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1 Introduction

To motivate this survey, we begin with a simple problem that demonstrates a
powerful fundamental idea. Suppose that n balls are thrown into n bins, with
each ball choosing a bin independently and uniformly at random. Then the
maximum load, or the largest number of balls in any bin, is approximately
log n= log logn with high probability.1 Now suppose instead that the balls
are placed sequentially, and each ball is placed in the least loaded of d � 2
bins chosen independently and uniformly at random. Azar, Broder, Karlin,
and Upfal showed that in this case, the maximum load is log logn= log d +
�(1) with high probability [ABKU99].

The important implication of this result is that even a small amount of
choice can lead to drastically di�erent results in load balancing. Indeed,
having just two random choices (i.e., d = 2) yields a large reduction in
the maximum load over having one choice, while each additional choice
beyond two decreases the maximum load by just a constant factor. Over
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1We use with high probability to mean with probability at least 1 �O(1=n�) for some
constant �; generally this � will be 1. A precise analysis shows that the expected maximum
load is ��1(n)� 3=2 + o(1) [Gon81].
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Figure 1: Two choices, the balls-and-bins model.

the past several years, there has been a great deal of research investigating
this phenomenon. The picture that has emerged from this research is that
the power of two choices is not simply an artifact of the simple balls-and-bins
model, but a general and robust phenomenon applicable to a wide variety
of situations. Indeed, this two-choice paradigm continues to be applied and
re�ned, and new results appear frequently.

1.1 Applications of the two-choice paradigm

The two-choice paradigm and balls-and-bins models have several interesting
applications. We outline a few here and we point out more applications in
the succeeding sections.

1.1.1 Hashing

Although the balls-and-bins models we discuss may appear simplistic, they
have many interesting applications to hashing. In particular, the two-choice
paradigm can be used to reduce the maximum time required to search a hash
table. The standard hash table implementation [Knu73] uses a single hash
function to map keys to entries in a table. If there is a collision, i.e., if two or
more keys map to the same table entry, then all the colliding keys are stored
in a linked list called a chain. Thus, each table entry is the head of a chain
and the maximum time to search for a key in the hash table is proportional
to the length of the longest chain in the table. If the hash function is perfectly
random | i.e., if each key is mapped to an entry of the table independently
and uniformly at random, and n keys are sequentially inserted into a table
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with n entries | then the length of the longest chain is �(log n= log logn)
with high probability. This bound follows from the analogous bound on
the maximum load in the classical balls-and-bins problem where each ball
chooses a single bin independently and uniformly at random.

Now suppose that we use two perfectly random hash functions. When
inserting a key, we apply both hash functions to determine the two possible
table entries where the key can be inserted. Then, of the two possible
entries, we add the key to the shorter of the two chains. To search for an
element, we have to search through the chains at the two entries given by
both hash functions. If n keys are sequentially inserted into the table, the
length of the longest chain is �(log logn) with high probability, implying
that the maximum time needed to search the hash table is �(log log n) with
high probability. This bound also follows from the analogous bound for the
balls-and-bins problem where each ball chooses two bins at random.

In general, using multiple hash functions can be advantageous when the
key parameter is the maximum number of keys located on a chain at a table
entry. Such situations also arise naturally in practice when one hopes to �t
each chain in a single cache line, as described for example in [BM00].

The two-choice paradigm applied to hashing has several advantages over
other proposed hashing techniques (e.g., [BK90, DKM+88, FKS84]) in that
it uses only two hash functions, it is easy to parallelize, and it is on-line
(i.e., it does not involve re-hashing of data). Furthermore, it is not necessary
to have perfectly random hash functions: similar results hold by choosing
our hash functions randomly from smaller families of hash functions; see
[KLM96].

1.1.2 Shared memory emulations on DMMs

One of the earliest applications of the two-choice paradigm is in the study of
algorithms to emulate shared memory machines (as, for example, PRAMs)
on distributed memory machines (DMMs) [CMS95, KLM96, MSS96]. In
such emulations, the processors and the memory cells of the shared memory
machine are distributed to the processors and memory modules of the DMM
using appropriately chosen (universal) hash functions. Typically, the goal of
the emulation algorithm is to minimize slowdown, or delay, of the emulation,
which is the time needed by the DMM to emulate one step of the shared
memory machine. Several of the balls-and-bins ideas and analysis are rel-
evant in this context since minimizing slowdown involves orchestrating the
communication between the processors (the balls) and the memory modules
(the bins) so as to avoid memory contention, caused by several processors
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attempting to access the same memory module.

1.1.3 Load balancing with limited information

Another area where the two-choice paradigm has proven useful is the prob-
lem of dynamically assigning tasks to servers (e.g., disk servers or network
servers). For simplicity, suppose that all the servers and all the tasks are
identical, and that any task can be assigned to any server. Furthermore,
suppose that the tasks arrive sequentially and need to be assigned to a
server. Clearly, in the interest of response time of the tasks, we would like
to keep the maximum load (where here load refers to the number of tasks)
of any server as small as possible. Ideally, when a task arrives requesting
a server, we would like to assign it to the least loaded server. However,
complete information about the loads of all the servers may be expensive
to obtain. For instance, querying a server for its load may involve send-
ing a message and waiting for a response, processing an interrupt at the
server, etc. An alternative approach that requires no information about the
server loads is to simply allocate each task to a random server. If there are n
tasks and n servers, using the balls-and-bins analogy, some server is assigned
�(log n= log logn) tasks with high probability. If instead each task obtains
limited information by querying the load of two servers chosen independently
and uniformly at random, and allocates itself to the least loaded of these
two servers, then the maximum load on the n servers is only �(log logn)
with high probability.

1.1.4 Low-congestion circuit routing

Many of the early applications of the two-choice approach have a distinct
load balancing 
avor. Cole et al. [CMM+98] show that the two-choice
paradigm can be applied e�ectively in a di�erent context, namely, that of
routing virtual circuits in interconnection networks with low congestion.
They show how to incorporate the two-choice approach to a well-studied
paradigm due to Valiant for routing virtual circuits to achieve signi�cantly
lower congestion, as we discuss in Section 3.

1.2 A brief history

We now provide a brief history of research on the two-choice paradigm. In
the sections that follow, we discuss the results in more detail.

The earliest work we know that applies the two-choice paradigm to load
balancing is that of Eager, Lazowska, and Zahorjan [ELZ86a]. The authors
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provide empirical evidence that a load balancing system based on allowing
tasks to migrate to the least loaded of randomly selected processors improves
performance. They also derive analytical results based on an appropriate
Markov model. Their approach is related to 
uid limit models. Recent work
by Vvedenskaya, Dobrushin, and Karpelevich [VDK96] and Mitzenmacher
[Mit96b, Mit96a] has led to an enduring technique for analysis of these load
balancing systems based on 
uid limit models, as described in Section 4.

The �rst rigorous analytical demonstration of the power of two choices
is due to Karp, Luby, and Meyer auf der Heide [KLM92, KLM96], who con-
sidered the possibility of using two hash functions in the context of PRAM
emulation by DMMs. Subsequent work on shared memory emulations on
DMMs [CMS95, MSS96] has given rise to a powerful technique for analy-
sis called the witness tree method. (See Section 3 for more details on this
technique.)

The balls-and-bins problem has proven to be a fertile ground for investi-
gating the power of two choices. The classical balls-and-bins problem, where
each ball is thrown into a bin chosen independently and uniformly at ran-
dom, has been studied for several decades [JK77]. Azar, Broder, Karlin,
and Upfal [ABKU99] �rst considered the sequential multiple-choice balls-
and-bins problem, where each ball chooses d � 2 bins independently and
uniformly at random, and the balls are thrown sequentially into the least
loaded of its d bin choices. This seminal paper introduced an important
and intuitive technique for analyzing algorithms that use the two-choice
paradigm, known as the layered induction method. In Section 2, we present
this technique in more detail. Adler et al. [ACMR95] introduced the par-

allel multiple-choice balls-and-bins problem where each ball chooses d � 2
random bins independently and uniformly at random, but the balls must
be assigned to bins in parallel by performing a limited number of rounds of
communication. Since this survey focuses on results that show the power
of having multiple choices in balls-and-bins problems, whenever we refer to
a balls-and-bins problem in the remainder of this chapter, we will implic-
itly be referring to a multiple-choice balls-and-bins problem (i.e., a problem
where each ball is assigned d � 2 random bin choices), unless we clearly
state otherwise.

A balls-and-bins problem (such as those described above) where balls are
inserted but never deleted from the system is referred to as a static problem.
In a dynamic problem, balls can also be deleted from the system. Azar et al.
[ABKU99] introduced a simple dynamic model for the sequential balls-and-
bins problem, in which at each step a random ball is deleted and a new ball
is inserted into the system; each time a ball is inserted, it is placed in the
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least loaded of two bins chosen independently and uniformly at random. An
alternative to random deletions is adversarial deletions where an oblivious
adversary decides on the sequence of insertions and deletions of the balls.
(In this context, an oblivious adversary is one that speci�es the sequence
of insertions and deletions of the balls in advance, without knowledge of the
random bin choices of the balls.) Only recently, this more powerful dynamic
model has been analyzed [CMM+98, CFM+98]. Dynamic models have also
been explored in connection with the parallel balls-and-bins problem. For
instance, Adler et al. [ABS98] consider the situation where the balls are
queued in �rst-in, �rst-out (FIFO) order at each bin and the �rst ball in
each queue is deleted at each time step.

Finally, a uniform balls-and-bins problem (again, such as the ones de-
scribed above) is a d-choice balls-and-bins problem where the d random
choices assigned to a ball are independent and uniform. V�ocking [V�oc99]
was the �rst to show how nonuniform ball placement strategies can help
reduce the maximum bin load.

1.3 The three major techniques

One interesting aspect of the work in this rich area is that several di�erent
techniques have proven useful. The main techniques used to analyze balls-
and-bins problems are layered induction, witness trees, and 
uid limits via
di�erential equations. Our survey is organized by successively discussing
these three techniques, so that our focus is at least as much on the techniques
as on the results obtained by using them. In fact, we demonstrate all of these
approaches with examples. In presenting our survey in this manner, we hope
to provide the reader with the necessary tools to pursue further research in
this area.

In Section 2, we discuss the layered induction technique pioneered by
Azar, Broder, Karlin, and Upfal [ABKU99]. In this approach, we bound
the maximum load by bounding the number of bins with k or more balls
via induction on k. The layered induction approach provides nearly tight
results and a straightforward attack for handling balls-and-bins problems.
It has proven e�ective for much more than the original problem studied in
[ABKU99]. For example, as we explain, the layered induction approach can
be used in a dynamic setting where an adversary inserts and deletes balls
from the system over time.

In Section 3, we discuss an alternative technique for handling these prob-
lems called the witness tree method. The key idea of this approach is to
show that if a \bad event" occurs | in our case, if some bin is heavily
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loaded | one can extract from the history of the process a suitable \tree of
events" called the witness tree. The probability of the bad event can then
be bounded by the probability of occurrence of a witness tree. Generally,
witness tree arguments involve the most complexity, and they have proven
to be the most challenging in terms of obtaining tight results. This com-
plexity, however, yields strength: witness tree arguments tend to provide
the strongest results, especially for dynamic settings that include both dele-
tions and re-insertions of items. Furthermore, the more sophisticated uses
of the two-choice paradigm in the design of communication protocols are
more easily amenable to witness tree analyses.

In Section 4, we discuss a �nal technique, which studies algorithms that
use the two-choice paradigm via 
uid limit models. If one pictures the size
(in this case, the number of bins) of the system growing to in�nity, the re-
sulting system can then be described by an appropriate family of di�erential
equations. The 
uid limit approach is more standard in the queueing theory
literature, where it is used more widely, and it has proven especially useful
for studying variations of the balls-and-bins problems that map naturally
to queueing problems. A major weakness of the 
uid limit approach is that
even minor dependencies in the system can make the approach untenable.
Also, its theoretical basis is at times incomplete; one must often return to a
more concrete probabilistic argument to obtain the desired results. In many
ways, however, it is the simplest and most 
exible of the three methods.
Moreover, when a problem can be put in this framework, the di�erential
equations generally yield extremely accurate numerical results.

2 The Layered Induction Approach

In this section, we address the results in the balls-and-bins literature that
follow the layered induction approach introduced by Azar, Broder, Karlin,
and Upfal in [ABKU99]. In this approach, we inductively bound the number
of bins that contain at least j balls conditioned on the number of bins that
contain at least j� 1 balls. Azar et al. show that, in the sequential d-choice
balls-and-bins problem, the maximum load of a bin is log logn= log d+�(1)
with high probability. They also show that this bound is optimal (up to an
additive constant term) among all the uniform multiple-choice placement
strategies.

