

Document Identifier: DSP2061	2
Date: 2024-09-19	3
Version: 1.0.1	4

6 Supersedes: 1.0.0

1

7 Document Class: Informative

8 Document Status: Published

9 Document Language: en-US

10 Copyright Notice

11 Copyright © 2022, 2024 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. Members and non-members may reproduce DMTF specifications and documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the particular version and release date should always be noted.

17 Implementation of certain elements of this standard or proposed standard may be subject to third-party 18 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 19 to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or 20 identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party, 21 22 in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or 23 identify any such third-party patent rights, or for such party's reliance on the standard or incorporation 24 thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party 25 implementing such standards, whether such implementation is foreseeable or not, nor to any patent 26 owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 27 withdrawn or modified after publication, and shall be indemnified and held harmless by any party 28 implementing the standard from any and all claims of infringement by a patent owner for such 29 implementations.

PCI-SIG, PCIe, and the PCI HOT PLUG design mark are registered trademarks or service marks of PCI SIG. All other marks and brands are the property of their respective owners.

32 For information about patents held by third-parties which have notified DMTF that, in their opinion, such

33 patents may relate to or impact implementations of DMTF standards, visit

34 https://www.dmtf.org/about/policies/disclosures.

35 This document's normative language is English. Translation into other languages is permitted.

36

CONTENTS

37	For	eword			7
38	Intro	oductio	n		8
39				nventions	
40		2000		aphical conventions	
41				usage conventions	
		0			
42	1	•			
43	2	Norm	ative ref	erences	9
44	3	Term	s and de	finitions	10
45	4	Symb	ools and	abbreviated terms	11
46	5	•		rator Modeling overview	
47	Ũ	5.1			
48		5.2		elements	
49		0.2	5.2.1	PLDM terminus	
50			5.2.2	Accelerator card	
51			5.2.3	Accelerator	
52			5.2.4	Memory	
53			5.2.5	Inter-Accelerator card connection	
54		5.3		Sensors	
55		5.5	5.3.1	General	
56			5.3.2	Accelerator card temperature sensor	
50 57			5.3.2 5.3.3	•	
58			5.3.3 5.3.4	Accelerator card power sensor	
			5.3.4 5.3.5	Accelerator card fan speed sensor	
59 60			5.3.5 5.3.6	Accelerator card voltage sensor	
			5.3.0 5.3.7	Accelerator card auxiliary device temperature sensor	
61			5.3.7 5.3.8	Accelerator card auxiliary device health sensor	
62			5.3.0 5.3.9	Accelerator card composite state sensor	
63				Accelerator temperature sensor	
64			5.3.10	Accelerator power sensor	
65			5.3.11	Accelerator composite state sensor	
66			5.3.12	Accelerator clock speed sensor	
67			5.3.13	Memory temperature sensor	
68			5.3.14	,	
69		- 4	5.3.15	Memory composite state sensor	16
70		5.4		hy description of the Accelerator card model elements	
71			5.4.1	General	
72			5.4.2	Physical entities association	
73			5.4.3	Logical entity association	
74			5.4.4	Sensor association	
75		5.5		nt PLDM Type IDs	
76		5.6		ration	-
77			5.6.1	General	
78			5.6.2	Enumeration scheme	
79		5.7		Illustration	
80			5.7.1	General	
81			5.7.2	Accelerator Card	
82			5.7.3	Accelerator	
83		_	5.7.4	Memory	
84		5.8			
85			5.8.1	General	
86			5.8.2	Accelerator firmware version change	
87			5.8.3	Health and state sensors events notifications	22
88	6	Mode	el use exa	ample	23

89	6.1	Genera	al	23
90	6.2	Model	hierarchy	25
91	6.3	Top-lev	/el TID	25
92	6.4	Accele	rator card	
93		6.4.1	General	
94		6.4.2	Accelerator card power sensor	
95		6.4.3	Accelerator card temperature sensor	
96		6.4.4	Accelerator card fan speed sensor	29
97		6.4.5	Accelerator card voltage sensor	
98		6.4.6	Accelerator card auxiliary device temperature sensor	30
99		6.4.7	Accelerator card auxiliary device health sensor	30
100		6.4.8	Accelerator card composite state sensor	
101	6.5	Accele	rator	32
102		6.5.1	General	32
103		6.5.2	Accelerator temperature sensor	33
104		6.5.3	Accelerator power sensor	33
105		6.5.4	Accelerator composite state sensor	
106		6.5.5	Accelerator clock speed sensor	35
107	6.6	Memor	у	35
108		6.6.1	General	35
109		6.6.2	Memory temperature sensor	36
110		6.6.3	Memory error statistics sensors	36
111		6.6.4	Memory composite state sensor	37
112	ANNEX A	(informa	ative) Notation and conventions	
113			ative) Change log	
114		(
11-1				

115 Figures

116	Figure 1 – Inter-Accelerator card connection	13
117	Figure 2 – Accelerator card PLDM model diagram	14
118	Figure 3 – Hierarchy description using ContainerEntityContainerID referencing the Container Entity	
119	ContainerID	
120	Figure 4 – Defining a logical association	18
121	Figure 5 – Top-level sensor association	19
122	Figure 6 – Example model diagram	
123	Figure 7 – Accelerator card model hierarchy	25
124	Figure 8 – Accelerator card level elements	26
125	Figure 9 – Accelerator card container PDR	27
126	Figure 10 – Accelerator card power sensor PDR	28
127	Figure 11 – Ambient Temperature sensor PDR	28
128	Figure 12 – Accelerator card fan speed sensor PDR	29
129	Figure 13 – Accelerator card voltage sensor PDR	29
130	Figure 14 – Auxiliary device temperature sensor PDR	30
131	Figure 15 – Auxiliary device health sensor PDR	30
132	Figure 16 – Accelerator card composite state sensor PDR	31
133	Figure 17 – Example model Accelerator	32
134	Figure 18 – Accelerator entity association PDR	32
135	Figure 19 – Accelerator temperature sensor PDR	33
136	Figure 20 – Accelerator power sensor PDR	33
137	Figure 21 – Accelerator composite state sensor PDR	34
138	Figure 22 – Accelerator card clock speed sensor PDR	35
139	Figure 23 – Example Memory model	35
140	Figure 24 – Memory association PDR	36
141	Figure 25 – Memory temperature sensor PDR	36
142	Figure 26 – Memory correctable errors PDR	36
143	Figure 27 – Memory uncorrectable errors PDR	37
144	Figure 28 – Memory composite state sensor PDR	
145		

