 
Where .(i) indicates that the indices have been permuted such 
that – 
0 ≤  f (c (1) ) ≤ f (c (2) ) ≤ ……..≤ f (c (n) ) ≤ 1 and A(i) = { c 
(i),…………. , c (n)}.  

We can observe that for aggregating “n” elements, we need 
to determine 2n-1 fuzzy measure coefficients. Hence their 
practical determination is the main issue especially for higher 
values of “n”.   
 

III. FUZZY MEASURE DETERMINATION METHODS 
 

In this section, we present some of the methods suggested to 
solve the problem of fuzzy measure determination.  
 
A.. Constructing the fuzzy measures by using Choquet or 
Sugeno integrals  
  

In this method by using a given monotone function μ  and 
some properties that new fuzzy measure ν  is required to 
possess, an acceptable fuzzy measure can be constructed by 
determining an appropriate measurable function on C.  
can be determined directly from the decision maker or experts 
[8]. The new set function 

f f

ν  can be obtained by using the 
Sugeno or Choquet integral. Then as per this approach, the 
new fuzzy measure ν  on the given data set would be ν  = cho 
( ).f μ  

For this method, the main requirement is the definition of 
μ  and required characteristics of v. In this method, we 
believe that there is no precise way of determining μ .  
 
B. Constructing Fuzzy Measures by Transformations  
 

Given a monotone function μ , the new monotone function 
can be found out by using suitable transformations. In this 
approach, the fuzzy measure can be determined as 
ν (C) = θ.μ(C)  

Where θ is the transformation operator. Various types of 
transformations are suggested. These transformations are done 
with the help of conditional parameters [8].  Transforms are 
applicable where there is some initial value of the fuzzy 
measure. Based on that value a new fuzzy measure can be 
computed.  
 
C.  Data-driven construction methods  
 

This is one class of methods where fuzzy measure 
determination is governed by data about the global evaluations 
obtained through experts or certain experiments. The general 
description of this method is as follows – 

Let a set }.,,.........,{ 21 ncccC = where each element is a 
criterion for given decision-making problem. Let 

be the set of objects, which are to 
be evaluated against C.  Assume the criteria evaluations for 
these alternatives are x

}..,.........2,{ 1 maaaA =

ij. Assume that the global evaluations 
for these alternatives be iξ obtained by some way.                                      
Let μ be the fuzzy measure on the above set C. Then the fuzzy 
measure on C can be determined by using the least square 
method, which is  

    Minimize  
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In all of the above methods mentioned in previous section, 
we note that a new fuzzy measure is determined by a given 
fuzzy measure or using the global evaluation of the objects 
Unlike previous methods, the following methods are based on 
the similarity-based reasoning.  
  

IV.  SUGGESTED NEW METHODS 
 

In this section, we would propose an approach, which is not 
based on pre-defined fuzzy measure. The main factor behind 
suggesting the new methods is the ease of application of fuzzy 
measure for a given practical problem. It is based on the 
similarity between the two data sets. The generalised 
description of our approach is as follows –  
Let },.......,,{ 21 ncccC = be the factor space for an object 

space, }.,,.........,{ 21 naaaA = . 

Let },.....,,{ 21 nwwwW = be the weights assigned to the 
elements of C. The elements of the factor space could be 
criteria in MCDM, players in game theory or beliefs in 
Dempster-shafer theory. The objects are to be evaluated by 
combining the individual evaluations of the elements of C. 
Consider the objects as a set of alternatives in MCDM. 
Suppose there is ‘n’ such factor & object spaces viz. C’ & A’, 
which are closely related with the above data. Since this data 
is related with the new factor space, there exists a similarity 
between the elements of the new factor space with the 
previous one. While computing such similarity we construct 
the factor space in such a way that the elements of the factor 
space are the elements of power set of C. The new fuzzy 
measure can be determined as the importance of the most 
similar element from the factor space. This similarity 
computation involves computing the similarity between a 
single element and sub set of elements for which the following 
methods are suggested [11].  
 
A. Determining  Fuzzy measures Using Weights    
 

The underlying idea in this approach is that the similarity 
between two criteria can be considered as the function of the 
importance or weights assigned to them. 
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Intuitively speaking, the above expression indicates that two 
criteria can be considered similar if they are equally important 
in a given decision domain. Based on this concept, the 
similarity between elements of C’ and sub-sets of C would be  
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The above computation would result in determining the 
closest element from the factor space C’ whose weight would 
give the required fuzzy measure μ . 
 