The layered induction approach in fact proved to be also useful in dy-
namic scenarios. For example, Azar et al. analyze the situation where at
each step a random ball is deleted and a new ball is inserted in the system
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using layered induction [ABKU99]. Recently some progress was made in
analyzing the behavior of the balls-and-bins problem under more realistic
deletion scenarios. In [CFM+98], Cole et al. consider two natural situations:
the particular case where balls that have been in the system for the longest
time are deleted, and the more general case where an adversary speci�es the
sequence of insertions and deletions in advance. They show how to use lay-
ered induction arguments to provide simple proofs of upper bounds on the
maximum bin load for these two scenarios. One of the main contributions
of Cole et al. in [CFM+98] was to demonstrate how the layered induction
techniques can yield interesting results in realistic deletion scenarios.

This section is organized as follows: in Section 2.1, we show the layered
induction approach introduced by Azar et al. for the sequential balls-and-
bins problem, and show how this approach can be modi�ed to handle some
extensions of the sequential problem; Section 2.2 shows how the layered
induction approach can be adapted to actually prove lower bound results.

2.1 The approach

In this section, we describe the main results in the balls-and-bins literature
that use layered induction for placing an upper bound on the maximum bin
load. Our main goal is to make the reader understand the basic layered
induction techniques in detail, so we start by presenting the simple layered
induction argument for the sequential balls-and-bins problem due to Azar
et al. [ABKU99]. Then we present other balls-and-bins results obtained by
layered induction, and show how to modify the original argument of Azar
et al. to hold for these results. The proof and notation we present here are
very close to the original paper by Azar et al. We have made some minor
changes in the interest of clarity.

Theorem 1 Suppose that n balls are sequentially placed into n bins. Each

ball is placed in the least full bin at the time of the placement, among d bins,
d � 2, chosen independently and uniformly at random. Then after all the

balls are placed, with high probability the number of balls in the fullest bin is

at most log logn= log d+O(1).

Azar et al. also show in [ABKU99] that the maximum bin load is at least
log logn= log d�O(1) (see Section 2.2), proving that the maximum bin load
for this problem is in fact equal to log logn= log d+�(1).

Before presenting the proof, which is somewhat technical, we brie
y
sketch an intuitive analysis. For any given i, instead of trying to determine
the number of bins with load exactly i, it is easier to study the number of
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bins with load at least i. The argument proceeds via what is, for the most
part, a straightforward induction. Let the height of a ball be one more than
the number of balls already in the bin in which the ball is placed. That is, if
we think of balls as being stacked in the bin by order of arrival, the height
of a ball is its position in the stack. Suppose we know that the number of
bins with load at least i, over the entire course of the process, is bounded
above by �i. We wish to �nd a �i+1 such that, with high probability, the
number of bins with load at least i + 1 is bounded above by �i+1 over the
course of the entire process with high probability. We �nd an appropriate
�i+1 by bounding the number of balls of height at least i+ 1, which gives a
bound for the number of bins with at least i+ 1 balls.

A ball has height at least i+1 only if, for each of the d times it chooses
a random bin, it chooses one with load at least i. Conditioned on the value
of �i, the probability that each choice �nds a bin of load at least i is �i

n .
Therefore the probability that a ball thrown any time during the process

joins a bin already containing i or more balls is at most
�
�i
n

�d
. For d � 2,

we can conclude that the sequence �i=n drops at least quadratically at each
step in the following manner. The number of balls with height i+1 or more is
stochastically dominated by a Bernoulli random variable, corresponding to
the number of heads with n (the number of balls) 
ips, with the probability

of a head being
�
�i
n

�d
(the probability of a ball being placed in a bin with i

or more balls). We can �nd an appropriate �i+1 using standard bounds on

Bernoulli trials, yielding �i+1 � cn
�
�i
n

�d
, for some constant c. The fraction

�i
n therefore drops at least quadratically at each step, so that after only
j = O(log log n) steps the fraction drops below 1=n, and we may conclude
that �j < 1. The proof is technically challenging primarily because one must
handle the conditioning appropriately.

We shall use the following notation: the state at time t refers to the state
of the system immediately after the tth ball is placed. B(n; p) is a Bernoulli
random variable with parameters n and p. The variable h(t) denotes the
height of the tth ball, and �i(t) and �i(t) refer to the number of bins with
load at least i and the number of balls with height at least i at time t,
respectively. We use �i and �i for �i(n) and �i(n) when the meaning is
clear.

In preparation for the detailed proof, we make note of two elementary
lemmas. The �rst statement can be proven by standard coupling methods:

Lemma 2 Let X1;X2; : : : ;Xn be a sequence of random variables in an ar-

bitrary domain, and let Y1; Y2; : : : ; Yn be a sequence of binary random vari-
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ables, with the property that Yi = Yi(X1; : : : ;Xi�1). If

Pr(Yi = 1 jX1; : : : ;Xi�1) � p;

then

Pr(
nX
i=1

Yi � k) � Pr(B(n; p) � k);

and similarly, if

Pr(Yi = 1 jX1; : : : ;Xi�1) � p;

then

Pr(
nX
i=1

Yi � k) � Pr(B(n; p) � k):

The second lemma presents some useful Cherno�-type bounds; proofs
may be found in [HR90].

Lemma 3 If Xi (1 � i � n) are independent binary random variables,

Pr[Xi = 1] = p, then the following hold:

For t � np; Pr

 
nX
i=1

Xi � t

!
�

�
np

t

�t
et�np: (1)

For t � np; Pr

 
nX
i=1

Xi � t

!
�

�
np

t

�t
et�np: (2)

In particular, we have

Pr

 
nX
i=1

Xi � enp

!
� e�np; and (3)

Pr

 
nX
i=1

Xi � np=e

!
� e(

2
e
�1)np: (4)

Proof:[Proof of Theorem 1:] Following the earlier sketch, we shall con-
struct values �i so that �i(n) � �i, for all i, with high probability. Let

�6 = n
2e , and �i+1 =

e�di
nd�1 , for 6 � i < i�, where i� is to be determined.
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We let Ei be the event that �i(n) � �i. Note that E6 holds with certainty.
We now show that, with high probability, if Ei holds then Ei+1 holds, for
6 � i � i� � 1.

Fix a value of i in the given range. Let Yt be a binary random variable
such that

Yt = 1 i� h(t) � i+ 1and �i(t� 1) � �i:

That is, Yt is 1 if the height of the tth ball is at least i+ 1 and at time
t� 1 there are fewer than �i bins with load at least i.

Let !j represent the bins selected by the jth ball. Then

Pr(Yt = 1 j !1; : : : ; !t�1) �
�di
nd

def
= pi:

Thus, from Lemma 2, we may conclude that

Pr(
Pn

i=1 Yt � k) � Pr(B(n; pi) � k):

Conditioned on Ei, we have
P
Yt = �i+1. Thus

Pr(�i+1 � k j Ei) � Pr(�i+1 � k j Ei)

= Pr(
P
Yt � k j Ei)

�
Pr(

P
Yt � k)

Pr(Ei)

�
Pr(B(n; pi) � k)

Pr(Ei)

We bound the tail of the binomial distribution using Equation (3). Let-
ting k = �i+1 in the above, we have that

Pr(�i+1 � �i+1 j Ei) �
Pr(B(n; pi) � enpi)

Pr(Ei)
�

1

epinPr(Ei)
;

or that

Pr(:Ei+1 j Ei) �
1

n2Pr(Ei)

whenever pin � 2 log n.
Hence, whenever pin � 2 log n, we have that if Ei holds with high prob-

ability, then so does Ei+1: To conclude we need to handle the case where
pin � 2 log n separately: we shall show that if this is the case, then with
high probability there are no balls of height at least i + 2. Let i� be the
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smallest value of i such that
�di
nd

� 2 log n
n . It is easy to check inductively that

�i+6 � n=2d
i
, and hence that i� � log log n

log d +O(1).
We have

Pr(�i�+1 � 6 log n j Ei�) �
Pr(B(n; 2 log n=n) � 6 log n)

Pr(Ei�)
�

1

n2Pr(Ei�)
;

where the second inequality again follows from Equation (3). Also,

Pr(�i�+2 � 1j�i�+1 � 6 log n) �
Pr(B(n; (6 log n=n)d) � 1)

Pr(�i�+1 � 6 log n)
�

n(6 log n=n)d

Pr(�i�+1 � 6 log n)
;

where the second inequality comes from applying the crude union bound.
We remove the conditioning using the fact that

Pr(:Ei+1) � Pr(:Ei+1 j Ei)Pr(Ei) +Pr(:Ei);

to obtain that

Pr(�i�+2 � 1) �
(6 log n)d

nd�1
+
i� + 1

n2
= O

�
1

n

�
;

which implies that with high probability the maximum bin load is less than
i� + 2 = log log n= log d+O(1).

We now present some of the extensions of the sequential balls-and-bins
problem which were analyzed using layered induction. For each of these
extensions, we give a brief sketch on how to modify the argument in the
proof of Theorem 1 to hold for the new balls-and-bins problem. We refer to
the respective papers for the complete proofs.

We start by considering the extensions of the sequential problem which
appear in [ABKU99]. Azar et al. consider the case when the number of balls
may not be equal to the number of bins in the system. Let m denote the
number of balls to be sequentially inserted into the n bins, where each ball
makes d bin choices independently and uniformly at random, and is placed
in the least �lled of the d bins. Azar et al. show that the maximum bin
load is now (log log n= log d)(1 + o(1)) +�(m=n) with high probability. The
major changes in the proof of Theorem 1 in order to hold for this case are
in the de�nition of the values �i and in the choice of the base case for our
inductive process (in Theorem 1, we chose the base case to be i = 6). Here
we let �x = n2=(2em), for some convenient choice of base case x, and we

require that Pr(�x �
n2

2em) holds with high probability. Then we de�ne the
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variable �i+x so as to be less than or equal to n

2di
, for all i, thus obtaining

(using the same analysis as in the proof of Theorem 1) that

Pr(� � x+ log log n= log d+ 2) = o(1):

The main challenge needed to complete the proof is to show that x can be
chosen to be O(m=n) + o(log log n= log d). Note that when m >> n, the
bound on the maximum bin load is asymptotically optimal. The heavily
loaded case where m >> n was also recently studied in more detail in
[BCSV00].

Azar et al. also consider a dynamic extension of the sequential problem
in [ABKU99], as described in the following theorem:

Theorem 4 Consider the in�nite process where at each step, a ball is cho-

sen independently and uniformly at random to be removed from the system,
and a new ball is inserted in the system. Each new ball inserted in the sys-

tem chooses d � 2 possible destination bins independently and uniformly at

random, and is placed in the least full of these bins. This process may start

at any arbitrary state, provided we have at most n balls in the system. For

any �xed T > n3, the fullest bin at time T contains, with high probability,

fewer than log log n= log d+O(1) balls.

The analysis of the case d = 1 for the in�nite stochastic process de�ned in
Theorem 4 is simple, since the location of a ball does not depend on the
locations of any other balls in the system. Thus for d = 1, in the station-
ary distribution, with high probability the fullest bin has �(log n= log logn)
balls. The analysis of the case d � 2 is signi�cantly harder, since the lo-
cations of the current n balls might depend on the locations of balls that
are no longer in the system. By the de�nition of the process, the number
of balls of height i cannot change by more than 1 in a time step. Hence the
variable ��i(t) can be viewed as a random walk on the integers `, 0 � ` � n.
The proof of Theorem 4 is based on bounding the maximum values taken
by the variables ��i(t) by studying the underlying process.

Only recently, Cole et al. [CFM+98] showed how to use layered induction
to address the more realistic deletion scenarios in Theorem 5 below.

Theorem 5 Consider the polynomial time process where in the �rst n steps,

a new ball is inserted into the system, and where at each subsequent time

step, either a ball is removed or a new ball is inserted in the system, pro-

vided that the number of balls present in the system never exceeds n. Each
new ball inserted in the system chooses d � 2 possible destination bins inde-

pendently and uniformly at random, and is placed in the least full of these
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bins. Suppose that an adversary speci�es the full sequence of insertions and

deletions of balls in advance, without knowledge of the random choices of

the new balls that will be inserted in the system (i.e., suppose we have an

oblivious adversary). If this process runs for at most nc time steps, where c
is any positive constant, then the maximum load of a bin during the process

is at most log log n= log d+O(1), with high probability.

Cole et al. show that the original argument of Azar et al. for the se-
quential balls-and-bins problem can in fact be made to hold in this dynamic
scenario: the key di�erence between this result and that of [ABKU99] is
that Azar et al. �nd a dominating distribution of heights on one set of n
balls, whereas Cole et al. use a distribution that applies to every set of n
balls present in the system as it evolves. As it happens, the bounds and
the proof are essentially the same; the most signi�cant changes lie in the
end game, where we must bound the number of bins containing more than
log logn= log d balls.

