CMOS Power Consumption

Lecture 1318-322 Fall 2003

Textbook: [Sections 5.5 5.6 6.2 (p. 257-263) 11.7.1]

Overview

Low-power design

- **E**Motivation
- **E**Sources of power dissipation in CMOS
- **E**Power modeling
- `Optimization Techniques (a survey)

Why worry about power? --- Heat Dissipation

Power Density Trends

Courtesy of Fred Pollack, Intel CoolChips tutorial, MICRO-3 2

High End Power Consumption

■ While you can probably afford to pay for 100-200W of power for your desktop…

 Getting that heat off the chip and out of the box is expensive

A Booming Market: Portable Devices

Expected Battery Lifetime increase over next 5 years: 30-40%

Where Does Power Go in CMOS?

 \Box **Switching power**: due to charging and discharging of output capacitances:

Energy/transition =
$$
C_L * V_{dd}^2
$$

Power = Energy/transition * $f = C_L * V_{dd}^2 * f$

- \Box Short-circuit power: due to non-zero rise/fall times
- \Box Leakage power (important with decreasing device sizes) <u>⊠</u> Typically between 0.1nA - 0.5nA at room temperature

Short-Circuit Power

period

Leakage Current

Sub-threshold current

$$
I_D = K \cdot e^{(V_{gs} - V_t)q/nkT} (1 - e^{V_{ds}q/kT})
$$

New Problem: Gate Leakage

- Now about 20-30% of all leakage, and growing
- Gate oxide is so thin, electrons tunnel thru it...
- **NMOS** is much worse than PMOS

Gate/Circuit-Level Power Estimation

It is a very difficult problem

EChallenges

<u>⊠</u>V_{DD}, f_{clk}, C_L are known

• Actually, the layout will determine the interconnect capacitances

⌧Need *node-by-node* accuracy

• Power dissipation is highly data-dependent

⊠Need to estimate switching activity accurately

• Simulation may take days to complete

Dynamic Power Consumption - Revisited

Power = Energy/transition * transition rate

$$
= C_{L} * V_{dd}^{2} * f_{\theta \to I}
$$

\n
$$
= C_{L} * V_{dd}^{2} * P_{\theta \to I} * f
$$

\n
$$
= C_{EFF} * V_{dd}^{2} * f
$$

\n
$$
= C_{EFF} * V_{dd}^{2} * f
$$

\n
$$
P = C_{L} (V_{dd}^{2}/2) f_{clk} (sw)
$$

\n
$$
C_{EFF} = \text{Effective Capacitance} = C_{L} * P_{\theta \to 1}
$$

Power Dissipation is Data Dependent Function of *Switching Activity*

Example: Static 2 Input NOR

Truth Table of 2 input NOR gate

Assume:

 $P(A=1) = 1/2$ $P(B=1) = 1/2$

Then:

P(O ut=1) = 1/4 (this is t he *signal probability*) P(0 [→]1) = P(Out = 0) · P(Out = 1) = 3/4 × 1/4 = 3/16 (this is the *transition probability*) C_{EFF} = 3/16 C_L

Power Consumption *is* Data Dependent

A

Suppose now that only patterns 00 and 11 can be applied (w/ equal probabilities). Then:

 $0\rightarrow 0$ 0 \rightarrow 0 \rightarrow $1 \rightarrow 1$ $0\rightarrow 1$ $0\rightarrow 1$ \rightarrow $1\rightarrow 0$ $1\rightarrow 0$ $0 \rightarrow 1$ => $P(0 \rightarrow 1) = 1/4$ $1\rightarrow 1$ $1\rightarrow 1$ \rightarrow

Similarly, suppose that every 0 applied to the input A is immediately followed by a 1 while every 1 applied to B is immediately followed by a 0. $P(0-1) = ?$

Transition Probabilities for Basic Gates

Switching Activity for Static CMOS

 $P_{0\rightarrow 1} = P_0 \cdot P_1$

(Big) Problem: Re-convergent Fanout

In this case, $Z = B$ as it can be easily seen. The previous analysis simply fails because the signals are not independent!

P(Z=1) = P(B=1) · P(X=1 | B=1) = P(B=1)

Main issue: Becomes complex and intractable real fast!