146 **Tables**

147	Table 1 – Type IDs used in the Accelerator card model	19
148	Table 2 – Chosen enumeration limits in the model	20
149	Table 3 – Example Enumeration Scheme with Type IDs	21
150	Table 4 – TID PDR	25
151		

152	Foreword
153 154	The PLDM Accelerator Modeling (DSP2061) document was prepared by the Platform Management Communications Infrastructure (PMCI) Working Group of DMTF.
155 156	DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. For information about DMTF, see https://www.dmtf.org .
157	Acknowledgments
158	DMTF acknowledges the following individuals for their contributions to this document:
159	Editors:
160	Rama Rao Bisa – Dell Technologies
161	Pavan Kumar Gavvala – Dell Technologies
162	Eliel Louzoun – Intel Corporation
163	Contributors:
164	Patrick Caporale – Lenovo
165	Michael Garner – Meta
166	Yuval Itkin – NVIDIA Corporation
167	Deepak Kodihalli – NVIDIA Corporation
168	Hemal Shah – Broadcom Inc.
169	Bob Stevens – Dell Technologies
170	Pierre-Philippe Stevens – Advanced Micro Devices
171	Ryan Weldon – Groq

172

Introduction

173 This document describes a modeling scheme for an Accelerator card using PLDM for Platform Monitoring 174 and Control <u>DSP0248</u> semantics.

175 **Document conventions**

176 **Typographical conventions**

- 177 The following typographical conventions are used in this document:
- Document titles are marked in *italics*.
- Important terms that are used for the first time are marked in *italics*.
- Terms include a link to the term definition in the "Terms and definitions" clause, enabling easy navigation to the term definition.
- ABNF rules are in monospaced font.

183 ABNF usage conventions

- Format definitions in this document are specified using ABNF (see <u>RFC 5234</u>), with the following
 deviations:
- Literal strings are to be interpreted as case-sensitive Unicode characters, as opposed to the definition in <u>RFC 5234</u> that interprets literal strings as case-insensitive US-ASCII characters.

188 Reserved and unassigned values

- 189 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other190 numeric ranges are reserved for future definition by DMTF.
- Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0
 (zero) and ignored when read.

193 Byte ordering

194 Unless otherwise specified, byte ordering of multibyte numeric fields or bit fields is "Big Endian" (that is, 195 the lower byte offset holds the most significant byte, and higher offsets hold lesser significant bytes).

196 Other Conventions

197 See ANNEX A for other conventions.

198

PLDM Accelerator Modeling

199 **1 Scope**

This document defines an example data model for implementing the systems management of accelerators using PLDM for Platform Monitoring and Control <u>DSP0248</u> semantics. This document establishes a common framework that can provide implementation consistency between a system's Management Controller and accelerators and accelerator cards the system contains, focusing on FPGAs and GPUs and similar devices that offload processing from the host CPU. This data model is assumed to be extensible to a variety of physical implementations and should not be construed to be limited to the examples herein.

Accelerators and Accelerator card implementations may include ancillary features such as networking and storage that have management schemas defined in other data models and Specifications. The management of those features is outside the scope of this data model. The data model provided here focuses on the management of the accelerator features of the card, but composite sensors that return overall card status for example, may include metadata from those other functional areas. For instance, it may be appropriate to use either <u>DSP2054</u> or <u>DSP0222</u> for the management of networking features that may be included on the accelerator or card.

214 **2** Normative references

The following referenced documents are indispensable for the application of this document. For dated or
 versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
 For references without a date or version, the latest published edition of the referenced document
 (including any corrigenda or DMTF update versions) applies.

Unless otherwise specified, for DMTF documents this means any document version that has minor or
 update version numbers that are later than those for the referenced document. The major version
 numbers must match the major version number given for the referenced document.

- DMTF DSP0222, Network Controller Sideband Interface (NC-SI) Specification 1.1,
 https://www.dmtf.org/sites/default/files/standards/documents/DSP0222_1.1.pdf
- DMTF DSP0236, Management Component Transport Protocol (MCTP) Base Specification 1.3,
 https://www.dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.pdf
- 226 DMTF DSP0240, *Platform Level Data Model (PLDM) Base Specification* 1.1, 227 <u>https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_11.pdf</u>
- DMTF DSP0241, *Platform Level Data Model (PLDM) Over MCTP Binding Specification* 1.0,
 <u>https://www.dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.pdf</u>
- DMTF DSP0245, *Platform Level Data Model (PLDM) IDs and Codes Specification* 1.3,
 https://www.dmtf.org/sites/default/files/standards/documents/DSP0245 1.3.pdf
- DMTF DSP0248, *Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification* 1.2, <u>https://www.dmtf.org/sites/default/files/standards/documents/DSP0248_1.2.pdf</u>
- DMTF DSP0249, *Platform Level Data Model (PLDM) State Set Specification* 1.1,
 https://www.dmtf.org/sites/default/files/standards/documents/DSP0249_1.1.pdf
- DMTF DSP0257, *Platform Level Data Model (PLDM) FRU Data Specification* 1.0,
 https://www.dmtf.org/sites/default/files/standards/documents/DSP0257 1.0.pdf