Cole et al. also consider a situation where items that have been in the
system for the longest time are deleted, again using a variant of the layered
induction argument in [ABKU99]. In this case initially 2n balls are inserted,
and then repeatedly the oldest n balls are deleted and n new balls are in-
serted. This argument makes use of a two-dimensional family of random
variables, similar in spirit to the work of [Mit00] (which we address in Sec-
tion 4). The bounds are the same as in Theorem 5, and hence the results are
actually already implied by this theorem. However, the approach used in the
proof for this specialized case may provide interesting results when applied
to other problems, not only in the balls-and-bins domain. See [CFM+98] for
the complete proofs.

2.1.1 Bounds on the recovery time

Suppose we start with a situtation where n balls are allocated to n bins
in some arbitrary fashion. Now, consider the in�nite process of Theorem 4
where at each time step a ball chosen independently and uniformly at ran-
dom is deleted, and a new ball is inserted into the least loaded of d bins
chosen independently and uniformly at random. How many time steps does
it take for the system to approach steady-state (i.e., typical) behavior? More
speci�cally, how many time steps does it take for the maximum load to be
log logn= log d + O(1) with high probabilty? This quantity that is related
to the mixing time of the underlying Markov process is called the recovery
time. The recovery time quanti�es the transient behavior of the system and
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is a useful measure of how quickly the system recovers from an arbitrarily
bad con�guration. It turns out that the bound of n3 time steps for the
recovery time in Theorem 4 is not tight. Czumaj and Stemann [CS97] pro-
vide a tight bound using a standard probabilistic tool called the coupling
method [Lin92]. Speci�cally, they show that after (1 + o(1))n lnn steps the
maximum load is log log n= log d + O(1) with high probability. The proof
of this result was later simpli�ed signi�cantly by Czumaj [Czu98] via the
use of the path coupling method2 of Bubley and Dyer [BD97]. Czumaj also
considers a variation of the in�nite process in Theorem 4 where deletions are
performed di�erently. In the new process instead of deleting a random ball,
each deletion is performed by choosing a non-empty bin independently and
uniformly at random and deleting a ball from the chosen bin. He shows that
even though the new deletion process does not signi�cantly a�ect steady-
state behavior, the recovery time of the new process is at least 
(n2) and
at most O(n2 lnn), i.e., the recovery time of the new process is signi�cantly
larger.

2.2 How to use layered induction to prove lower bounds

In this section, we illustrate how to use layered induction to prove lower
bounds. We show how we can adapt the argument in the proof of The-
orem 1 to provide a lower bound on the maximum number of balls in a
bin for the sequential balls-and-bins problem. More speci�cally, a corre-
sponding lower bound of log log n= log d � O(1) is presented, based on the
following idea: �rst we bound the number of bins with load at least 1 after
the (n=2)th ball in inserted, then we bound the number of bins of height 2
after the (3n=4)th ball, etc. This lower bound, combined with the results
in Theorem 1, demonstrates that the maximum bin load for the sequential
d-choice balls-and-bins problem is in fact log logn= log d + �(1) with high
probability. The proof is taken from [ABKU99].

Before proving this result, we note that Azar et al. actually proved that
the greedy strategy is stochastically optimal among all possible multiple-
choice uniform placement strategies [ABKU99]. (Recall that a d-choice uni-
form placement strategy is a placement strategy where all d random bin
choices assigned to a ball are independent and uniform). Equivalently, the
probability that the maximum height exceeds any value z for any uniform
placement strategy based on d choices is smallest when the bin with the
least number of balls is chosen. Hence their result is the best possible, for

2The path coupling technique when applicable, is easier to use than standard coupling;
see [Jer98] for a good survey of this technique.
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uniform placement strategies. (It is worth noting that V�ocking [V�oc99] uses
a placement strategy that is not uniform to beat this lower bound, as we
discuss in Section 3.) They show this by establishing a one-to-one correspon-
dence between the possible results under the proposed greedy strategy and
any other �xed strategy. This one-to-one correspondence matches results so
that the maximum load for each possible result pair is smaller using Azar
et al.'s greedy placement strategy. This is an example of a simple stochastic
comparison; for more on this area, see [Sto83, SS94].

Theorem 6 Suppose that n balls are sequentially placed into n bins. Each

ball is placed in the least full bin at the time of the placement, among d
bins, d � 2, chosen independently and uniformly at random. Then af-

ter all the balls are placed the number of balls in the fullest bin is at least

log logn= log d�O(1) with high probability.

Proof: Let Fi be the event that ��i(t) � 
i, where the variables 
i are
such that 
i+1 < 
i=2 (the variables 
i will be revealed shortly). In fact,
each 
i < n=22

i
. We want to upper bound

Pr(:Fi+1 j Fi):

Our goal is to show that, given Fi, Fi+1 holds with high probability.
We �x i > 0 and de�ne the binary random variables Zt for t in the range

R = [(1 � 1=2i)n; (1� 1=2i+1)n) so that

Zt = 1 i� h(t) = i+ 1 or ��i+1(t� 1) � 
i+1:

That is, the value Zt is 1 if and only if the height of the tth ball equals i+1
or there are already 
i+1 bins with load at least i + 1 at time t � 1. Note
that, as i increases, we consider the values of Zt over shorter but further out
time intervals. The intuition here is that in order to show that there are at
least so many bins with load i+ 1 at time (1� 1=2i+1)n, we start counting
balls with that height from time (1 � 1=2i)n; we wait until that point in
time in order to ensure that there are su�ciently many bins with load i to
make counting balls with height i + 1 worthwhile. We can get away with
decreasing the amount of time we count balls as i increases, since the values

i decrease so fast.

Our de�nition of Zt implies that as long as ��i+1(t � 1) � 
i+1, then
Zt = 1 precisely when all d choices have load at least i, and at least one of
the d choices for the tth ball has load exactly i. Let !j represent the choices
available to the jth ball. Then

Pr(Zt = 1 j !1; : : : ; !t�1) �

di
nd

�

di+1

nd
�

1

2


di
nd

def
= pi:
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Hence

Pr

 X
t2R

Zt � k j Fi

!
� Pr(B(n=2i+1; pi) � k):

By choosing


0 = n;


i+1 =

di

2i+3nd�1
=

n

2i+3

�

i
n

�d
=

1

2

n

2i+1
pi;

we may conclude that

Pr(B(n=2i+1; pi) � 
i+1) = o(1=n2)

as long as pin=2
i+1 � 17 lnn by using a tail bound such as [AS92]

Pr(B(N; p) < Np=2) < e�Np=8:

Let i� be the largest integer for which the tail bound holds. Clearly
i� = ln lnn= lnd�O(1) = log log n= log d�O(1).

Now by the de�nition of Zt, the event f
P

t2R Zt � 
i+1g implies Fi+1.
Hence

Pr(:Fi+1 j Fi) � Pr(
X
t2R

Zt < 
i+1 j Fi) = o(1=n2):

Thus for su�ciently large n

Pr(Fi�) = Pr(Fi� j Fi��1) �Pr(Fi��1 j Fi��2) � : : : �Pr(F1 j F0) � F0

� (1� 1=n2)i
�

= 1� o(1=n):

3 The Witness Tree Method

Another powerful technique for analyzing balls-and-bins problems is the
witness tree method. Suppose that we would like to bound the probability of
the occurrence of some \bad event", such as the probability of the occurrence
of a \heavily-loaded" bin. The key idea is to show that the occurrence
of the bad event implies the occurrence of a \tree of events" called the
witness tree. Thus, the probability that the bad event occurs is at most
the probability that some witness tree occurs. The latter probability can
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in turn be bounded by enumerating all possible witness trees and summing
their individual probabilities of occurrence.3

One of the earliest uses of the witness tree method occurs in the study of
algorithms to emulate shared memory machines (as for example, PRAMs)
on distributed memory machines (DMMs) [CMS95, MSS96]. Besides shared
memory emulations, witness trees were independently discovered and used
in the context of the parallel balls-and-bins problem [ACMR95].

3.1 The sequential balls-and-bins problem

We start by providing a simple analysis of a variant of the sequential balls-
and-bins problem using the witness tree technique. The proof provided
here is adapted from [CFM+98], but all the essential ideas in the proof
were used earlier in the analysis of randomized circuit-switching algorithms
[CMM+98].

The problem that we wish to study can be described formally as a ran-
dom process Qd(~v; ~w), where ~v = (v1; v2; � � �), and ~w = (v1; v2; � � �) are (in�-
nite) vectors that specify the identity of the balls to be deleted and inserted
respectively. The process begins with n insertions, where n is the total num-
ber of bins, followed by an alternating sequence of deletions and insertions
speci�ed by ~v and ~w respectively.4 We assign each ball a unique ID number,
and without loss of generality we assume the �rst n balls have ID numbers
1 through n. At time n+ j, the ball with ID number vj is deleted and then
the ball with ID number wj is inserted. If ball wj has never been inserted
before, then it is placed in the least loaded of d bins chosen independently
and uniformly at random. If the ball has been inserted before, it is placed
in the least loaded (at time n + j, after the deletion of ball vj) of the d
bins chosen when it was �rst inserted; that is, the bin choices of a ball are
�xed when it is �rst inserted in the system. We assume that ~v and ~w are
consistent, so there is only one ball with a given ID number in the system
at a time. Note also that ~v and ~w must be chosen by the adversary before
the process begins, without reference to the random choices made during
the course of the process. For simplicity, we now consider only the special
case d = 2.

Theorem 7 At any time t, with probability at least 1 � 1=n
(log log n), the
maximum load of a bin achieved by process Q2(~v; ~w) is 4 log log n.

3The witness tree method is similar in spirit to the delay sequence method used to
bound the message latencies of routing algorithms [Upf84, Ale82, LMRR94, MS92].

4The fact that insertions and deletions alternate is not crucial except to ensure that
the total number of balls in the system at any given time is at most n.
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Proof: We prove the theorem in two parts. First, we show that if there is a
bin r at time t with 4` balls, where ` = log logn, then there exists a degree
` pruned witness tree. Next, we show that with high probability, no degree
` pruned witness tree exists.
Constructing a witness tree. A witness tree is a labeled tree in which
each node represents a bin and each edge (ri; rj) represents a ball whose two
bin choices are ri and rj . Suppose that some bin r has load 4` at time t.
We construct the witness tree as follows. The root of the tree corresponds
to bin r. Let b1; : : : ; b4` be the balls in r at time t. Let ri be the other bin
choice associated with ball bi (one of the choices is bin r). The root r has
4` children, one corresponding to each bin ri. Let ti < t be the last time bi
was (re-)inserted into the system. Without loss of generality, assume that
t1 < t2 < : : : < t4`. Note that the height of ball bi when it was inserted at
time ti is at least i (since balls b1; : : : ; bi�1 were already in bin r at time ti).
Therefore, the load of bin ri, the other choice of bi, is at least i� 1 at time
ti. We use this fact to recursively grow a tree rooted at each ri.

The witness tree we have described is irregular. However, it contains as
a subgraph an `-ary tree of height ` such that

� The root in level 0 has ` children that are internal nodes.

� Each internal node on levels 1 to `�2 has two children that are internal
nodes and `� 2 children that are leaves.

� Each internal node on level `� 1 has ` children that are leaves.

For convenience we refer to this subtree as the actual witness tree henceforth.
Constructing a pruned witness tree. If the nodes of the witness tree
are guaranteed to represent distinct bins, proving our probabilistic bound is
a relatively easy matter. However, this is not the case; a bin may reappear
several times in a witness tree, leading to dependencies that are di�cult
to resolve. This makes it necessary to prune the tree so that each node in
the tree represents a distinct bin. Consequently, the balls represented by
the edges of the pruned witness tree are also distinct. In this regard, note
that a ball appears at most once in a pruned witness tree, even if it was
(re-)inserted multiple times in the sequence.

We visit the nodes of the witness tree iteratively in breadth-�rst search
order starting at the root. As we proceed, we remove (i.e., prune) some
nodes of the tree and the subtrees rooted at these nodes { what remains is
the pruned witness tree. We start by visiting the root. In each iteration, we
visit the next node v in breadth-�rst order that has not been pruned. Let
B(v) denote the set of nodes visited before v.
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� If v represents a bin that is di�erent from the bins represented by
nodes in B(v), we do nothing.

� Otherwise, prune all nodes in the subtree rooted at v. Then, we mark
the edge from v to its parent as a pruning edge.