Another (Big) Problem: Glitching in Static CMOS

also called: dynamic hazards

Example: A Chain of NAND Gates

Glitch Reduction Using Balanced Paths

Equalize Lengths of Timing Paths Through Design

Delay is important: Delay vs. V_{DD} and V_{T}

Think about (Power ¯**Delay) product!**

Service Service Delay for a 0->1 transition to propagate to the output:

$$
t_{pLH} = \frac{C_L V_{DD}}{k_n (V_{DD} - V_{Tn})^2}
$$

$$
\text{Similar for a 1->0 transition}
$$

Delay vs. V_{DD}

Power-Performance Trade-offs

■ Prime choice: V_{DD} reduction

EXI In recent years we have witnessed an increasing interest in supply voltage reduction (e.g. Dynamic Voltage Scaling)

- High V $_{\sf DD}$ on critical path or for high performance
- Low V_{DD} where there is some available slack

<u>⊠</u> Design at very low voltages is still an open problem (0.6 – 0.9V by 2010!)

- Ensures lower power
- ... but higher latency loss in performance

Reduce switching activity

 \boxtimes Logic synthesis $⊠$ Clock gating

Service Service Reduce physical capacitance

EX Proper device sizing $⊠$ Good layout

How about POWER? Ways to reducing power consumption

Load capacitance (C_L) \boxtimes Roughly proportional to the chip area

Service Service Switching activity (avg. number of transitions/cycle)

 $⊠$ Very data dependent \boxtimes A big portion due to glitches (real-delay)

Clock frequency (f)

EX Lowering only f decreases average power, but total energy is the same and throughput is worse

-Voltage supply $(\mathsf{V}_{\mathsf{DD}})$ – Biggest impact

Using parallelism (1)

 $P_{ref} = C_{ref} V_{DD}^2$ $\mathsf{f}_{\mathsf{ref}}$

Assume: t_p = 25ns (worst-case, *all* modules) at V_{DD} = 5V

Using parallelism (2)

 \blacksquare \blacks ■ f_{par} = f/2 ($t_{p,new}$ = (50)ns => V_{DD} ~ 2.9V; V_{DD,par} = 0.58 V_{DD}) \blacksquare P_{par} = $C_{par}V_{DD}^2$ ${\sf f}_{\sf par}$ = 0.36 P $_{\sf ref}$ Area increases about 3.4 times!

Using pipelining

 \blacksquare C_{pipe} = 1.15C Delay decreases 2 times $(V_{DD,pipe} = 0.58 V_{DD})$

 \blacksquare P_{pipe} = 0.39 P

Chain vs. balanced design

Question for you:

Mhich of the two designs is more energy efficient?

⌧Assume:

- Zero-delay model
- •All inputs have a signal probability of 0.5

 \boxtimes Hint: Calculate $\bm{{\mathsf{p}}}_{0\rightarrow 1}$ for W, X and F

Chain vs. balanced design

- For the zero-delay model
	- Ξ **Chain design is better**
	- **tio** But ignores glitching

 Ξ Depending on the gate delays, the chain design may be worse

Low energy gates – transistor sizing

- Use the *smallest transistors* that satisfy the delay constraints
	- \blacksquare Increasing transistor size improves the speed but it also increases power dissipation (since the load capacitances increases)
		- **⊠Slack time difference between required time and arrival time of a** signal at a gate output
			- Positive slack size down
			- Negative slack size up

Make gates that toggle more frequently smaller

Low energy gate netlists – pin ordering

 Better to postpone the introduction of signals with a high transition rate (signals with signal probability close to 0.5)

Control circuits

State encoding has a big impact on the power efficiency

- Energy driven -> try to minimize number of bit transitions in the state register
	- Ξ **Fewer transitions in state register**
	- Ξ **Fewer transitions propagated to combinational logic**

Bus encoding

■ Reduces number of bit toggles on the bus

Different flavors

EBus-invert coding

⌧Uses an extra bus line *invert*:

- if the number of transitions is < *K*/2, invert = 0 and the symbol is transmitted as is
- if the number of transitions is > *K*/2, invert = 1 and the symbol is transmitted in a complemented form

ELow-weight coding

⌧Uses *transition* signaling instead of *level* signaling

Bus invert coding

Source: M.Stan et al., 1994

Power Dissipation is already a prime design constraint

Low-power design requires operation at lowest possible voltage and clock speed

Low-power design requires optimization at all levels of abstraction

Announcements

Project M1: `Check off in lab session**Example 25** Report by Friday **Exam Review Session:**

> `Monday Oct 13, 4:30-6:30pm `PH 125C