Get tokens from text analysis Generally available

POST /{index}/_analyze

All methods and paths for this operation:

GET /_analyze

POST /_analyze
GET /{index}/_analyze
POST /{index}/_analyze

The analyze API performs analysis on a text string and returns the resulting tokens.

Generating excessive amount of tokens may cause a node to run out of memory. The index.analyze.max_token_count setting enables you to limit the number of tokens that can be produced. If more than this limit of tokens gets generated, an error occurs. The _analyze endpoint without a specified index will always use 10000 as its limit.

Required authorization

  • Index privileges: index
External documentation

Path parameters

  • index string Required

    Index used to derive the analyzer. If specified, the analyzer or field parameter overrides this value. If no index is specified or the index does not have a default analyzer, the analyze API uses the standard analyzer.

Query parameters

  • index string

    Index used to derive the analyzer. If specified, the analyzer or field parameter overrides this value. If no index is specified or the index does not have a default analyzer, the analyze API uses the standard analyzer.

application/json

Body

  • analyzer string

    The name of the analyzer that should be applied to the provided text. This could be a built-in analyzer, or an analyzer that’s been configured in the index.

  • attributes array[string]

    Array of token attributes used to filter the output of the explain parameter.

  • char_filter array

    Array of character filters used to preprocess characters before the tokenizer.

    External documentation
  • explain boolean

    If true, the response includes token attributes and additional details.

    Default value is false.

  • field string

    Path to field or array of paths. Some API's support wildcards in the path to select multiple fields.

  • filter array

    Array of token filters used to apply after the tokenizer.

    External documentation
  • normalizer string

    Normalizer to use to convert text into a single token.

  • text string | array[string]

Responses

  • 200 application/json
    Hide response attributes Show response attributes object
    • detail object
      Hide detail attributes Show detail attributes object
      • analyzer object
        Hide analyzer attributes Show analyzer attributes object
        • name string Required
        • tokens array[object] Required
          Hide tokens attributes Show tokens attributes object
          • bytes string Required
          • end_offset number Required
          • keyword boolean
          • position number Required
          • positionLength number Required
          • start_offset number Required
          • termFrequency number Required
          • token string Required
          • type string Required
      • charfilters array[object]
        Hide charfilters attributes Show charfilters attributes object
        • filtered_text array[string] Required
        • name string Required
      • custom_analyzer boolean Required
      • tokenfilters array[object]
        Hide tokenfilters attributes Show tokenfilters attributes object
        • name string Required
        • tokens array[object] Required
          Hide tokens attributes Show tokens attributes object
          • bytes string Required
          • end_offset number Required
          • keyword boolean
          • position number Required
          • positionLength number Required
          • start_offset number Required
          • termFrequency number Required
          • token string Required
          • type string Required
      • tokenizer object
        Hide tokenizer attributes Show tokenizer attributes object
        • name string Required
        • tokens array[object] Required
          Hide tokens attributes Show tokens attributes object
          • bytes string Required
          • end_offset number Required
          • keyword boolean
          • position number Required
          • positionLength number Required
          • start_offset number Required
          • termFrequency number Required
          • token string Required
          • type string Required
    • tokens array[object]
      Hide tokens attributes Show tokens attributes object
      • end_offset number Required
      • position number Required
      • positionLength number
      • start_offset number Required
      • token string Required
      • type string Required
GET /_analyze
{
  "analyzer": "standard",
  "text": "this is a test"
}
resp = client.indices.analyze(
    analyzer="standard",
    text="this is a test",
)
const response = await client.indices.analyze({
  analyzer: "standard",
  text: "this is a test",
});
response = client.indices.analyze(
  body: {
    "analyzer": "standard",
    "text": "this is a test"
  }
)
$resp = $client->indices()->analyze([
    "body" => [
        "analyzer" => "standard",
        "text" => "this is a test",
    ],
]);
curl -X GET -H "Authorization: ApiKey $ELASTIC_API_KEY" -H "Content-Type: application/json" -d '{"analyzer":"standard","text":"this is a test"}' "$ELASTICSEARCH_URL/_analyze"
client.indices().analyze(a -> a
    .analyzer("standard")
    .text("this is a test")
);
You can apply any of the built-in analyzers to the text string without specifying an index.
{
  "analyzer": "standard",
  "text": "this is a test"
}
If the text parameter is provided as array of strings, it is analyzed as a multi-value field.
{
  "analyzer": "standard",
  "text": [
    "this is a test",
    "the second text"
  ]
}
You can test a custom transient analyzer built from tokenizers, token filters, and char filters. Token filters use the filter parameter.
{
  "tokenizer": "keyword",
  "filter": [
    "lowercase"
  ],
  "char_filter": [
    "html_strip"
  ],
  "text": "this is a <b>test</b>"
}
Custom tokenizers, token filters, and character filters can be specified in the request body.
{
  "tokenizer": "whitespace",
  "filter": [
    "lowercase",
    {
      "type": "stop",
      "stopwords": [
        "a",
        "is",
        "this"
      ]
    }
  ],
  "text": "this is a test"
}
Run `GET /analyze_sample/_analyze` to run an analysis on the text using the default index analyzer associated with the `analyze_sample` index. Alternatively, the analyzer can be derived based on a field mapping.
{
  "field": "obj1.field1",
  "text": "this is a test"
}
Run `GET /analyze_sample/_analyze` and supply a normalizer for a keyword field if there is a normalizer associated with the specified index.
{
  "normalizer": "my_normalizer",
  "text": "BaR"
}
If you want to get more advanced details, set `explain` to `true`. It will output all token attributes for each token. You can filter token attributes you want to output by setting the `attributes` option. NOTE: The format of the additional detail information is labelled as experimental in Lucene and it may change in the future.
{
  "tokenizer": "standard",
  "filter": [
    "snowball"
  ],
  "text": "detailed output",
  "explain": true,
  "attributes": [
    "keyword"
  ]
}
Response examples (200)
A successful response for an analysis with `explain` set to `true`.
{
  "detail": {
    "custom_analyzer": true,
    "charfilters": [],
    "tokenizer": {
      "name": "standard",
      "tokens": [
        {
          "token": "detailed",
          "start_offset": 0,
          "end_offset": 8,
          "type": "<ALPHANUM>",
          "position": 0
        },
        {
          "token": "output",
          "start_offset": 9,
          "end_offset": 15,
          "type": "<ALPHANUM>",
          "position": 1
        }
      ]
    },
    "tokenfilters": [
      {
        "name": "snowball",
        "tokens": [
          {
            "token": "detail",
            "start_offset": 0,
            "end_offset": 8,
            "type": "<ALPHANUM>",
            "position": 0,
            "keyword": false
          },
          {
            "token": "output",
            "start_offset": 9,
            "end_offset": 15,
            "type": "<ALPHANUM>",
            "position": 1,
            "keyword": false
          }
        ]
      }
    ]
  }
}





























































