Note that the pruning edges are not part of the pruned witness tree. The
procedure continues until either no more nodes remain to be visited or there
are ` pruning edges. In the latter case, we apply a �nal pruning by removing
all nodes that are yet to be visited. (Note that this �nal pruning produces
no new pruning edges.) The tree that results from this pruning process is
the pruned witness tree. After the pruning is complete, we make a second
pass through the tree and construct a set C of pruning balls. Initially, C is
set to ;. We visit the pruning edges in BFS order and for each pruning edge
(u; v) we add the ball corresponding to (u; v) to C, if this ball is distinct
from all balls currently in C and if jCj � dp=2e, where p is the total number
of pruning edges.

Lemma 8 The pruned witness tree constructed above has the following prop-
erties.

1. All nodes in the pruned witness represent distinct bins.

2. All edges in the pruned witness tree represent distinct balls. (Note that

pruning edges are not included in the pruned witness tree.)

3. The pruning balls in C are distinct from each other, and from the balls

represented in the pruned witness tree.

4. There are dp=2e pruning balls in C, where p is the number of pruning

edges.

Proof: The �rst three properties follow from the construction. We prove
the fourth property as follows. Let b be a ball represented by some pruning
edge, and let v and w be its bin choices. Since v and w can appear at most
once as nodes in the pruned witness tree, ball b can be represented by at
most two pruning edges. Thus, there are dp=2e distinct pruning balls in C.

Enumerating pruned witness trees. We bound the probability that a
pruned witness tree exists by bounding both the number of possible pruned
witness trees and the probability that each such tree could arise. First,
we choose the shape of the pruned witness tree. Then, we traverse the
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tree in breadth-�rst order and bound the number of choices for the bins for
each tree node and the balls for each tree edge; we also bound the associated
probability that these choices came to pass. Finally, we consider the number
of choices for pruning balls in C and the corresponding probability that they
arose. Multiplying these quantities together yields the �nal bound { it is
important to note here that we can multiply terms together only because
all the balls in the pruned witness tree and the pruning balls in C are all
distinct.

Ways of choosing the shape of the pruned witness tree. Assume that there
are p pruning edges in the pruned tree. The number of ways of selecting the
p pruning edges is at most  

`22`

p

!
� `2p2`p;

since there are at most `22` nodes in the pruned witness tree.
Ways of choosing balls and bins for the nodes and edges of the pruned

witness tree. The enumeration proceeds by considering the nodes in BFS
order. The number of ways of choosing the bin associated with the root is
n. Assume that you are considering the ith internal node vi of the pruned
witness tree whose bin has already been chosen to be ri. Let vi have �i
children. We evaluate the number of ways of choosing a distinct bin for each
of the �i children of vi and choosing a distinct ball for each of the �i edges
incident on vi and weight it by multiplying by the appropriate probability.
We call this product Ei.

There are at most
�n
�i

�
ways of choosing distinct bins for each of the �i

children of vi. Also, since there are at most n balls in the system at any
point in time, the number of ways to choose distinct balls for the �i edges
incident on vi is also at most

�n
�i

�
. (Note that the n balls in the system may

be di�erent for each vi; however, there are still at most
�n
�i

�
possibilities for

the ball choices for any vertex.) There are �i! ways of pairing the balls and
the bins, and the probability that a chosen ball chooses bin ri and a speci�c
one of �i bins chosen above is 2=n2. Thus,

Ei �

 
n

�i

! 
n

�i

!
�i!

�
2

n2

��i
� (2e)�i=�i!: (5)

Letm be the number of internal nodes vi in the pruned witness tree such that
�i = `. Using the bound in Equation 5 for only these m nodes, the number
of ways of choosing the bins and balls for the nodes and edges respectively
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of the pruned witness tree weighted by the probability that these choices
occurred is at most n � ((2e)`=`!)m:

Ways of choosing the pruning balls in C. Using Lemma 8, we know that
there are dp=2e distinct pruning balls in C. The number of ways of choosing
the balls in C is at most ndp=2e, since at any time step there are at most n
balls in the system to choose from. Note that a pruning ball has both its bin
choices in the pruned witness tree. Therefore, the probability that a given
ball is a pruning ball is at most 

`22`

2

!
2

n2
� `422`=n2:

Thus the number of choices for the dp=2e pruning balls in C weighted by
the probability that these pruning balls occurred is at most

ndp=2e(`422`=n2)dp=2e � (`422`=n)dp=2e:

Putting it all together. The probability at time t that there exists a
pruned witness tree with p pruning edges, and m internal nodes with ` =
log logn children each, is at most

`2p2`p � n � ((2e)`=`!)m � (`422`=n)dp=2e � n � ((2e)`=`!)m � (`824`=n)dp=2e

� n � (2e2= log logn)m log log n � (log log8 n log4 n=n)dp=2e: (6)

Observe that either the number the pruning edges, p, equals ` or the number
of internal nodes with ` children, m, is at least 2`�2 = log n=4. Thus, in
either case, the bound in Equation 6 is 1=n
(log log n). Furthermore, since
there are at most `22` values for p, the total probability of a pruned witness
tree is at most `22` �1=n
(log log n) which is 1=n
(log log n). This completes the
proof of the theorem.

A similar approach can be used to show that the maximum load of
Qd(~v; ~w) is O(log log n= log d), with high probability, for arbitrary values of
d. The witness tree method can be used to analyze several complex prob-
lems that are not easily amenable to layered induction or 
uid limit mod-
els. The analysis presented above of the sequential balls-and-bins problem
with adversarial insertions and deletions is a good example of such a prob-
lem. However, due to their enumerative nature, it is di�cult (though often
possible) to obtain the best constants using witness tree arguments. For
instance, the layered induction technique can be used to provide a tighter
high-probability bound of log logn= log d + O(1) on the maximum load of
Qd(~v; ~w), even though the analysis holds only when deletions are performed
by removing a random ball currently in the system [ABKU99].
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3.1.1 Extensions

The basic sequential balls-and-bins problem and the multiple-choice ap-
proach has been extended in several natural ways. We review two such
extensions that are insightful and perhaps counter-intuitive.

Czumaj and Stemann [CS97] consider the multiple-choice approach with
a small twist. Suppose you throw n balls into n bins sequentially, and
each ball chooses d bins independently, uniformly and at random. Now,
suppose that when a ball is thrown into one of its d chosen bins you are
allowed to reallocate the balls in the d chosen bins so that the loads in
these bins are as evenly balanced as possible, i.e., their loads di�er at most
by 1 after the rebalancing. Does this rebalancing decrease the maximum
load? If so, by how much? Czumaj and Stemann show that even though
the maximum load of the rebalancing algorithm is smaller than that of the
original multiple-choice algorithm, the di�erence is no more than an additive
constant! In particular, the maximum load of the rebalancing algorithm is
also log logn= log d+
(1), with high probability. Thus, rebalancing produces
no signi�cant additional bene�t.

V�ocking [V�oc99] considers a variation of the multiple-choice method
where each ball makes d independent but nonuniform choices. In partic-
ular, the bins are divided into d groups with n=d bins each, and each ball
makes its ith choice uniformly from the bins in the ith group, for 1 � i � d.
As before, the ball is placed in a bin with the smallest number of balls.
(If there are several bins with the smallest number of balls, we choose one
of them randomly.) Does this make any di�erence to the minimum load?
One can show that the maximum load is still �(log logn= log d), with high
probability, using a witness tree argument that is similar to the proof of
Theorem 7.

Now, V�ocking considers an additional twist. Suppose the balls choose
bins independently in the nonuniform manner described above, and in ad-
dition, we introduce the following tie-breaking rule called \always-go-left".
The always-go-left rule states that a ball must be placed in the bin with
the minimum load of its d choices, and if there are several bins with the
smallest load it must be placed in the leftmost of these bins. Now, what
happens to the maximum load? At �rst glance, it may appear that the
tie-break rule should not make a big di�erence, and it should if anything
increase the load. But, surprisingly, the combination of the nonuniform
choices and always-go-left rule actually decreases the maximum load to
ln lnn
d�ln�d

+ O(1) with high probability, where here �d corresponds to the ex-
ponent of growth for a generalized Fibonacci sequence. (For reference,

23



�2 = 1:61 < �3 = 1:83 < �4 = 1:92 : : : < 2.) It should be pointed out
that if the balls make independent uniform choices, any tie-breaking rule
including always-go-left, does not make a di�erence; i.e., the maximum load
is still �(log logn= log d) with high probability [ABKU99].

In view of these results, it is natural to ask if there is a method of
choosing the d bins and a rule for allocating each ball to one of its chosen
bins that provides an even smaller maximum load. V�ocking shows that no
signi�cant decrease in the maximum load is possible. In particular, he shows
that if each ball chooses its d bins according to an arbitrary distribution on
[n]d and the ball is placed in one of its chosen bins using an arbitrary rule,
the maximum load is ln lnn

d�ln�d
�O(1), with high probability.

3.2 The parallel balls-and-bins problem

In this section, we illustrate how to use the witness tree approach to an-
alyze collision protocols for the parallel balls-and-bins problem. The par-
allel version of the balls-and-bins problem was �rst studied by Adler et
al. [ACMR95]. Unlike the sequential case where balls are thrown into bins
one after another, we consider the situation when n balls choose each d bins
independently and uniformly at random, in parallel. The balls choose their
�nal destinations by performing � rounds of communication. Each round
consists of two stages. In the �rst stage each ball can send messages, in par-
allel, to any of its d chosen bins. In the second stage, each bin can respond
by sending messages, in parallel, to any of the balls from which it received
a message.

A natural class of protocols for the parallel balls-and-bins problem is the
class of collision protocols. Collision protocols have been used widely for con-
tention resolution in message routing [KLM96, GMR94, MPR98, CMS95,
MSS96]. Such protocols were �rst used for the parallel balls-and-bins prob-
lem in [ACMR95]. The algorithm we present here is due to Stemann [Ste96]
and can be described as follows. We set a threshold � such that each bin
can accept no more than a total of � balls during the entire process | i.e., �
is the maximum load of any bin. The collision protocol proceeds as follows.
(For simplicity, we study the case when d = 2.)

� In parallel each ball picks two bins independently and uniformly at
random.

� While there is a ball that has not been allocated, do the following.

{ In parallel, each unallocated ball sends a request to its two chosen
bins.
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{ In parallel, each bin that would have load at most � if it accepted
all balls requesting the bin in that round sends an acknowledg-
ment to all the requesting balls. (A bin that would achieve a load
greater than � does nothing.)

{ Each ball that receives an acknowledgment is allocated to the
respective bin (ties are broken by randomly selecting one of the
bins that sent an acknowledgment).

We illustrate how we can analyze this simple protocol using the witness tree
method.

Theorem 9 For any 1 � � � log log n, the collision protocol described above

with threshold � = O( �

q
log n

log log n) �nishes after � rounds with probability at

least 1� 1
n
(1)

.

Proof Sketch: As in the proof of Theorem 7, we start by building a witness
tree. Suppose that there are unallocated balls at the end of round �. This
implies that some bin r received more than � requests in the �th round. The
root of the tree corresponds to bin r. Let b1; : : : ; b�+1 be the balls that sent
a request to r in round �. (We assume that the balls bi are ordered in the
ascending order of their IDs.) For each 1 � i � �+1, both of the bin choices
of bi received at least � + 1 requests in round � � 1. Let ri be the other
bin choice associated with ball bi (one of the choices is bin r). The root r
has � + 1 children, one corresponding to each bin ri. Now, we use that fact
that each bin ri had � + 1 requests in round � � 1 to recursively grow a
depth-(�� 1) tree rooted at each ri. Thus, we have constructed a complete
� + 1-ary tree of depth � as our witness tree.

The next step is to enumerate all possible witness trees and prove that
the probability that some witness tree occurs is at most 1=n
(1). It is in-
structive to �rst consider the situation where all the nodes in the witness
tree represent distinct bins. In this situation, the enumeration proceeds as
follows. Let m be the number of nodes in the witness tree.

� The number of ways of choosing a distinct bin for each node of the
tree is at most n � (n� 1) � � � (n�m+ 1) = nm � nm.

� The number of ways of choosing distinct balls for each of the � + 1
edges of an internal node of the tree is

� n
�+1

�
� n�+1=(� + 1)!. Note

that once the balls are chosen, they are paired up in the ascending
order (from left to right) of their IDs, i.e., there is only one way of
pairing them up with the bins. Since at least m�1

�+1 nodes of the tree
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are internal nodes, the total number of ways of labeling each edge of

the tree with balls is nm�1=((� + 1)!)
m�1
�+1 :

� Once the entire tree is labeled with balls and bins, the probability

that the labeled tree occurs is at most
�

2
n2

�m�1
, since there are m� 1

edges and since each edge corresponds to the event that a particular
ball chooses two particular bins.