- DMTF DSP0267, *Platform Level Data Model (PLDM) for Firmware Update Specification* 1.1,
 <u>https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.1.pdf</u>
- 240 DMTF DSP2054, *PLDM NIC Modeling* 1.0,
 241 https://dmtf.org/sites/default/files/standards/documents/DSP2054_1.0.pdf
- 242 IETF RFC 2781, *UTF-16, an encoding of ISO 10646*, February 2000,
 243 <u>https://www.ietf.org/rfc/rfc2781.txt</u>
- 244 IETF STD 63, UTF-8, a transformation format of ISO 10646, https://www.ietf.org/rfc/std/std63.txt
- 245 IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005,
 <u>https://www.ietf.org/rfc/rfc4122.txt</u>
- 247 IETF RFC 4646, *Tags for Identifying Languages*, September 2006,
 248 <u>https://www.ietf.org/rfc/rfc4646.txt</u>
- IETF RFC 5234, Augmented BNF for Syntax Specifications: ABNF, January 2008,
 https://datatracker.ietf.org/doc/html/rfc5234
- ISO 8859-1, Final Text of DIS 8859-1, 8-bit single-byte coded graphic character sets Part 1: Latin
 alphabet No.1, February 1998
- ISO/IEC Directives, Part 2, *Rules for the structure and drafting of ISO and IEC documents,* <u>https://www.iso.org/sites/directives/current/part2/index.xhtml</u>

3 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those termsare defined in this clause.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in <u>ISO/IEC Directives, Part 2</u>, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that <u>ISO/IEC Directives, Part 2</u>, Clause 7 specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English meaning.

- The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in <u>ISO/IEC Directives, Part 2</u>, Clause 6.
- 266 The terms "normative" and "informative" in this document are to be interpreted as described in <u>ISO/IEC</u>
- 267 Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do
- 268 not contain normative content. Notes and examples are always informative elements.
- 269 Refer to <u>DSP0240</u> for terms and definitions that are used across the PLDM specifications.

270 4 Symbols and abbreviated terms

271 Refer to <u>DSP0240</u> and <u>DSP0248</u> for symbols and abbreviated terms that are used across the PLDM

- specifications. For the purposes of this document, the following additional symbols and abbreviated terms
 apply.
- 274 **4.1**
- 275 **PCB**
- 276 Printed Circuit Board
- 277 **4.2**
- 278 **FPGA**
- 279 Field Programmable Gate Array
- 280 **4.3**
- 281 **GPU**
- 282 Graphics Processing Unit

283 **5 PLDM Accelerator Modeling overview**

284 5.1 General

This document describes a hierarchical modeling scheme for an Accelerator card using PLDM for Platform Monitoring and Control <u>DSP0248</u> semantics. The model is scalable, allowing consistent

modeling of Accelerator cards with different configuration options such as the number of Accelerators.

288

289 While PLDM for Platform Monitoring and Control <u>DSP0248</u> is a published standard, using the model 290 defined in this document simplifies interoperability by establishing a consistent schema.

291

The basic format that is used for sending PLDM messages is defined in <u>DSP0240</u>. The format that is used for carrying PLDM messages over a transport-layer protocol and medium is given in companion documents to the base specification. For example, <u>DSP0241</u> defines how PLDM messages are formatted and sent using MCTP as the transport.

- 296 The model supports the following:
- Consistent modeling of an Accelerator card regardless of the specific configuration and resource count
- Accelerator card hardware structure description
- Reporting of configuration changes such as firmware update

301 5.2 Model elements

302 **5.2.1 PLDM terminus**

PLDM for Platform Monitoring and Control <u>DSP0248</u> defines a single root for every device instance,
 referred to as PLDM Terminus and identified with a TID. The term "MC" is used to identify a PLDM
 terminus which communicates with an Accelerator card throughout this document.

306 When there are multiple Accelerators assembled on the same card, there may be a single Accelerator 307 which reports all the sensors of all the elements on the Accelerator card to the MC. Alternatively, each 308 Accelerator in the Accelerator card may present a separate PLDM terminus.

309 PLDM for Platform Monitoring and Control <u>DSP0248</u> does not allow associating components reported via

different PLDM termini since every database is relative to a given PLDM terminus. To overcome this

311 constraint, the implementers can retrieve a globally unique ID (Board part number and serial number)

from each TID and recognize these TIDs belonging to the same Accelerator card. The process to retrieve the globally unique ID (Board part number and serial number) from each TID is outside of this document.

All PLDM IDs specified by the model in this document shall be consistent across all TIDs on a given card.
 This avoids conflict from duplication of IDs in the combined model, generated by merging the TID-specific
 model elements reported as part of the overall model.

317 **5.2.2 Accelerator card**

318 In this model, the Accelerator card is the top-level element of the hierarchy containing one or more

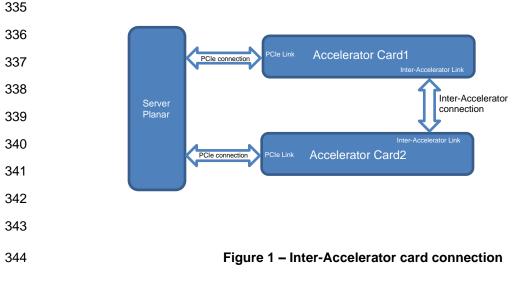
319 Accelerators on a PCB. An Accelerator card is a hardware and software solution that offloads certain

320 processing from the host processor. The Accelerator card in this document refers to various form factors

and is represented with PLDM Entity ID code 68 for Add-in card. The Accelerator card may contain

322 sensors.

323 **5.2.3 Accelerator**

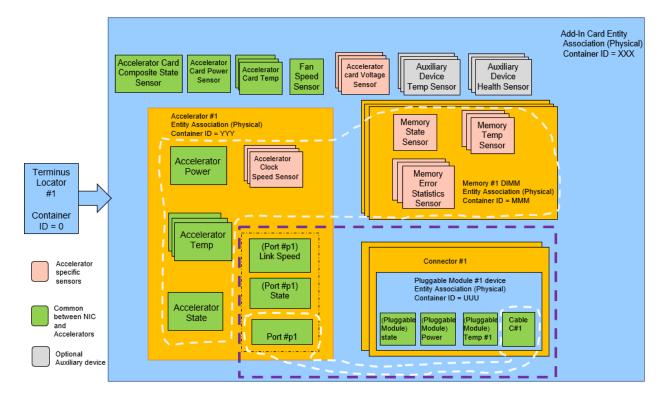

In this model, an Accelerator is the second level element of the hierarchy containing one or more sensors.
 An Accelerator is a hardware device with a main function of offloading certain processing from the host
 processor. An Accelerator may contain sensors such as health state, power-consumption, and
 temperature.