B. Determining Fuzzy Measures Using Taxonomical Data  

 
Other approach to resolve this problem would be 

constructing a data set of semantics of attributes. By using this 
approach the similarity between the attributes can be 
determined by constructing the data set of possible suitable 
senses of each attributes considered in the decision problem. 
In this approach, the semantic similarity between the attributes 
is governed by its information content [9]. The information 
content can also be termed as entropy. Thus Eqn (2) could be 
evaluated as      
sim (sk,cj)   =   max [- log p(c)] 
                     c ε (sk, cj)                     
          p(c)  =    freq (c) 
 
                           N 
p(c) is the individual probability of the frequency 
encountering a suitable sense of sk and  cj out of the possible N 
senses of the words in the given taxonomy. We have used 
taxonomy of Wordnet 2.0 for this computation [10]. The 
above approach is illustrated by choosing a random data set 
[11] in the context of MCDM. The results show such an 
approach can be a useful one for practical implementation of 
the fuzzy measures.  
 
C. Fuzzy Measures Acquisition using CBR 
 

Case-based reasoning (CBR) is a methodology that solves a 
new problem on the basis of previous problems and their 
solutions [12] [13]. Case-based reasoning can also be termed 
as similarity-based reasoning. Similarity-based reasoning is a 
sub-set of reasoning by analogy where a problem is solved 
using the analogies between the same domain. The problem 
definition is based on the context or a particular model chosen 
to represent the problem [14]. In a particular context, it is 
possible that the system has to rely on incomplete, imprecise 
or vague information. Fuzzy logic is proven to be a good tool 
for modelling the imprecise information. Combination of 
fuzzy logic with CBR results in Fuzzy logic-based CBR 
approaches [15][16]. Especially in our problem, the decision 
maker may not be able to express the criteria evaluations 
precisely. Hence we have chosen to adopt a fuzzy CBR 
approach for our problem. Fuzzy logic can be used in case 

representation [17] [18]. We are using fuzzy sets for 
representing criteria evaluations in a given decision problem. 

We now propose an approach in a purely quantitative 
setting. We propose an interactive model of fuzzy measure 
determination using a set of past decisions in the form of a 
case-base. We chose to use absolute values of the attributes. 
The model is presented in the following text.  
 1.Let },........,,{ 21 nCCCC =  be the set of criteria against 
which a set A of alternatives is to be 
evaluated. The individual weights, on the criteria is elicited 

from the decision maker such that∑ . 
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For the above decision problem, we have case-base in the 
following form.  
i. A set of attributes same as the new decision problem or 
target problem  
 ii. Absolute values of each attribute.  
iii. A set of individual attribute weights defined by the    
decision maker at the previous instance of making a decision.  
iv. A set of fuzzy measure coefficients defined at the 
previous instance of decision-making. We assume that these 
coefficients are constructed using expert’s feedback. 

S

v. Global evaluation of the object obtained by using the 
Choquet integral and the fuzzy measure coefficients obtained 
from the experts.   
2.  After constructing the above data set, the similarity of the 
cases w.r.t to the new decision problem is determined using 
City-block distance metric or Manhattan distance metric. 
There are various similarity measures in the literature [19]. 
However, since the case library consists of absolute values of 
the attributes, the Manhattan distance metric is a suitable 
measure for this approach. The Manhattan distance metric is 
defined as the absolute difference between the values of pair 
of attributes or criteria I.e.  
        || jkikij xxd −=                                                           (3) 
where xi & xj are the values of the attribute for attribute “k”. 
For computing the similarity, the distance values should be 
normalized in the range [0,1] by the maximum distance  
between the attribute value in the target case and 
corresponding values in the case base. The most similar case 
then can be computed by computing the global similarity of a 
given case from the case base with given alternative in the 
new decision problem. The global similarity will be calculated 
by simple weighted average of the local similarities of the 
given attributes. 

maxd

Thus we have, 
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The weight of the criteria “k” is denoted by . Based on this 
distance, the similarity is calculated as  

kw

          )_,_(1)_,_( uCasetCaseduCasetCaseSim −=               (5) 



where  = Target case i.e. the new decision problem 
& = Case from the case library i.e. past decision 
problems. 