Putting it all together, the probability of occurrence of a witness tree (pro-
vided each node represents a distinct bin) is at most

nm �
nm�1

((� + 1)!)
m�1
�+1

�

�
2

n2

�m�1
�

n � 2m�1

((� + 1)!)
m�1
�+1

:

Observing that m = (�+1)�+1�1
� , and setting � = c �

q
log n

log log n , for a suitably

large constant c, the above bound is at most 1=n
(1).
Unfortunately, the above simpli�ed analysis does not always hold since

the bins in the witness tree may not be distinct. We resolve this problem
in a manner similar to the proof of Theorem 7. We prune the witness tree
so that the resulting tree contains only bins that are distinct (and, hence,
the balls are distinct also). If there are are too \few" pruning edges, then
there exists a \large" subtree where the bins are distinct. In this case, we
perform an analysis similar to the one outlined above to derive the bound.
Otherwise, if there are a \large" number of pruning edges, both the random
choices of the balls corresponding to the pruning edges fall within the set of
bins in the witness tree. Since the size of the witness tree is small compared
to n, i.e., the bins in the witness tree are a small subset of all the bins,
it is unlikely that there are a \large" number of pruning edges. Thus, the
probability that a witness tree exists is small in either case.

A consequence of Theorem 9 is that the collision protocol achieves a

maximum load of O
�q

log n
log log n

�
in two rounds, and a maximum load of a

constant in O(log logn) rounds, with high probability.
The basic parallel balls-and-bins problem can be extended in various

natural ways. We now look at some of these extensions.

3.2.1 Weighted Balls

Berenbrink et al. [BMS97] generalize the parallel balls-and-bins problem to
the situation where m balls are thrown into n bins in parallel, and each ball
has a weight associated with it. The load of any bin in the weighted version
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of the problem is the sum of the weights of the balls allocated to that bin.
They show that a more sophisticated collision protocol achieves a maximum

load of O
�m�wavg

n + wmax
�
in O

�
log log n

log
�
m�wavg
n�wmax

+1
�� rounds, with high proba-

bility, where wavg and wmax are the average and maximum weight of a ball
respectively. Note that by the pigeonhole principle, some bin receives a load
of at least m�wavg

n , and the bin with the maximum-weighted ball has load at
least wmax. Thus, the protocol of Berenbrink et al. achieves the optimal
maximum load to within constant factors, with high probability.

3.2.2 Dynamic Arrivals

Adler et al. [ABS98] consider a natural generalization of the parallel balls-
and-bins problem. In their model, m balls arrive in each round and must be
allocated in parallel to n bins. (This model should be distinguished from the
dynamic but sequential arrival of balls considered in Sections 4.2 and 3.1.)
Each bin has a �rst-in, �rst-out (FIFO) queue where the balls wait to be
\served". In each round, each bin serves and removes the ball at the head
of its queue. The goal is to allocate balls in a manner that minimizes the
number of rounds that a ball spends waiting to be served by a bin. Adler
at al. study a natural protocol for allocating the balls. Each arriving ball
chooses two bins independently and randomly, and adds itself to the queues
of both bins. When a ball is served and removed by one of its queues, the
ball is also deleted from the other queue.

Theorem 10 For the protocol outlined above, any given ball waits at most

O(log log n) rounds before being served, with high probability, provided m �
n
6e .

Proof Sketch: The proof of the result uses the classical witness tree method
except that we view the nodes of the tree as representing balls (instead of
bins). Suppose that a ball b arrives at time T and waits more than � rounds
before being served. A depth-� witness tree can be constructed as follows.
The root of the witness tree is associated with ball b. Consider the two bins
r0 and r00 chosen by ball b. Since b is not served by either bin at time T + � ,
there must exist two balls b0 and b00 that are served by r0 and r00 respectively
at time T + � . We make balls b0 and b00 the two children of ball b in the
witness tree. Since each queue uses the FIFO protocol, b0 and b00 arrived at
time T or earlier. Hence balls b0 and b00 waited more than ��1 rounds before
being served. Thus, we can recursively grow depth-(� � 1) trees rooted at b0

and b00.
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We now enumerate and bound the probability of occurrence of a depth-�
witness tree, for � = O(log logn). As always, one has to deal with the fact
that a ball can appear multiple times in the tree. But, perhaps the greater
technical di�culty is that, unlike our other examples of witness tree proofs,
we have no a priori bound on the number of balls present in the system at a
given time. Therefore, we need to explicitly characterize the balls that can
appear in the witness tree. The reader is referred to [ABS98] for further
details.

3.2.3 Load Balancing in Parallel Environments

Much of the recent interest in the balls-and-bins problem is due to its ap-
plicability to scheduling tasks in a parallel or distributed environment. The
examples we have seen so far apply to the so-called client-server paradigm
where the clients generate tasks (i.e., balls), sequentially or in parallel, and
the tasks must be allocated to servers (i.e., bins) so as to balance the load
on each server.

In this section, we explore a somewhat di�erent paradigm that is relevant
to load balancing in a parallel computer. In a parallel computer, unlike the
client-server model, the processors play a dual role in that they both generate
and execute tasks. We seek distributed algorithms that ensure that the
maximum load of any processor remains \small", i.e., we would like the tasks
to be as evenly distributed among the processors as possible. In addition,
we would like to avoid excessive communication between processors and
would like to execute the tasks in the processors where they are generated
as much as possible. This additional locality constraint is an important
distinguishing feature that is absent in the client-server model.

The load balancing problem can be classi�ed according to the nature of
the tasks themselves. The problem is more complex if the tasks have explicit
dependencies; for instance, the tasks may represent a multi-threaded com-
putation modeled as a directed acyclic graph [BL94, ABP98], or the tasks
may be generated by a backtrack search or branch-and-bound algorithm
[KZ93]. The situation where the tasks are independent is somewhat sim-
pler and several models for generating and consuming independent tasks are
considered in the literature [RSAU91, BFM98, BFS99]. In the random load

model each processor in each step generates a task with a �xed probability
� and consumes a task with a �xed probability �, where 0 � � < � � 1.
Whereas in the adversarial load model , the load of each processor at each
time can be modi�ed arbitrarily by an adversary, provided the net change
in load is at most a given parameter �.
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The literature in this area can also be classi�ed by the nature of the pro-
posed algorithm. In a work sharing algorithm, a \heavily-loaded" processor
seeks to donate some of its excess tasks to a suitable processor [BFM98,
BFS99]. A key issue in work sharing is how a heavily-loaded processor �nds
one or more \lightly-loaded" processors to which to donate its excess tasks.
The matching of the heavily-loaded processors to lightly-loaded processors
must be performed e�ciently and in a distributed manner. In a work steal-

ing algorithm, a \lightly-loaded" processor \steals" tasks from a suitable
processor (e.g., [ELZ86b, FMM91, FM87, HZJ94, Mit98, BL94, ABP98]).
A particular example of this approach is idle-initiated work stealing where
a processor that becomes idle seeks to obtain tasks from nonidle processors.

Randomized algorithms have proven to be a critical tool in this matching
process since the earliest investigations in this area. More recently, there
has been an e�ort to use collision algorithms and related ideas to perform
this matching [BFM98, BFS99]. Berenbrink et al. [BFS99] show how to
maintain a load of O(log log n) on an n-processor parallel machine, with
high probability, in the random load model. Collision protocols are used
to construct a tree rooted at each heavily-loaded processor, and each such
processor communicates down its tree to search for an \unattached" lightly-
loaded processor. Note that one can easily achieve the same bound on
the load by migrating each task as soon as it is generated using a variant
of the algorithm described in Section 3.2.2. However, such an algorithm
would entail a large amount of communication. The primary contribution of
Berenbrink et al. is that their work sharing algorithm ensures that processors
send tasks only if they are heavily-loaded, reducing the total communication
performed by a factor of �(log logn) with high probability.

3.3 A Lower Bound Using Witness Trees

We have seen how to use witness trees for proving upper bounds on the
maximum load of a bin. However, witness trees are useful in proving lower
bounds as well. In the upper bound proofs of Theorem 7 and 9 we observed
that if there is a \heavily-loaded" bin there exists a witness tree whose node-
degree and height are \large". The key idea in deriving lower bounds using
witness trees is that, in some circumstances, the converse is also true: if a
witness tree with \large" degree and height occurs then some bin is expected
to receive a \large" number of balls. We illustrate this technique by proving
a lower bound on the maximum load for the parallel balls-and-bins problem.

The collision protocol that we outlined in Section 3.2 is nonadaptive in
that the possible destinations for the balls are chosen before any communi-
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cation takes place. Furthermore, the protocol is symmetric in that all balls
and bins perform the same algorithm and the bins are chosen independently
and at random. A natural question to ask is if there exists a nonadaptive
and symmetric algorithm that achieves a smaller expected maximum load
than the collision protocol outlined in Section 3.2. Adler et al. [ACMR95]

show that the expected maximum load of a bin is 

�

�

q
log n

log log n

�
for any

protocol that performs � rounds of communication, provided that � is a
constant and the protocol belongs to a natural subclass of nonadaptive and
symmetric protocols. (Most known nonadaptive and symmetric protocols
belong to this subclass. We describe the restrictions that de�ne this sub-
class in Theorem 11 below.) This lower bound result was later extended to
all values of � by Berenbrink et al. [BMS97], which we state below.

Theorem 11 The expected maximum load of a bin is 

�

�

q
logn

log log n

�
for any

protocol that performs � rounds of communication, 1 � � � log logn, pro-
vided that the protocol satis�es the following conditions:

� the protocol is nonadaptive and symmetric,

� removing a set of balls before the protocol begins cannot increase the

expected maximum load achieved by the protocol, and

� if a ball cannot distinguish between its two bin choices after � rounds of
communication, the protocol allocates the ball randomly with probability

1=2 to either of its choices.

Proof Sketch: Let a (T; r)-ary tree be a tree of depth r such that the root
has T children, and every other internal node has T � 1 children. The �rst
step in our proof is to show that with constant probability there exists a
(�+1; �+1)-ary witness tree W such that all the nodes of the tree represent

distinct bins, for some � = �
�

�

q
log n

log log n

�
. It is easy to show that the

expected number of such witness trees is 
(n) using an enumeration very
similar to the one in the proof of Theorem 9. (The primary di�erence is
that we now seek a lower bound on the expectation.) The number of ways
of labeling a (� + 1; � + 1)-ary tree with distinct balls and bins is at least
nm �nm�1 � (n�m)2m�1, where m is the number of nodes in the tree. The

probability of occurrence of each labeled tree is
�

2
n2

�m�1
. Thus the expected

number of (� + 1; �+ 1)-ary witness trees is (using linearity of expectation)
at least

(n�m)2m�1 �

�
2

n2

�m�1
= 
(n);
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since m = (� + 1) �
�+1�1
��1 = o(n): The fact that the expected number of

witness trees is 
(n) does not immediately imply that there exists such a
witness tree with constant probability. We need to show that the variance
of the number of witness trees is \small". The lower and upper bounds on
the expectation and variance respectively, in conjunction with Chebyshev's
inequality, yields the fact that a (� + 1; � + 1)-ary witness tree exists with
constant probability. We refer to Czumaj et al [CMS95] and Stemann [Ste96]
for the details of the existence proof.

Let W be the (� + 1; � + 1)-ary witness tree with distinct bins that we
have shown exists with constant probability. The initial random choices
made by the balls can be represented by an access graph with n nodes and
n edges. Each of the n nodes represent a distinct bin. Each of the n edges
represents the pair of bin choices made by a distinct ball. Note that the
witness tree W is a subgraph of the access graph. In addition to assuming
that the protocol is nonadaptive and symmetric, we now use our second
additional assumption that removing a set of balls, i.e., deleting some edges
of the access graph, cannot increase the expected maximum load achieved by

the protocol . More precisely, given two access graphs G and G0 such that
the edges of G are a superset of the edges of G0, the expected5 maximum
load achieved by the protocol on G0 is at most the expected maximum load
achieved on G. This assumption is intuitively reasonable and holds for
most natural algorithms considered in the literature, including the collision
protocol outlined in Section 3.2. We utilize this assumption to remove all
edges, i.e., balls, in the access graph that do not belong to W .

Henceforth, we consider only tree W and any lower bound we derive on
the expected maximum load of the protocol on W is a lower bound on the
expected maximum load for the original access graph. Let b be the ball that
corresponds to an edge incident on root r of W . We argue that ball b has
probability 1

2 of being allocated to r.
The key to the argument is quantifying the amount of knowledge b can

acquire by performing � rounds of communication. Initially, ball b knows
nothing about the choices made by any other ball. After the �rst round,
assuming in the worst case that the two bins chosen by b convey all their
information to b, b knows about the choices of all the balls that chose one
of its bins, i.e., b knows about the edges in the neighborhood N(b), where
N(b) is the set of all edges of W incident to an endpoint of b. (We de�ne
N(S), where S is a set of edges, to be [b2SN(b).) Inductively, after � > 1

5The expectation is taken over di�erent runs of the protocol on a given access graph,
i.e., the bins chosen by the balls are �xed.
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rounds, ball b knows about the �-neighborhood N�(b) which is recursively
de�ned to equal N(N��1(b)).