328 **5.2.4 Memory**

The term memory in this document covers the internal memory of the Accelerator, memory chips installed on the PCB and the DIMMs. In this model, the memory is at the second level of the hierarchy. A Memory may contain sensors such as temperature, health state, and error statistics.

332 **5.2.5** Inter-Accelerator card connection

The Accelerator cards may support communication with each other. Figure 1 depicts an Inter-Accelerator card connection, and it may not be the only communication interface between Accelerator cards.



345 5.3 Model sensors

346 **5.3.1 General**

Attributes are reported by means of sensors. Numeric sensors are used to report specific measured attributes. State sensors report operational and/or health state. The default thresholds for all numeric sensors shall be set by the hardware vendor. The sensors can be associated with any entity such as the Accelerator card, Accelerator or Memory. The description of each sensor is applicable only for the implemented sensors and it is not mandatory to implement all the sensors described in this document. There may be auxiliary devices present on the accelerator card and each auxiliary device may present its own set of sensors.

354 The Sensor Auxiliary Names PDR is recommended to provide the proper name of each sensor.

355

356

Figure 2 – Accelerator card PLDM model diagram

357 5.3.2 Accelerator card temperature sensor

The temperature sensor on the Accelerator card reports the card's ambient temperature and is represented using a numeric sensor. There may be multiple temperature sensors installed on the Accelerator card.

361 **5.3.3 Accelerator card power sensor**

362 The power sensor on the Accelerator card reports the estimated or measured aggregate power 363 consumption of the Accelerator card and is represented using a numeric sensor. An Accelerator card 364 which cannot accurately report its real-time power consumption may report its estimated maximal power. When there are multiple Accelerators on the same Accelerator card, there may be no visibility by any 365 366 Accelerator to the real-time information of the other Accelerators. For this reason, this sensor is only implemented when there is only one Accelerator on the Accelerator card, or when there is a hardware 367 368 sensor which does allow measuring and reporting the total card power consumption or when the maximal 369 estimated power is reported without being measured or when the accelerators can communicate with 370 each other.

371 5.3.4 Accelerator card fan speed sensor

The fan speed sensor on the Accelerator card reports the speed of an active cooling fan and is represented using a numeric sensor. An Accelerator card may have multiple fans installed, each potentially with its own speed sensor.

375 5.3.5 Accelerator card voltage sensor

The voltage sensors on the Accelerator card report various voltages on the card and are represented using numeric sensors. There may be multiple voltage sensors installed on the card.

14

5.3.6 Accelerator card auxiliary device temperature sensor

The temperature sensor on the auxiliary device reports the ambient temperature of the auxiliary device and is represented using a numeric sensor. This document does not mandate having an auxiliary device

381 temperature sensor.

382 5.3.7 Accelerator card auxiliary device health sensor

The health sensor on the auxiliary device reports the health state of the auxiliary device and is
 represented using a state sensor. This document does not mandate having an auxiliary device health
 sensor.

386 **5.3.8 Accelerator card composite state sensor**

The Accelerator card composite state sensor combines the Accelerator card thermal state sensor, the Memory operational fault state sensor, and the Accelerator card health state sensor. The Accelerator card health state is the aggregated health state of all the components on the card. The reported aggregated health state of the Accelerator card reflects the worst case of the reported health states for each of the elements monitored in the model. For example, if an Accelerator health state is non-critical and a memory heath state is critical, then the Accelerator card health state may be set to critical in the Accelerator card composite state sensor.

394 When there are multiple Accelerators, there may be no visibility by any Accelerator to the real-time

information of other Accelerators. For this reason, this composite state sensor is only implemented when
 there is only a single Accelerator on the Accelerator card or when the Accelerator card has the needed
 visibility of all the components such as Accelerators and memory.

To determine the respective sensor states, the following steps shall be used: the accelerator card thermal
 state sensor shall also reflect the auxiliary device temperature and the accelerator card health state
 sensor shall also reflect the auxiliary device health state.

401 **5.3.9 Accelerator temperature sensor**

402 The temperature sensor of the Accelerator reflects the device temperature and is represented using a 403 numeric sensor. This sensor is typically located in the thermally sensitive areas on the Accelerator.

404 **5.3.10 Accelerator power sensor**

The power sensor on the Accelerator reports the estimated or measured power consumption of the
 Accelerator and represented using a numeric sensor. An Accelerator which cannot accurately report its
 real-time power consumption may report its estimated maximal power.

408 **5.3.11 Accelerator composite state sensor**

409 The Accelerator composite state sensor combines the Accelerator Thermal trip state, Accelerator health

410 state, Configuration valid state, Configuration change state, and Accelerator firmware version change

411 state. The MC can use this sensor to identify issues with the Accelerator and to identify the specific

412 maintenance operations that it needs to perform. These operations may include Accelerator reset,

413 system-level shutdown for thermal protection, and other system-level maintenance.

Using the configuration change indication, the Accelerator notifies the MC to retrieve PDRs updated by the configuration change.

416 When a firmware update is detected, the composite state sensor can reflect this event to the MC, allowing

417 the MC to take any action needed to respond to the update. Note that reading the new firmware version

418 may be performed by the MC using protocols other than PLDM for Platform Monitoring and Control

419 <u>DSP0248</u>, such as <u>DSP0257</u> and/or <u>DSP0267</u>. Please note that firmware update only reflects the

420 conclusion of the firmware programming operation; it is device-specific whether this detection additionally 421 implies that new firmware is already active.

422 5.3.12 Accelerator clock speed sensor

The clock speed sensor of the Accelerator is used to read the clock speed and is represented using
 numeric sensors. An Accelerator may have multiple clock domains, each with its own clock speed sensor

425 5.3.13 Memory temperature sensor

- The temperature sensors on the memory modules and internal memory report the memory temperatures
 and are represented using numeric sensors. There may be multiple memory temperature sensors
 installed on the internal memory, on the soldered memory and on the DIMMs.
- The memory which is soldered on the Accelerator card PCB may not have a temperature sensor on them. In this case, the implementations may choose to have a temperature sensor near the soldered memory
- 431 chips calibrated to approximate the temperature of those memory devices.