Perform chat completion inference Generally available

POST /_inference/chat_completion/{inference_id}/_stream

The chat completion inference API enables real-time responses for chat completion tasks by delivering answers incrementally, reducing response times during computation. It only works with the chat_completion task type for openai and elastic inference services.

NOTE: The chat_completion task type is only available within the _stream API and only supports streaming. The Chat completion inference API and the Stream inference API differ in their response structure and capabilities. The Chat completion inference API provides more comprehensive customization options through more fields and function calling support. If you use the openai, hugging_face or the elastic service, use the Chat completion inference API.

Path parameters

  • inference_id string Required

    The inference Id

Query parameters

  • timeout string

    Specifies the amount of time to wait for the inference request to complete.

    Values are -1 or 0.

application/json

Body Required

  • messages array[object] Required

    A list of objects representing the conversation. Requests should generally only add new messages from the user (role user). The other message roles (assistant, system, or tool) should generally only be copied from the response to a previous completion request, such that the messages array is built up throughout a conversation.

    An object representing part of the conversation.

    Hide messages attributes Show messages attributes object
    • content string | array[object]

      One of:
    • role string Required

      The role of the message author. Valid values are user, assistant, system, and tool.

    • tool_call_id string
    • tool_calls array[object]

      Only for assistant role messages. The tool calls generated by the model. If it's specified, the content field is optional. Example:

      {
        "tool_calls": [
            {
                "id": "call_KcAjWtAww20AihPHphUh46Gd",
                "type": "function",
                "function": {
                    "name": "get_current_weather",
                    "arguments": "{\"location\":\"Boston, MA\"}"
                }
            }
        ]
      }
      

      A tool call generated by the model.

      Hide tool_calls attributes Show tool_calls attributes object
      • id string Required
      • function object Required

        The function that the model called.

        Hide function attributes Show function attributes object
        • arguments string Required

          The arguments to call the function with in JSON format.

        • name string Required

          The name of the function to call.

      • type string Required

        The type of the tool call.

  • model string

    The ID of the model to use.

  • max_completion_tokens number

    The upper bound limit for the number of tokens that can be generated for a completion request.

  • stop array[string]

    A sequence of strings to control when the model should stop generating additional tokens.

  • temperature number

    The sampling temperature to use.

  • tool_choice string | object

    One of:
  • tools array[object]

    A list of tools that the model can call. Example:

    {
      "tools": [
          {
              "type": "function",
              "function": {
                  "name": "get_price_of_item",
                  "description": "Get the current price of an item",
                  "parameters": {
                      "type": "object",
                      "properties": {
                          "item": {
                              "id": "12345"
                          },
                          "unit": {
                              "type": "currency"
                          }
                      }
                  }
              }
          }
      ]
    }
    

    A list of tools that the model can call.

    Hide tools attributes Show tools attributes object
    • type string Required

      The type of tool.

    • function object Required

      The completion tool function definition.

      Hide function attributes Show function attributes object
      • description string

        A description of what the function does. This is used by the model to choose when and how to call the function.

      • name string Required

        The name of the function.

      • parameters object

        The parameters the functional accepts. This should be formatted as a JSON object.