Let ball b correspond to edge (r; r0), where r is the root of W and r0 is
its child. Removing edge (r; r0) from the neighborhood set N�(b) splits it
into two connected components, N�;r(b) that contains r and N�;r0(b) that
contains r0. Since W is a (� + 1; � + 1)-ary tree, both N�;r(b) and N�;r0(b)
are both complete � -ary trees of depth �, i.e., they are identical. Since the
neighborhood set containing either bin is identical, there is no reason for
ball b to choose one bin over another. We now use our third additional
assumption that in this case the protocol must choose a bin randomly with

probability 1
2 . Thus ball b chooses root r with probability 1

2 . Since this
holds for each of the � + 1 children of r, the expected load of r is at least
�+1
2 = 


�
�

q
log n

log log n

�
.

Since a (� + 1; � + 1)-ary tree W occurs with constant probability, it

follows that the expected maximum load is 
( �

q
log n

log log n) for any nonadaptive
symmetric protocol that obeys the two additional assumptions stated in the
theorem.

3.4 Randomized Protocols for Circuit Routing

Much of the recent interest in the balls-and-bins problem derives from the
straightforward analogy of scheduling tasks (i.e., balls) on multiple servers or
processors (i.e., bins). Can the multiple-choice approach be used e�ectively
in problem domains other than task scheduling? In this section, we show how
we can use a variant of the multiple-choice method to perform low-congestion
circuit routing in multistage interconnection networks. The results presented
in this section are based on Cole et al. [CMM+98] and represent some of
the more sophisticated applications of witness tree arguments. It is worth
pointing out that these results do not appear to be amenable to either layered
induction or 
uid limit models.

Several modern high-speed multimedia switches and ATMs utilize (vir-
tual) circuit-switching to route communication requests [RCG94, TY97]. In
a circuit-switched network, requests arrive at the input nodes of the network
and require a path to some output node of the network. A circuit-routing

algorithm allocates a path through the network for each request. When the
request is completed, the path allocated to it is freed up. The goal is to
devise routing algorithms that minimize congestion, where congestion is the
maximum number of paths that must be simultaneously supported by a link
of the network.
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Figure 2: Valiant's paradigm

A canonical circuit routing problem often studied in the literature is the
permutation routing problem. In a permutation routing problem at most
one request originates at each input of the network and at most one request
is destined for each output of the network. Furthermore, we distinguish
between two kinds of permutation routing problems: static and dynamic.
In a static problem, all the requests that constitute a permutation routing
problem are present at time 0, before the routing begins. The routing algo-
rithm constructs paths for all of the requests in a \batch" mode. All of the
requests in a batch complete before routing of the next batch of requests be-
gins. In contrast, in a dynamic problem, requests arrive and leave over time,
according to a sequence constructed by an oblivious adversary. The routing
algorithm routes a path for each arriving request in an on-line fashion with
no knowledge of future request arrivals. We assume that at any time, the
requests being routed form a partial permutation; that is, each input and
output node correspond to at most one routed request.

The results in this section apply to variants of a popular type of multi-
stage interconnection network called the butter
y network (See [Lei92] For
a description of its structure.). An n-input butter
y Bn has n(logn + 1)
nodes arranged in log n+ 1 levels of n nodes each.

Furthermore, there is a unique path of length log n in Bn from each
input node to each output node. A two-fold butter
y BBn consists of two
copies of Bn placed one after the other such that each output node in the
�rst copy is identi�ed with the corresponding input node of the second copy.
The inputs of BBn are at level 0 while the outputs are at level 2d, where
d = logn. (See Figure 2).

An early example of the use of randomized algorithms for communication
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problems is the work of Valiant [Val82, VB81]. Valiant showed that any per-
mutation routing problem can be transformed into two random problems by
�rst routing a path for each request to a random intermediate destination,
chosen independently and uniformly, and then on to its true destination (See
Figure 2). This routing technique known as Valiant's paradigm is analogous
to the classical balls-and-bins problem where each request (i.e., ball) chooses
a random intermediate destination (i.e., bin). It follows from this analogy
that the congestion achieved by Valiant's paradigm corresponds to the max-
imum load of the classical balls-and-bins problem, and is �(log n= log log n),
with high probability.

3.4.1 Valiant's Paradigm with Two Random Choices

A question that begs asking is if the two-choice method can be incorporated
into Valiant's paradigm to signi�cantly reduce the congestion, just as two
random choices can be used to signi�cantly reduce the maximum load of
a bin in the balls-and-bins problem. The simplest way to incorporate the
two-choice approach into Valiant's algorithm is to let each request choose
two random intermediate destinations (instead of one), and choose the path
that has the smaller congestion. (The congestion of a path is the maximum
congestion of all its edges.) But this simple approach fails to decrease the
congestion signi�cantly. The problem lies in the fact that even though a
request can choose any of the n intermediate nodes in level d to be on its
path, it has very few nodes that it can choose in levels that are close to
its input or output. Therefore, it is quite likely that there exists a set of
m = �(log n= log logn) requests such that all the paths chosen by these
requests intersect at some node at level logm of BBn. Thus, any allocation
of requests to paths causes congestion of at least m = 
(log n= log logn).

The key to applying the two-choice approach to circuit routing is to avoid
creating hot spots of congestion near the inputs and outputs of the network.
To achieve this we select two random paths for each request as follows. The
nodes on levels 0; : : : ; d=2� 1 and d+ d=2 + 1; : : : ; 2d are 
ipped randomly,
where d = logn. In particular, each input and output node maps the �rst
path p of a request to its straight edge and its second path p0 to its cross edge
with probability 1

2 ,and with probability 1
2 the order is reversed. Similarly,

each node on levels 1; : : : ; d=2�1 and d+d=2+1; : : : ; 2d�1 with probability
1
2 connects its input straight edge with its output straight edge and its input
cross edge with its output cross edge, and with probability 1

2 the connections
are reversed. (See Figure 3.) Note that these random choices completely
determine the two paths p and p0 of each request, because there is exactly
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Figure 3: Valiant's paradigm with two random destinations

one path connecting a node on level d=2 with a node on level d+ d=2 in the
BBn network. For a path p, the other path p0 connecting the same input
and output nodes is called the buddy of p. The random switching ensures
that any edge on the levels 1; : : : ; d=2 and d + d=2 + 1; : : : ; 2d is traversed
by at most one of the randomly-generated paths.6 However, each edge that
originates at a node in an interior level, i.e., levels d=2 + 1; : : : ; d + d=2, is
potentially traversed by several of these paths. Note that the random paths
chosen for distinct requests are no longer independent, because the paths of
the two requests may share one or more randomly-
ipped switches. This is
a key technical di�culty that complicates the witness tree analyses in this
section.

3.4.2 Permutation Routing

Recall that in a dynamic permutation routing problem, the requests arrive
and leave according to a sequence constructed by an oblivious adversary.
When a request r arrives, our routing algorithm chooses two random paths
as described in Section 3.4.1, evaluates the congestion of the two paths, and
allocates r to the path with smaller congestion.

Theorem 12 The routing algorithm described above �nds paths for every

request of a dynamic permutation routing problem in network BBn such that

the congestion at any given time t is O(log log n), with high probability.

6The idea of using randomly-
ipped switches to control congestion was �rst used by
Ranade [Ran87] for packet routing and was later adapted to circuit-switching algorithms
by Maggs and Sitaraman [MS92].
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Proof Sketch: The overall structure of the proof is similar to that of
Theorem 7, though the details are much more complicated. First, we �x
the settings of the randomly-
ipped switches. This determines two choices
of paths for each request. Assume that there is an edge e with congestion
larger than 4c at some time t, where c = dlog log ne. Let p denote the last
path mapped to edge e on or before time t. When p was mapped to e there
were already 4c other paths present at this edge. Let p1; : : : ; p4c denote these
paths such that pi was mapped to e at time step ti with ti < ti+1. The root
of the tree is the request corresponding to p and the requests corresponding
to p1; : : : ; p4c are its children. Now we consider the buddies p01; : : : ; p

0
4c of

these paths. Path p0i traverses an edge with congestion at least i� 1 at time
step ti, because the congestion of pi is not larger than the congestion of p0i
at time i, and when pi was mapped to e there were already i�1 other paths
present at this edge. As a consequence, we can construct a tree by applying
the argument above recursively to p02; : : : ; p

0
4c. The tree constructed in this

fashion is the witness tree.
The technical challenge is performing the next step of enumerating and

bounding the probability that a witness tree occurs. Recollect that the
paths are not chosen independently for each request, since paths belonging
to distinct requests may share one or more randomly-
ipped switches in
the �rst or last d=2 levels. Therefore, when the witness tree is pruned,
besides ensuring that the requests in the pruned tree are distinct, it is also
necessary to ensure that the paths of the requests in the pruned tree share
only a \limited" number of randomly-
ipped switches, i.e., the paths in the
pruned tree represent \almost" independent random choices. The bound
follows by enumerating the paths in the witness trees and their respective
probabilities of occurrence.

The results in this section show that the two-choice method can be
used to signi�cantly reduce the congestion of Valiant's algorithm for dy-
namic permutation routing. The two-choice approach can also be adapted
to route any static permutation routing problem on BBn with congestion
O(log log n= log log log n), with high probability [CMM+98].

4 A Di�erential Equations Approach: Fluid Lim-

its

We now describe a third technique that has proven useful for analyzing
randomized load balancing schemes based on the two-choice paradigm. This
technique was developed in parallel in the computer science and queueing
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theory communities. The approach relies on determining the behavior of
the system as its size grows to in�nity. For example, in the balls-and-bins
model, the size of the system naturally corresponds to the number of bins,
so we consider what happens as the number of bins grows towards in�nity.
Often we can describe the behavior naturally as a di�erential equation or a
family of di�erential equations.

Once we have a family of di�erential equations that describe the process,
we can try to solve it to obtain a closed form solution. Then, in many cases,
we can relate this solution to the behavior of a system of �nite size using a
concentration result. That is, we may show that the behavior of a system
of �nite size is close to the behavior given by the solutions of the di�erential
equations, with high probability.

Sometimes we cannot obtain a closed form from the di�erential equa-
tions. In such cases, however, we can often solve the di�erential equations
using numerical methods.

4.1 Balls and bins

4.1.1 Empty bins

To introduce the approach, let us consider the sequential multiple-choice
balls-and-bins problem, where m = cn balls are thrown into n bins with
each ball having two bin choices. We �rst ask what fraction of the bins
remain empty. This question was �rst considered by Hajek [Haj88].

The problem can be solved by developing a Markov chain with a simple
state that describes the balls-and-bins process. We �rst establish a concept
of time. Let Y (T ) be the number of nonempty bins after T balls have been
thrown. Then fY (i)g, 0 � i � m; is a Markov chain, since the choices for
each ball are independent of the state of the system. Moreover

E[Y (T + 1)� Y (T )] = 1�

�
Y (T )

n

�d
; (7)

since the probability that a ball �nds all nonempty bins among its d choices
is (Y (T )=n)d.

The notation becomes somewhat more convenient if we scale by a factor
of n. If t is the time at which exactly nt balls have been thrown, and y(t) is
the fraction of nonempty bins, then equation (7) becomes

E[y(t+ 1=n)� y(t)]

1=n
= 1� (y(t))d : (8)

37



We claim the random process described by equation (8) is well approximated
by the trajectory of the di�erential equation

dy

dt
= 1� yd: (9)

This equation has been obtained from equation (8) by replacing the left
hand side with the appropriate limiting value as n grows to in�nity, dy=dt.
That is, we think of each ball as being thrown during a small interval of
time dt of duration 1=n. In equation (8) we replace the expected change in
y over this interval by dy, with the intuition that the behavior of the system
tends to follow its expectation over each step.

This claim, that the system behaves close to what we might expect sim-
ply by looking at the expected change at each step, follows from a theorem
similar to the law of large numbers for special types of Markov chains. The
important feature is that the di�erential equation obtained is independent
of the number of bins n; such Markov chains are called density dependent, as
their behavior depends essentially on the density (in this case y) of objects
in the state rather than the total number of objects. Here, the objects are
the nonempty bins. For such a system there are bounds similar to Azuma's
inequality for martingales [MR95]. Indeed, the derivation of the theorem is
based on a suitable martingale. For example, for the balls-and-bins problem
above, if y� is the solution of the di�erential equation, then

Pr

 
sup

0�t�T
jy(t)� y�(t)j � �

!
� C1e

�nC2(�)

for constants C1 and C2 that may depend on T . This approach is also
often referred to as the 
uid limit approach, since the discrete process is
replaced by an often simpler continuous process reminiscent of the behavior
of physical 
uid models.