432 **5.3.14 Memory error statistics**

- 433 The memory error statistics sensors report the memory error statistics (i.e., correctable errors and
- uncorrectable errors) and are represented using numeric sensors. Refer to the "SensorUnits
 enumeration" table in DSP0248.

436 **5.3.15 Memory composite state sensor**

The memory composite state sensor combines sensors such as memory health state sensor, memory cache state sensor, memory error state sensor, and memory redundant activity state sensor. The MC can use this sensor to identify issues with the memory and to identify the specific maintenance operations that it needs to perform. Refer to the "Memory-Related State Sets" table in <u>DSP0249</u> for all memory-related sensors and their states.

442 **5.4** Hierarchy description of the Accelerator card model elements

443 **5.4.1 General**

PLDM Accelerator Modeling uses a hierarchical model. Refer to section 10 PLDM associations and
 section 11 Entity Association PDR of <u>DSP0248</u> to understand physical and logical associations.

446 **5.4.2 Physical entities association**

- Physical association is defined in <u>DSP0248</u> as a method to associate components which are physically
 connected to each other. The model uses this concept to describe the following structures:
- Content of the Accelerator card PCB
- Content of the Accelerators
- Content of the Memory Modules
- A hierarchy entity is defined using an entity association PDR identified with a unique *ContainerID* identifier parameter. The entity association PDR's *ContainerEntityContainerID* references the PDR in
 which the entity is contained. This entity association PDR shall also contain the contained entities defined
 in <u>DSP2054</u> for the elements shown inside the purple dashed line of Figure 2.
- Figure 3 shows an example of how an Accelerator card entity association PDR references its container entity and contained entities:

Accelerator card Entity Association PDR

ContainerID	100
RecordHandle	1100

Container Entity		
EntityType	68	Add-in card
EntityInstanceNumber	1	
ContainerEntityContainerID	0	System

AssociationType	Physical to Physical containment
-----------------	----------------------------------

Contained Entity - Accelerator		
EntityType	149	Accelerator
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

Contained Entity - Memory		
EntityType	66	Memory
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

Figure 3 – Hierarchy description using ContainerEntityContainerID referencing the Container Entity ContainerID

461 **5.4.3 Logical entity association**

The <u>DSP0248</u> defines logical association as a method to associate components which collectively form a shared property yet are not physically part of the same component. This model uses logical association to describe the following structures:

465 Figure 4 shows logical association between an Accelerator and a memory module:

Channel #1 Entity Association PDR

ContainerID	900
RecordHandle	1180

Container Entity		
EntityType	79	Processor/memory module (processor and memory together on a module)
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

AssociationType Logical containment

Contained Entity - Accelerator		
EntityType	149	Accelerator
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

Contained Entity - Memory Module		
EntityType	66	Memory module
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

466

Figure 4 – Defining a logical association

467 **5.4.4 Sensor association**

As per DSP0248, numeric and state sensors are not included inside entity association PDRs. They are
 instead associated to the measured entity by directly referencing the EntityContainerID, EntityType, and
 EntityInstanceNumber of the measured entity in an entity association PDR. A sensor is identified by a
 unique SensorID value.

472 **5.4.4.1** Associating a sensor at the top level

473 When associating a sensor to the top-level entity which is the system the association uses the top-level 474 ContainerEntityType containerEntityInstanceNumber and ContainerEntityContainerID parameters.

Figure 5 illustrates the association of a temperature sensor to the Accelerator card in the model.

Add In Cord	tomner	atura concor PDP	Accelerator card	Entity Associa	tion PDK
Add-in Card	tempera	ature sensor PDR	ContainerID	100	
RecordHandle	113 0		RecordHandle	1100	
ensorID	20		Cor	tainer Entity	
ntityType	68	Add-In card	EntityType	68	Add-In card
ntityInstanceNum er	1	Accelerator card Instance #		1	
ontainerID	0	System	ContainerEntityContainer		
aseUnit	2	Degrees C	D	0	System
			Contained	Entity – Accelei	rator
			EntityType	149	Accelerator
			EntityInstanceNumber	1	
			ContainedEntityContaine	r 100	Accelerator
				100	card
			Containa		
				d Entity – Memo	ory
			Containe EntityType EntityInstanceNumber		

476

Figure 5 – Top-level sensor association

477 **5.5 Element PLDM Type IDs**

The model uses the following Type ID for each component in the model, selected from the available types defined in <u>DSP0249</u>. Table 1 lists the chosen Type IDs used in the model:

480

Table 1 – Type IDs used in the Accelerator card model

Component	Type ID
Accelerator card	68
Accelerator	149
Memory Module	66

481 **5.6 Enumeration**

482 **5.6.1 General**

- 483 PLDM for Platform Monitoring and Control <u>DSP0248</u> uses enumerated IDs to define elements in the
- 484 database. These IDs are labeled as:

- ContainerID unique for each container PDR in the model database
- EntityInstanceNumber unique for each entity type within a given hierarchy level
- RecordHandle unique ID for each PDR in the model database
- SensorID unique for each sensor in the model database

The proposed model provides an example enumeration scheme for these IDs, allowing a reasonably scalable formulation. This model is only an example and implementations should not rely on these values.

491 **5.6.2 Enumeration scheme**

492 The model assumes some maximal limits to define the enumerated values. These limits are provided as 493 an example and can be adjusted according to the specific Accelerator card requirements.

- The example model enumeration is designed to support an Accelerator card that does not exceed the following limits:
- 496

Model Limit	Value
Max Accelerators	10
Max Memory Modules	10
Max board temperature sensors	10
Max temperature sensors per Accelerator	10

Table 2 – Chosen enumeration limits in the model

497 If one of the above limits is insufficient for an Accelerator card, only the enumerated values will be498 affected, and the model structure will not have to change.

Table 3 illustrates the enumeration scheme, calculated based on the above limits.