      • strict boolean

        Whether to enable schema adherence when generating the function call.

  • top_p number

    Nucleus sampling, an alternative to sampling with temperature.

Responses

  • 200 application/json
POST /_inference/chat_completion/{inference_id}/_stream
POST _inference/chat_completion/openai-completion/_stream
{
  "model": "gpt-4o",
  "messages": [
      {
          "role": "user",
          "content": "What is Elastic?"
      }
  ]
}
resp = client.inference.chat_completion_unified(
    inference_id="openai-completion",
    chat_completion_request={
        "model": "gpt-4o",
        "messages": [
            {
                "role": "user",
                "content": "What is Elastic?"
            }
        ]
    },
)
const response = await client.inference.chatCompletionUnified({
  inference_id: "openai-completion",
  chat_completion_request: {
    model: "gpt-4o",
    messages: [
      {
        role: "user",
        content: "What is Elastic?",
      },
    ],
  },
});
response = client.inference.chat_completion_unified(
  inference_id: "openai-completion",
  body: {
    "model": "gpt-4o",
    "messages": [
      {
        "role": "user",
        "content": "What is Elastic?"
      }
    ]
  }
)
$resp = $client->inference()->chatCompletionUnified([
    "inference_id" => "openai-completion",
    "body" => [
        "model" => "gpt-4o",
        "messages" => array(
            [
                "role" => "user",
                "content" => "What is Elastic?",
            ],
        ),
    ],
]);
curl -X POST -H "Authorization: ApiKey $ELASTIC_API_KEY" -H "Content-Type: application/json" -d '{"model":"gpt-4o","messages":[{"role":"user","content":"What is Elastic?"}]}' "$ELASTICSEARCH_URL/_inference/chat_completion/openai-completion/_stream"
client.inference().chatCompletionUnified(c -> c
    .inferenceId("openai-completion")
    .chatCompletionRequest(ch -> ch
        .messages(m -> m
            .content(co -> co
                .string("What is Elastic?")
            )
            .role("user")
        )
        .model("gpt-4o")
    )
);
Run `POST _inference/chat_completion/openai-completion/_stream` to perform a chat completion on the example question with streaming.
{
  "model": "gpt-4o",
  "messages": [
      {
          "role": "user",
          "content": "What is Elastic?"
      }
  ]
}
Run `POST _inference/chat_completion/openai-completion/_stream` to perform a chat completion using an Assistant message with `tool_calls`.
{
  "messages": [
      {
          "role": "assistant",
          "content": "Let's find out what the weather is",
          "tool_calls": [ 
              {
                  "id": "call_KcAjWtAww20AihPHphUh46Gd",
                  "type": "function",
                  "function": {
                      "name": "get_current_weather",
                      "arguments": "{\"location\":\"Boston, MA\"}"
                  }
              }
          ]
      },
      { 
          "role": "tool",
          "content": "The weather is cold",
          "tool_call_id": "call_KcAjWtAww20AihPHphUh46Gd"
      }
  ]
}
Run `POST _inference/chat_completion/openai-completion/_stream` to perform a chat completion using a User message with `tools` and `tool_choice`.
{
  "messages": [
      {
          "role": "user",
          "content": [
              {
                  "type": "text",
                  "text": "What's the price of a scarf?"
              }
          ]
      }
  ],
  "tools": [
      {
          "type": "function",
          "function": {
              "name": "get_current_price",
              "description": "Get the current price of a item",
              "parameters": {
                  "type": "object",
                  "properties": {
                      "item": {
                          "id": "123"
                      }
                  }
              }
          }
      }
  ],
  "tool_choice": {
      "type": "function",
      "function": {
          "name": "get_current_price"
      }
  }
}
Response examples (200)
A successful response when performing a chat completion task using a User message with `tools` and `tool_choice`.
event: message
data: {"chat_completion":{"id":"chatcmpl-Ae0TWsy2VPnSfBbv5UztnSdYUMFP3","choices":[{"delta":{"content":"","role":"assistant"},"index":0}],"model":"gpt-4o-2024-08-06","object":"chat.completion.chunk"}}

event: message
data: {"chat_completion":{"id":"chatcmpl-Ae0TWsy2VPnSfBbv5UztnSdYUMFP3","choices":[{"delta":{"content":Elastic"},"index":0}],"model":"gpt-4o-2024-08-06","object":"chat.completion.chunk"}}

event: message
data: {"chat_completion":{"id":"chatcmpl-Ae0TWsy2VPnSfBbv5UztnSdYUMFP3","choices":[{"delta":{"content":" is"},"index":0}],"model":"gpt-4o-2024-08-06","object":"chat.completion.chunk"}}

(...)

event: message
data: {"chat_completion":{"id":"chatcmpl-Ae0TWsy2VPnSfBbv5UztnSdYUMFP3","choices":[],"model":"gpt-4o-2024-08-06","object":"chat.completion.chunk","usage":{"completion_tokens":28,"prompt_tokens":16,"total_tokens":44}}} 

event: message
data: [DONE]