These theorems apparently �rst appeared in the work of Kurtz [EK86,
Kur70, Kur81], and were eventually applied to algorithmic problems related
to random graphs [Haj88, KS81, KVV90] as well as to queueing problems
[CH91]. Recently these techniques have resurged in the random graph com-
munity, initiated by the work of Wormald [Wor95]. The text by Shwartz
and Weiss on large deviations provides a solid introduction into the en-
tire area of large deviations, including Kurtz's work [SW95]. There are by
now many examples of works that use large deviation bounds and di�eren-
tial equations for a variety of problems, including but in no way limited to
[AM97, AH90, AFP98, KMPS95, LMS+97].
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Given this framework, it is easy to �nd the limiting fraction of empty bins
after m = cn balls have been thrown, by solving the di�erential equation
dy
dt = 1 � yd with the initial condition y(0) = 0 at time c. This can be
done by using the nonrigorous high school trick of writing the equation as
dy

1�yd
= dt and integrating both sides.

Theorem 13 Let c and d be �xed constants. Suppose cn balls are sequen-

tially thrown into n bins, each ball being placed in the least full of d bins

chosen independently and uniformly at random. Let Ycn be the number of

nonempty bins when the process terminates. Then limn!1E[Ycnn ] = yc,
where yc < 1 satis�es

c =
1X
i=0

yid+1
c

(id+ 1)
:

Using this we may solve for yc. (Closed form expressions exist for some
values of d, but there does not seem to be a general way to write yc as a
function of c.)

We may actually use Kurtz's Theorem to obtain a concentration result.

Theorem 14 In the notation of Theorem 13, jYcnn � ycj is O

�q
log n
n

�
with

high probability, where the constant depends on c.

One can also obtain entirely similar bounds for Ycn using more straight-
forward martingale arguments; however, the martingale approach does not
immediately lead us to the value to which Ycn=n converges. This is a stan-
dard limitation of the martingale approach: in contrast, the 
uid limit model
allows us to �nd the right limiting value.

4.1.2 Nonempty bins

The previous analysis can be extended to �nd the fraction of bins with
load at least (or exactly) k for any constant k as n ! 1. To establish
the appropriate Markov chain, let si(t) be the fraction of bins with load at

least i at time t, where again at time t exactly nt balls have been thrown.
Note that this chain deals with the tails of the loads, rather than the loads
themselves. This proves more convenient, as we found in Section 2. The
di�erential equations regarding the growth of the si (for i � 1) are easily
determined [Mit96b, Mit99b]:

8<
:

dsi
dt

= (sdi�1 � sdi ) for i � 1 ;

s0 = 1:
(10)
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The di�erential equations are easily interpreted as denoting that an increase
in the number of bins with at least i balls occurs when the d choices of a
ball about to be placed must all be bins with load at least i� 1, but not all
bins with load at least i.

The case of n balls and n bins corresponds to time 1. Interestingly, the
di�erential equations reveal the double exponential decrease in the tails in
this situation quite naturally:

si(1) =

Z 1

t=0

h
(si�1(t))

d � (si(t))
d
i
dt

�
Z 1

t=0
(si�1(t))

d dt

�
Z 1

t=0
(si�1(1))

d dt

= (si�1(1))
d:

Hence

si(1) � (s1(1))
di�1

:

The above argument shows that the tails si(1) in the limiting case given
by the di�erential equations decrease doubly exponentially; of course, since
the results for �nite n are tightly concentrated around these si, the implica-
tion is that the behavior also occurs in �nite systems. The astute reader will
notice that the steps taken to bound the integral expression for si(1) above
entirely mimics the original proof of Azar, Broder, Karlin, and Upfal. That
is, we bound si(1) based only on si�1(1). Indeed, the di�erential equations
provide an appealing natural intuition for their proof, and a similar approach
can be used to mimic their lower bound argument as well. Although this
intuition implies a maximum load of log logn= log d+�(1) in the case of n
balls and n bins, the general theory for density dependent chains does not
seem to get one there immediately. An immediate problem is that Kurtz's
theorem, as generally stated, requires a �xed number of dimensions. That
is, we can only work with si for i � K for some �xed constant K. Hence
considering loads of up to O(log log n) requires more than a simple applica-
tion of the theorem. A further problem is that as the tail gets small, the
probabilistic bounds are not strong enough. Hence one apparently needs
an explicit argument, such as that given by Azar et al., to achieve such an
explicit bound.

While the 
uid limit approach does not obviate the need for detailed
probabilistic arguments, it provides a remarkably useful tool. In particu-
lar, when applicable it generally provides natural intuition and remarkable

40



accuracy in predicting the behavior of even moderate sized systems. (See,
e.g., [Mit96b].) Moreover, it o�ers tremendous 
exibility. Many variations
on the balls-and-bins problem can be placed into the di�erential equations
framework. We provide a short introduction to some of the more interesting
ones.

4.2 Queueing theory models

We consider the 
uid limit model of a natural queueing system that gener-
alizes the static multiple-choice balls-and-bins problem. Suppose we think
of the bins as FIFO (First-In, First-Out) servers and the balls as tasks that
enter and leave after being processed. In this case, we assume that tasks
arrive as a Poisson process of rate �n proportional to the number of servers
n, with � < 1. We also assume that tasks require an amount of service
distributed exponentially with mean 1. This model, a generalization of the
natural M/M/1 queueing model to many servers, has been widely studied in
the case where incoming customers are placed at the server with the shortest
queue. (See, for example, the essential early work of Weber [Web78], Whitt
[Whi86], and Winston [Win77], as well as the more recent work by Adan and
others [AWZ90, Ada94].) Of course, such a load balancing scheme requires
some means of centralization. In a completely decentralized environment,
attempting to determine the shortest queue might be expensive, in terms
of time or other overhead. Rather than just assigning tasks randomly, we
might consider having each task examine a small number of servers and go
to the least loaded of the queues examined. This idea appeared in early
work by Eager, Lazowska, and Zahorjan [ELZ86a].

We consider the case where each task chooses d � 2 servers at random.
The 
uid limit analysis for this setting and its surprising implications were
found independently by Vvedenskaya, Dobrushin, and Karpelevich [VDK96]
and Mitzenmacher [Mit96b, Mit96a].

As previously, we let si(t) be the fraction of queues with load at least i
at time t. The di�erential equations describing the 
uid limit process are
easily established.8<

:
dsi
dt

= �(sdi�1 � sdi )� (si � si+1) for i � 1 ;

s0 = 1:
(11)

Let us explain the reasoning behind the system in (11). Consider a
system with n queues, and determine the expected change in the number
of servers with at least i customers over a small period of time of length
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dt. The probability a customer arrives during this period is �ndt, and the
probability an arriving customer joins a queue of size i�1 is sdi�1�sdi . (This
is the probability that all d servers chosen by the new customer are of size
at least i � 1 but not all are of size at least i.) Thus the expected change
in the number of queues with at least i customers due to arrivals is exactly
�n(sdi�1 � sdi )dt, and the expected change in the fraction of queues with
at least i customers due to arrivals is therefore �(sdi�1 � sdi )dt. Similarly,
as the number of queues with i customers is n(si � si+1), the probability
that a customer leaves a server of size i in this period is n(si � si+1)dt.
Thus the expected change in si due to departures is �(si� si+1)dt. Putting
it all together, and replacing the expected change by dsi, we obtain the
system (11).

To determine the long range behavior of the system above requires look-
ing for a �xed point. A �xed point (also called an equilibrium point or a
critical point) is a point where for all i, dsi

dt = 0. Intuitively, if the system
reaches its �xed point, it will stay there.

Lemma 15 The system (11) with d � 2 and � < 1 has a unique �xed point

with
P1

i=1 si <1 given by

si = �
di�1
d�1 :

Proof: It is easy to check that the proposed �xed point satis�es dsi
dt = 0

for all i � 1. Conversely, from the assumption dsi
dt = 0 for all i we can

derive that s1 = � by summing the equations (11) over all i � 1. (Note
that we use

P1
i=1 si <1 here to ensure that the sum converges absolutely.

The condition corresponds to the natural condition that expected number
of tasks in the system is �nite at the �xed point. That s1 = � at the �xed
point also follows intuitively from the fact that at the �xed point, the rate
at which customers enter and leave the system must be equal.) The result
then follows from (11) by induction.

Intuitively, we would expect a well-behaved system to converge to its
�xed point. In fact one can show that the trajectory of the 
uid limit
process given by the system (11) indeed converges to its �xed point [Mit96a,
VDK96]; in fact, it does so exponentially quickly [Mit96a]. That is, the L1

distance to the �xed point decreases like c1e
�c2t for some constants c1 and

c2. These results imply that in the limit as n gets large, the equilibrium
distribution of a system with n queues is tightly concentrated around the
�xed point [VDK96]. In fact, this behavior is readily seen even when the
number of servers n is around 100.
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Looking at the �xed point, we see that the tails decrease doubly expo-
nentially in d. Hence we expect to see much shorter queues when d � 2
as opposed to when a server is chosen uniformly at random, i.e. d = 1. In
fact, both the maximum queue length and the expected time in the system
decrease exponentially! More formally, we know that the expected time in
the system for an M/M/1 queue in equilibrium is 1

1�� , and hence this is
the expected time in the setting with n servers when tasks choose servers
uniformly at random. If we let Td(�) be the expected time for a task in the
system corresponding to the 
uid limit model (i.e. as n grows to in�nity)
for d � 2, then

lim
�!1�

Td(�)

log 1
1��

=
1

log d
:

That is, as the system is saturated, the average time a task spends in the
system when it queues at the shortest of d � 2 choices grows like the log-
arithm of the average time when just one choice is made. The result is
remarkably similar in 
avor to the original result by Azar et. al. [ABKU99];
a more compelling, simple explanation of this connection would certainly be
interesting.

It is worth emphasizing, however, the importance of this result in the
queueing model. In the case of the static balls-and-bins problem, the di�er-
ence between one choice and two choices is relatively small, even when the
number of balls and bins is large: with one million balls and one million bins,
when the balls are distributed randomly, the maximum load is generally at
most 12, while using two choices the maximum load drops to 4. Because the
average time spent waiting before being served depends on the load �, even
with a small number of servers, having two choices can have a great e�ect
under high load. For example, with one hundred servers at an arrival rate
of � = 0:99 per server, randomly choosing a server leads to an average time
in the system of 100 time units; choosing the shortest of two reduces this to
under 6!

4.2.1 Simple variations

The 
exibility of the 
uid limit approach allows many variations of this basic
scheme to be examined. For example, suppose there are two classes of tasks
entering the system. High priority tasks choose the shortest of two servers,
while low priority tasks choose a random server; the servers, however, are
still FIFO. In this case the corresponding 
uid limit model is governed by
the following set of di�erential equations:
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Figure 4: Expected time in the system versus probability (p) of that a
customer chooses two locations (� = 0:99).

8<
:

dsi
dt

= �p(s2i�1 � s2i ) + �(1� p)(si�1 � si)� (si � si+1) for i � 1 ;

s0 = 1:
(12)

The �xed point is given by s1 = �, si = �si�1(1 � p + psi�1). There
does not appear to be a convenient closed form for the �xed point for gen-
eral values of p. Note that at the �xed point, it is easy to determine the
distribution of the queue length customers of each priority join.

Surprisingly, the e�ect of increasing the fraction of customers with two
choices has a nonlinear e�ect on the average time a customer spends in the
system that is dramatic at high loads. Figure 4, which was obtained by
numerically solving for the �xed point, demonstrates this phenomenon at
� = 0:99; most of the gain occurs when only 20% of the customers have two
choices. Simulation results verify this behavior. The intuition for this e�ect
is that the average queue length is not linear in the load; at high loads small
increases in the load can dramatically increase average queue lengths. Hence,
even giving a small fraction of the incoming tasks additional information
greatly reduces the average queue length. This example demonstrates how
the 
uid limit approach can be used to gain signi�cant insights into the
original problem by studying variations in a simple, natural way.