500

	Example									
Item	Max Count	Base ContainerID	Max ContainerID	Base Handle	Max Handle	Base SensorID	Max SensorID	Base Instance	Max Instance	EntityType
Accelerator card	1	100		1100				1	1	68
Accelerator card Composite State Sensor	1			1101	1101	5	5	1	1	68
Accelerator card Power Sensor	1			1102	1102	6	6	1	1	68
Accelerator card Temperature sensors	10			1130	1139	20	29	1	10	68
Accelerator card fan speed sensor	10			1150	1159	40	49	1	10	68
Accelerator card Voltage sensor	10			1170	1179	80	89	1	10	68
Processor Memory Interface	10	900	909	1180	1189	90	99	1	10	68
Connectors	20	1040	1059	1190	1209	100	119	1	20	185
Memory module	10	1020	1029	1210	1219			1	10	66
Memory composite state sensor	1			1220	1220	120	120		1	66
Memory temperature sensor	20			1225	1244	125	144	1	20	66
Memory module correctable Errors	10			1255	1264	150	159		1	66
Memory module uncorrectable Errors	10			1275	1284	180	189		1	66
Accelerators	10	1000	1009	1295	1304			1	10	149
Accelerator power sensor	1			1310	1310	210	210		1	149
Accelerator State sensor	1			1315	1315	220	220		1	149
Accelerator temperature sensor	10			1325	1334	240	249	1	10	149
Accelerator clock speed sensor	10			1335	1344	260	269	1	10	149
Accelerators Ports	10			1345	1354	290	299	1	10	149
Accelerators Port State	10			1360	1369	320	329	1	10	149
Accelerators Link Speed	10			1380	1389	350	359	1	10	149
Auxiliary Device Temp Sensor	1			1395	1395	380	380		1	68
Auxiliary Device health sensor	1			1400	1400	395	395		1	68
Plugs	20	1070	1089	1410	1429	410	429	1	20	214
Plug Composite Sensor	1			1430	1430	450	450	1	1	214
Plug Power Sensor	20			1440	1459	470	489	1	20	214
Plug Temp Sensor	10			1470	1479	510	519	1	10	214
Cable	16							1	16	187
Communication Channel	100	800	899	1490	1589			1	100	79

501

Calculated	
Model Constant	
Model Sensors described in this doc	
Common sensors for NIC and Accelerator	
NA	

502 5.7 Model illustration

503 **5.7.1 General**

504 The Accelerator card PLDM model is a hierarchical model. The following subclauses describe the model 505 for each of the hierarchy levels:

506 5.7.2 Accelerator Card

507 The Accelerator card top level may contain the PCB card, Accelerators, Memory modules, one or more 508 thermal sensors, Accelerator card composite state sensor, Fan speed sensor, power sensor and voltage sensors. The PCB power consumption is represented with a power sensor. The Accelerator card 509 operational state is represented by a composite state sensor. When there are multiple Accelerators on 510 511 the same card, Accelerator card sensors are typically only reported by the first Accelerator. The Accelerator card is responsible for determining the order of accelerators in the card. Note that the top-512 513 level health state sensor of the composite state sensor may reflect the card level sensors and the health states of Accelerators. 514

Refer the purple dashed line in Figure 2 to the Network port link speed sensor, Network port link state
 sensor, Pluggable module temperature sensor, pluggable module power sensor and Pluggable module
 composite state sensor sections of DSP2054 specification for networking functionality.

518 **5.7.3 Accelerator**

519 The Accelerator hierarchy represents the active device (or one of multiple devices) that performs the 520 Accelerator control interface. An Accelerator is represented as a collection of sensors.

521 5.7.4 Memory

522 The Memory hierarchy represents a memory device (or one of multiple devices). A Memory is 523 represented as a collection of sensors.

524 **5.8 Events**

525 **5.8.1 General**

526 This model supports using PLDM events as a method to notify the MC upon changes in the sensor

readings/states as described in <u>DSP2048</u>. The following example events can be used with the model and
 the implementation may choose to have more events.

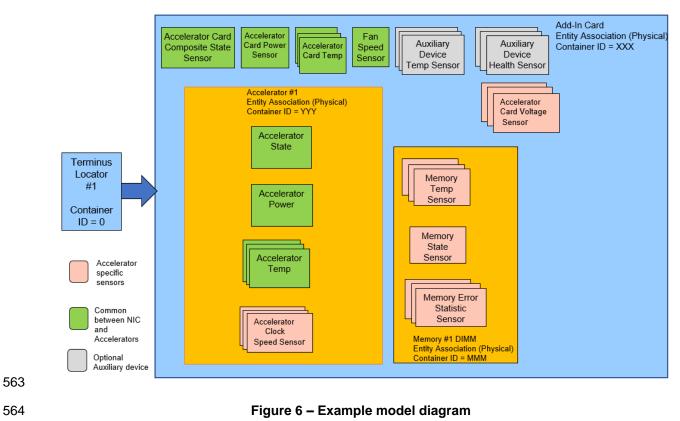
529 **5.8.2** Accelerator firmware version change

530 This event indicates to the MC that the firmware version of the Accelerator has changed. The MC may 531 use the *GetPDRRepositoryInfo* command and check if the *UpdateTime* parameter value has changed 532 since it last read the PDRs. The MC may update the whole PDR repository by re-reading all the PDRs. 533 The value used for the *UpdateTime* can be a virtual time value initialized by the Accelerator at device 534 initialization.

535 **5.8.3 Health and state sensors events notifications**

536 The sensors on the accelerator card may report a change in value, health, or state using a PLDM state or 537 numeric sensor event. Providing such a notification can significantly shorten the response time, compared 538 to waiting for the MC to poll the sensors, for an occurrence that requires the MC to take an action such as 539 increasing the circlew from a cooling for

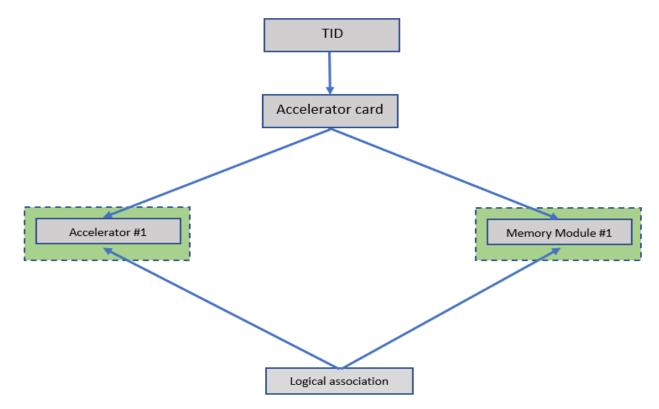
539 increasing the airflow from a cooling fan.