tCase _
uCase _

1. After such similarity computation the case with maximum 
similarity would be retrieved and the values of the fuzzy 
measures would be considered for solving the new decision 
problem. However, the decision maker is likely to have 
different importance values. Hence using a direct rating 
method [20], we propose an importance scale designed to 
obtain the new fuzzy measure coefficients from the decision 
maker. The importance scale is designed to ask the decision 
maker about the importance of sub-set of criteria. The decision 
maker can directly rate the sub-set of criteria in a range 
between 0 and 1.  The chosen range is divided into different 
linguistic variables. It is assumed that the decision maker 
would normally rate the importance of subset of criteria using 
the linguistic variables. The designed scale is shown in the 
tabular form below. 

Table 1: Importance Scale 

 
Based on this scale, the new fuzzy measures can be elicited 

from the decision maker. The agreement of the decision maker 
with the values elicited from this experiment and the values 
given by the similarity computation indicates the utility of the 
proposed system.  
 
D. ILLUSTRATION 
 
The sample data set should involve absolute values of the 
criteria. There should be a mix of numerical and ordinal 
values. Our search for a pre-defined and standard data set 
shows that it is difficult to obtain such data set for the 
illustration. Hence we have constructed a customized data set. 
The following is a classic car selection problem where 4 cars 
are to be evaluated against a set of 5 criteria. 

Table 2. Sample Data set for car selection problem 

 Price Power Fuel 
Economy 

Comfort 

Car A $30,000 2000 10 Good 
Car B $25,000 1000 12 OK 
Car C $20,000 1500 12 OK 
Car D $35,000 2500 8 Very 

Good 

Suppose for the above data set, we have case base of past 
fuzzy measure values in the form of a vector of dimension j x 
k where j is the number of cases and k is 2n-1 fuzzy measure 
coefficients. The case base for this data set would be 
represented as below.  

C = [Casei, {k1, k2,…….,k2n-1}]. 
This sample data set is built using Microsoft Access 

DBMS. We have chosen this tool due to its simplicity and also 
smaller scale of the application. After performing the 
similarity computations, we get the following  

Car A is most similar to Case 2 
 Hence for computing the worth of Car A, the default 

values of the fuzzy measures applied in case 2 could be used 
for evaluating worth of the car A. Similarly, 
                         Car B is most similar to Case 4 
                         Car C is most similar to Case 4 
                         Car D is most similar to Case 1  
And hence based on the above result, the worth of cars is 
shown in Table 4 below. 
 
Table 3. Car Evaluations 

 
Alternatives Global Evaluations 

Car A 0.78 
Car C 0.77 
Car D 0.68 
Car B 0.675 

 
By visual observation of the data in Table 2 and the results 

in table 4, the decision maker may not agree with this ranking 
as one can argue about the higher ranking of B. For testing the 
above result, the fuzzy measures are elicited from the decision 
makers. We performed hypothetical experimentation with 10 
decision makers.  
 
Table 4. Evaluations based on decision maker’s input  
 

Alternatives Global Evaluation based on the 
Importance Scale 

Car A 0.78 
Car C 0.77 
Car D 0.77 
Car B 0.68 

 
From the above results, we can observe that the decision 
maker had ranked only car C & D equally. Other evaluations 
are same as the system’s evaluations using the default case-
base. Hence the system results are in an approximate 
agreement with the decision maker and it provides an optimal 
solution. 
 

V.     CONCLUSION AND FUTURE DIRECTION 
 

In this work, we have studied various methods for 
determining monotonic set functions i.e. fuzzy measures. We 
mainly studied the pragmatic issues associated with the fuzzy 
measures and some approaches to resolve those issues. Data 
driven methods suggest an optimal approximate solution. 

Extremely 0 
Highly 0.1 
Very 0.2 
Strongly 0.3 

Sub-set is 
Less 
important 

Moderately 0.4 
 Equally 0.5 

Moderately 0.6 
Strongly 0.7 
Very 0.8 

Sub-set is 
More 
important 

Highly 0.9 
 Extremely 1 



However, in those methods fuzzy measure is determined based 
on a pre-defined value of the fuzzy measure. We have 
proposed new approaches based on the similarity between the 
two data sets. These approaches give offer a significantly 
different perspective towards fuzzy measure acquisition 
problems. Hence these approaches make a valuable 
contribution in the field of fuzzy measures theory. 
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