As another example, we consider the variation considered by V�ocking
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described earlier in Section 3.1.1 [V�oc99]. We simplify by focusing on the
case where d = 2. In this case, there are two sets of servers, with half of
the bins on the left and half on the right. An incoming task chooses two
servers, one uniformly at random from the left and one from the right, and
queues at the server with fewer customers. Ties are broken always in favor
of the bins on the left. Let yi(t) be the fraction of the n servers that have
load at least i and are in the group on the left. Similarly, let zi(t) be the
fraction of the n bins that have load at least i and are in the group on the
right. Note yi(t); zi(t) � 1=2, and y0(t) = z0(t) = 1=2 for all time. Also, if
we choose a random bin on the left, the probability that it has load at least
i is yi

1=2 = 2yi. The di�erential equations describing the limiting process are
thus

dyi
dt

= 4� (yi�1 � yi) zi�1 � (yi � yi+1) ; (13)

dzi
dt

= 4� (zi�1 � zi) yi � (zi � zi+1): (14)

That is, for yi to increase, our choice on the left must have load i � 1,
and the choice on the right must have load at least i� 1. For zi to increase,
our choice on the right must have load i�1, but now the choice on the right
must have load at least i. For yi to decrease, a task must leave a server on
the left with load i, and similarly zi decreases when a task leaves a server on
the right with load i. This system appears substantially more complex than
the standard dynamic two-choice model; in fact, there is as yet no proof that
there is a unique �xed point, although experiments suggest that this is the
case. Indeed, even if the �xed point is unique, it does not appear to have
a simple closed form. We shall assume that the �xed point for this system
is unique from here on. An argument in [MV98] demonstrates that such a
�xed point must be strictly better than the �xed point for uniform selection
of two servers, in the following sense. If ui represents the fraction of servers
with load at least i at the �xed point for the system given by (13) and (14),
then ui � �2

i�1 for all i.
Using the 
uid limit, it is simple to consider the following natural varia-

tion: suppose we split the left and the right sides unevenly. That is, suppose
the left contains � � n bins, and the right contains (1 � �) � n bins. Then
y0 = �, z0 = 1 � � for all time, and by the same reasoning as for equa-
tions (13) and (14),

dyi
dt

=
1

�(1 � �)
(yi�1 � yi) zi�1 � (yi � yi+1): ; (15)
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i si ui ui
� = 0:5 � = 0:53

1 0.9000 0.9000 0.9000

2 0.7290 0.7287 0.7280

3 0.4783 0.4760 0.4740

4 0.2059 0.1998 0.1973

5 0.0382 0.0325 0.0315

6 0.0013 0.0006 0.0005

Figure 5: The tails of the distribution at � = 0:9.

dzi
dt

=
1

�(1 � �)
(zi�1 � zi) yi � (zi � zi+1): (16)

Interestingly, an even split is not best! As shown in Figure 4.2.1, for
� = 0:9, the tails fall slightly faster using a somewhat uneven split. In
general the right value of � depends on �; as � increases to 1, the best value
of � approaches 1/2. Increasing the fraction of processors on the left appears
to mitigate the tendency of processors on the left to be more heavily loaded
than those on the right.

Other variations that can be easily handled include constant service
times; other service distributions can also be dealt with, although with
more di�culty [Mit99a, VS97]. Threshold-based schemes, where a second
choice is made only if a �rst choice has high load, are easily examined
[Mit99a, VS97]. Closed models where customers recirculate require only
minor changes [Mit96b]. Similar simple load stealing models, such as those
those developed in [ELZ86b], can also be attacked using the 
uid limit ap-
proach, as in [Mit98]. Tackling these variations with di�erential equations
allows insight into how the changes a�ect the problem and yields a simple
methodology for generating accurate numerical results quickly.

We now consider two variations on the basic queueing model that appear
both particularly interesting and open for further research.

4.2.2 Dealing with stale information

Thus far, we have assumed that the load information obtained by a task
when deciding at which server to queue is completely accurate. This may
not always be the case. For example, there may be an update delay, if
load information may be updated infrequently. Alternatively, if there is
some delay in transferring a task to its queue choice, the load information
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it obtained will necessarily not re
ect the load when it actually joins the
queue. If these delays are of the same order as the processing time for a job,
it can have dramatic e�ects. This model was considered by Mirchandaney,
Towsley, and Stankovic in [MTS89]. Further work using 
uid limit models
appeared in [Mit00], which we follow. Additional simulation studies and
novel models appear in [Dah99].

For example, let us again consider a system of n FIFO servers and Pois-
son arrivals at rate �n of tasks with exponentially distributed service re-
quirements. Suppose that queue length information is available on a global
bulletin board, but it is updated only periodically, say every T units of time.
We might choose to ignore the bulletin board and simply have each task a
choose a random server. We might allow a task to peek at the bulletin
board at a few random locations, and proceed to the server with the short-
est posted queue from these random choices. Or a task might look at the
entire board and proceed to the server with the shortest posted queue. How
does the update delay e�ect the system behavior in these situations?

In this case, an appropriate limiting system utilizes a two-dimensional
family of variables to represent the state space. We let Pi;j(t) be the fraction
of queues at time t that have true load j but have load i posted on the
bulletin board. We let qi(t) be the rate of arrivals at a queue of size i at
time t; note that, for time-independent strategies (that is, strategies that
are independent of the time t) , the rates qi(t) depend only on the load
information at the bulletin board and the server selection strategy used by
the tasks. In this case, if we denote the time that the last phase began by
Tt, then qi(t) = qi(Tt), and the rates qi change only when the bulletin board
is updated.

We �rst consider the behavior of the system during a phase, or at all
times t 6= kT for integers k � 0. Consider a server showing i customers on
the bulletin board, but having j customers: we say such a server is in state
(i; j). Let i; j > 1. What is the rate at which a server leaves state (i; j)?
A server leaves this state when a customer departs, which happens at rate
� = 1, or a customer arrives, which happens at rate qi(t). Similarly, we
may ask the rate at which customers enter such a state. This can happen
if a customer arrives at a server with load i posted on the bulletin board
but having j� 1 customers, or a customer departs from a server with load i
posted on the bulletin board but having j + 1 customers. This description
naturally leads us to model the behavior of the system by the following set
of di�erential equations:

dPi;0(t)

dt
= Pi;1(t)� Pi;0(t)qi(t) ; (17)
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dPi;j(t)

dt
= (Pi;j�1(t)qi(t) + Pi;j+1(t))� (Pi;j(t)qi(t) + Pi;j(t)) ; j � 1:(18)

These equations simply measure the rate at which servers enter and leave
each state. (Note that the case j = 0 is a special case.)

At times t where the board is updated, a discontinuity occurs. At such
t, necessarily Pi;j(t) = 0 for all i 6= j, as the load of all servers is correctly
portrayed by the bulletin board. If we let Pi;j(t

�) = limz!t� Pi;j(z), so that
Pi;j(t

�) represents the state just before an update, then

Pi;i(t) =
X
j

Pj;i(t
�):

Experiments with these equations suggest that instead of converging
to a �xed point, because of the discontinuity at update times, the system
converges to a �xed cycle. That is, there is a state such that if the limiting
system begins a phase in that state, then it ends the phase in the same state,
and hence repeats the same cycle for every subsequent phase. Currently,
however, there is no known proof of conditions that guarantee this cyclic
behavior.

The age of the load information can have dramatic e�ect on the per-
formance of the system. We provide a representative example that demon-
strates the issues that arise. Figure 6 presents simulation results for n = 100
server at � = 0:9. (The case of one random choice was not simulated;
since each server in this case acts as an M/M/1 queue, the equilibrium dis-
tribution is fully known.) The results from numerically solving the 
uid
limit model are not included simply because they would be di�cult to
distinguish from the simulation results; the simulation results are within
1-2% of the results obtained from the 
uid limit model, except in the
case of choosing the shortest queue, where the simulations are within 8-
17% of the 
uid limit model. (Modeling the shortest queue system re-
quires an additional approximation that causes some inaccuracy; see [Mit00]
for details.) Simulations were performed for 50,000 time steps, with data
collected only after the �rst 5,000 steps to allow the dependence on the
initial state to not a�ect the results. The values of T simulated were
T = 0; 0:1; 0:5; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0; 15:0; 20:0; 25:0; 50:0. The results
presented are the average of three separate simulations.

An interesting, and at �rst glance counter-intuitive, behavior that im-
mediately manifests is that going to the apparently shortest queue can be
a terribly bad strategy. The intuition explaining this phenomenon becomes
clear when we recall that the board contains out of date information about
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Figure 6: Comparing di�erent strategies at � = 0:90, 100 queues.

the loads. The problem is that all of the incoming tasks seek out the small
number of queues with small load, so that a rush of tasks all head to a
processor until the board later appropriately updates its load. The tasks
essentially exhibit a herd behavior, moving together in the same fashion,
due to the unfortunate feedback given by the system.

Another way to describe this intuition is to consider what happens at a
market when it is announced that \Aisle 7 is now open." Very often Aisle
7 quickly becomes the longest queue. This herd behavior has been noticed
in real systems that use old information in load balancing; for example,
in a discussion of the TranSend system, Fox et al. note that initially they
found \rapid oscillations in queue lengths" because their system updated
load information periodically [FGC+97][Section 4.5].

Even given this intuition, it is still rather surprising that even for reason-
ably small delays, choosing the shortest of two randomly selected processors
is a better global strategy than having all tasks choose the shortest from
three! The reasoning remains the same: choosing the shortest from three
processors skews the distribution towards a smaller set of processors, and
when the updates are not quick enough to re
ect this fact, poor balance
ensues. Of course, as the delay between updates reaches in�nity, even two
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choices performs worse than simple random selection!
Of course, whenever there is more information, better performance can

result. For example, suppose that whenever a task is placed on a server
the board is appropriately marked. In this case the periodic updates simply
provide information about how many tasks have �nished. In this setting,
going to the apparently shortest queue again becomes a worthwhile strategy.
This solution was the one adopted by Fox et al. [FGC+97]; note, however,
that it requires that tasks be able to update the board.

Although these initial results provide some insight into the problems that
arise in using stale information about queue lengths, the general problem of
how to cope with incomplete or inaccurate load information and still achieve
good load balancing performance appears to be an area with a great deal of
research potential.

4.2.3 Networks of Server Banks

Once the case of a bank of servers has been handled, one might ask about
the case of networks of such systems. In particular, we review the well-
understood case of Jackson networks. A standard Jackson network consists
of J servers labeled 1; : : : ; J . Each server has an in�nite bu�er and services
tasks at rate �j. For each server j there is an associated Poisson arrival
process of rate �j. A task repeatedly queues for service, according to the
rule that when it �nishes at server j, it moves to server k with probability
pjk and leaves the system with probability 1�

P
k pjk. (For convenience we

assume that the pjk are such that the expected number of servers visited is
always �nite.)

The state of a Jackson network can be given by a vector representing
the queue lengths, ~n(t) = (n1(t); : : : ; nJ(t)), where ni(t) is the length of
the queue at the ith server at time t. Under this formulation the state
~n(t) is a Markov process. The stationary distribution may be described as
follows. We consider the e�ective arrival rate �j at each server j. This is
a combination of the external arrival rate plus the arrival rate from nodes
within the network. These e�ective arrival rates �j satisfy

�j = �j +
X
k

�kpkj:

The tails of the queue lengths for the system of queues satisfy

Pr(nj � rj for all j) =
Y
j

 
�j
�j

!rj

:
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The standard interpretation for this result is that in equilibrium each
server looks like an independent M/M/1 queue with the appropriate arrival
and service rates.

Suppose instead of a standard Jackson network of single servers we have
a similar network consisting of server banks, with each bank having a large
number of servers n. Of course the arrival rates are scaled so that the arrival
rate at each server bank is n�j, and the e�ective arrival rate at each server
bank is n�j. A job seeking service at a bank of servers selects a server
from that bank to queue at by taking the shortest of d � 2 random choices.
(When d = 1, the system is easily seen to be equivalent to a standard
Jackson network.) Given our previous results on server systems and the
results for standard Jackson networks one might hope that in the limit as n
grows to in�nity, the load nij at the ith server of the jth bank would have
the distribution:

Pr(nij � rj) =

 
�j
�j

! d
rj�1
d�1

:

Moreover, we would hope that the Jackson-like network continues to have
the property that in equilibrium each bank of servers appears to be an
independent bank of servers with the appropriate arrival and service rates.

Indeed, Martin and Suhov prove this to be the case in [MS99]. They
call the resulting system a Fast Jackson network, since the queue lengths
decrease doubly exponentially, and hence the expected time in a system
is naturally faster than in a standard Jackson network. Further work by
Martin examines the stochastic processes that arise from such networks in
greater detail [Marb, Mara].

Given the results of V�ocking [V�oc99], it seems clear that a Jackson-like
network of servers using the tie-breaking scheme leads to Faster Jackson

Networks. A full proof of this fact, however, will require extending the work
of [MS99] to this situation. Another direction to take is to try to extend
these results to broader classes of networks, or use these results to bound
the performance of networks that may not exhibit such pleasant properties.
Given the wealth of results showing that two choices are substantially better
than one in both static and dynamic situations, it seems that extending this
idea in more directions in network scenarios would be worthwhile. Although
the results for butter
y-like networks presented in Section 3.4 suggest that
the analysis of the two-choice paradigm can be signi�cantly more complex,
these results suggest that the 
uid limit approach still has potential in this
area.
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