540 6 Model use example

541 6.1 General

542 The following example for modeling an Accelerator card using PLDM for Platform Monitoring and Control 543 <u>DSP0248</u> describes an Accelerator card with the following attributes:

- 544 Accelerator Card • **Temperature Sensor** 545 0 546 State Sensor 0 Fan speed Sensor 547 0 548 Voltage Sensors 0 549 Power Sensor 0 Auxiliary Device Temperature Sensor 550 0 551 Auxiliary Device Health Sensor 0 Accelerator 552 . **Temperature Sensor** 553 0 554 Power Sensor 0 555 State Sensor 0 **Clock speed Sensor** 556 0 557 Memory . 558 **Temperature Sensor** 0 559 Memory State Sensor 0 560 Memory Error statistics Sensor 0
- 561 Figure 6 illustrates the model which is used in the example.


562

DSP2061

565 6.2 Model hierarchy

566 The model PDRs identify the elements depicted in Figure 6. The hierarchies are illustrated in the following 567 diagram. For simplicity, Figure 7 shows sensors of Accelerator and Memory Module.

568 569

Figure 7 – Accelerator card model hierarchy

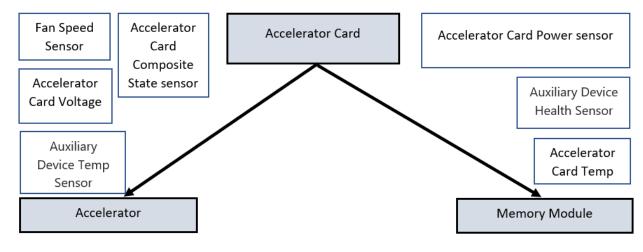
570 **6.3 Top-level TID**

571 The terminus ID is identified by the terminus locator PDR. The TID defines the top-level entry point to the 572 PLDM model. Because there is only one Accelerator on the Accelerator card in this example, there is only 573 one TID.

574

Table 4 – TID PDR

Field name	Value	Description
ContainerID	0	System
TID		Assigned by MC
RecordHandle	10	Opaque number
TerminusLocatorValueSize	1	Size of (EID) or size of (UID)
TerminusLocatorType	1	MCTP EID
EID	EID	MCTP assigned EID Value
UID	UID	Vendor provided UUID format value


- 575 The TID value is assigned to the terminus by the MC. When the transport layer is MCTP, the identification 576 of the terminus is performed using the Endpoint ID (EID) value. When using PLDM
- 577 over RBT, the terminus locator PDR shall use the UID (instead of EID). The UID value in the terminus
- 578 locator PDR uses the device UUID value as the terminus UID. For more information regarding terminus
- 579 locator PDR, see <u>DSP0248</u>.

580 6.4 Accelerator card

581 **6.4.1 General**

582 The top level of the model is the Accelerator card. The Accelerator card includes the physical elements

583 which are an Accelerator (only one Accelerator in this example) and a memory module (only one memory 584 module in this example).

585 586

Figure 8 – Accelerator card level elements

587 The sensors on the Accelerator card level are described using a reference to the measured entity,

588 independent of the container that includes all the physical elements on the Accelerator card.

Accelerator card Entity Association PDR

ContainerID	100
RecordHandle	1100

Container Entity		
EntityType	68	Add-In card
EntityInstanceNumber	1	
ContainerEntityContainerID	0	System

AssociationType Physical to Physical containment

Contained Entity – Accelerator		
EntityType	149	Accelerator
EntityInstanceNumber	1	
Contained Entity ContainerID	100	Accelerator card

Contained Entity – Memory		
EntityType	66	Memory
EntityInstanceNumber	1	
Contained Entity ContainerID	100	Accelerator card

589

Figure 9 – Accelerator card container PDR

590 Note that the Accelerator card ContainerID, 100, is referenced by the sensors not included in the entity 591 association PDR. The enumeration model shown in Table 3 includes the ContainerID for every hierarchy

592 level.

593 6.4.2 Accelerator card power sensor

594

Accelerator card power sensor PDR			
Field	Value	Description	
RecordHandle	1102		
SensorID	6		
EntityType	68	Add-In card	
EntityInstanceNumber	1	Accelerator card Instance #	
ContainerID	0	System	
BaseUnit	7	Watt	
UnitModifier	-1	0.1 watt resolution	

595

Figure 10 – Accelerator card power sensor PDR

596 6.4.3 Accelerator card temperature sensor

597

Ambient Temperature sensor PDR			
Field	Value	Description	
RecordHandle	1130		
SensorID	20		
EntityType	68	Add-In card	
EntityInstanceNumber	1	Accelerator card Instance #	
ContainerID	0	System	
BaseUnit	2	Degrees C	
UnitModifier	0	No need for scaling	

598

Figure 11 – Ambient Temperature sensor PDR

599 6.4.4 Accelerator card fan speed sensor

600

Accelerator card fan speed sensor PDR		
Field	Value	Description
RecordHandle	1150	
SensorID	40	
EntityType	68	Add-In card
EntityInstanceNumber	1	Accelerator card Instance #
ContainerID	0	System
BaseUnit	19	RPM
UnitModifier	0	No need for scaling

Figure 12 – Accelerator card fan speed sensor PDR

602 6.4.5 Accelerator card voltage sensor

603

601

Voltage sensor PDR			
Field	Value	Description	
RecordHandle	1170		
SensorID	80		
EntityType	68	Add-In card	
EntityInstanceNumber	1	Accelerator card Instance #	
ContainerID	0	System	
BaseUnit	5	Volts	
UnitModifier	-1	0.1 volt resolution	

604

Figure 13 – Accelerator card voltage sensor PDR

605 6.4.6 Accelerator card auxiliary device temperature sensor

606

Auxiliary device temperature sensor PDR			
Field	Value	Description	
RecordHandle	1395		
SensorID	380		
EntityType	68	Add-In card	
EntityInstanceNumber	1	Accelerator card Instance #	
ContainerID	0	System	
BaseUnit	2	Degrees C	
UnitModifier	0	No need for scaling	

607

Figure 14 – Auxiliary device temperature sensor PDR

608 6.4.7 Accelerator card auxiliary device health sensor

609

Auxiliary device health sensor PDR			
Field	Value	Description	
RecordHandle	1400		
SensorID	395		
EntityType	68	Add-In card	
EntityInstanceNumber	1	Accelerator card Instance #	
ContainerID	0	System	
StateSetID	1	Health state	
PossibleStates	Refer to the "General state sets" table in DSP0249.		

610

Figure 15 – Auxiliary device health sensor PDR

611 6.4.8 Accelerator card composite state sensor

612

Accelerator card composite state sensor PDR		
RecordHandle	1101	
EntityType	68	Add-In card
EntityInstanceNumber	1	
ContainerEntityContainerID	0	System

PLDMTerminusHandle	0
SensorID	5
CompositeSensorCount	3

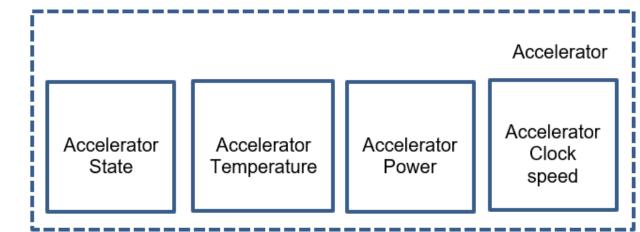
StateSetID	1	Health state
PossibleStates	Refer to the "General state sets" table in DSP0249.	

StateSetID	21	Thermal Trip
PossibleStates	Refer to the "General state sets" table in DSP0249.	

StateSetID	10	Memory Operational Fault status
PossibleStates	Refer to the "Gene	eral state sets" table in DSP0249.

613

Figure 16 – Accelerator card composite state sensor PDR


614 6.5 Accelerator

615 **6.5.1 General**

The Accelerator is an active device and being a physical entity that doesn't include other entities, the

617 Accelerator is not declared in its own PDR. It is instead declared in the Accelerator card container PDR.

618 The Accelerator includes a set of device-level sensors. The following diagram illustrates the model 619 sensors in the Accelerator:

620

621

Figure 17 – Example model Accelerator

The Accelerator content is declared using an entity-association PDR that includes the hierarchical

description of the Accelerator. The device-level sensors are declared with separate PDRs using direct references to the measured entities.

625

Accelerator Entity Association PDR

ContainerID	1000
RecordHandle	1295

Container Entity		
EntityType	149	Accelerator
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

AssociationType Physical to Physical containment
--

626

Figure 18 – Accelerator entity association PDR

627 6.5.2 Accelerator temperature sensor

628

Accelerator temperature sensor PDR		
Field	Value	Description
RecordHandle	1325	
SensorID	240	
EntityType	149	Accelerator
EntityInstanceNumber	1	Accelerator Instance #
ContainerID	100	Accelerator card
BaseUnit	2	Degrees C

Figure 19 – Accelerator temperature sensor PDR

630 6.5.3 Accelerator power sensor

631

629

Accelerator power sensor PDR		
Field	Value	Description
RecordHandle	1310	
SensorID	210	
EntityType	149	Accelerator
EntityInstanceNumber	1	Accelerator Instance #
ContainerID	100	Accelerator card
BaseUnit	7	Watts
UnitModifier	-1	0.1 watt resolution

632

Figure 20 – Accelerator power sensor PDR

633 6.5.4 Accelerator composite state sensor

634

Accelerator composite state sensor PDR		
RecordHandle	1315	
EntityType	149	Accelerator
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

PLDMTerminusHandle	0
SensorID	220
CompositeSensorCount	5

StateSetID	1	Health state
PossibleStates	Refer to the "General state sets" table in DSP0249.	
StateSetID	21	Thermal Trip
PossibleStates	Refer to the "General state sets" table in DSP0249.	

StateSetID	18	Firmware Version
PossibleStates	Refer to the "General stat	e sets" table in DSP0249.

StateSetID	15	Configuration
PossibleStates	Refer to the "General stat	te sets" table in DSP0249.

StateSetID	16	Configuration Change
PossibleStates	Refer to the "General stat	te sets" table in DSP0249.

635

Figure 21 – Accelerator composite state sensor PDR

636 6.5.5 Accelerator clock speed sensor

637

Accelerator clock speed sensor PDR		
Field	Value	Description
RecordHandle	1335	
SensorID	260	
EntityType	149	Accelerator
EntityInstanceNumber	1	Accelerator Instance #
ContainerID	100	Accelerator Card
BaseUnit	20	Hertz
UnitModifier	6	1 MHz resolution

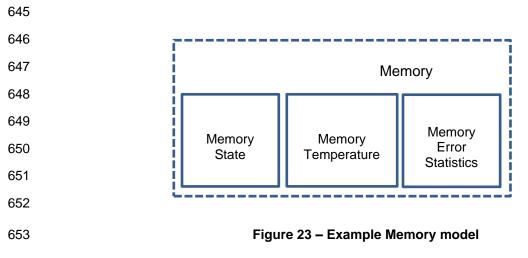

638

Figure 22 – Accelerator card clock speed sensor PDR

639 **6.6 Memory**

640 **6.6.1 General**

The Memory is a physical entity in the model. The Memory is already declared within the Accelerator card
container PDR. The Memory includes a set of device-level sensors. The Memory sensors cover all three
types of memory i.e., DIMM, Internal memory, and soldered memory chips. The following diagram
illustrates the model sensors in the Memory:

The Memory content is declared using an entity-association PDR that includes the hierarchical description of the Memory. The device-level sensors are declared with separate PDRs using direct references to the measured entities.

Memory Association PDR

ContainerID	1020
RecordHandle	1210

Container Entity		
EntityType	66	Memory
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

AssociationType	Physical to Physical containment
-----------------	----------------------------------

Figure 24 – Memory association PDR

658 6.6.2 Memory temperature sensor

659

657

Memory temperature sensor PDR		
Field	Value	Description
RecordHandle	1225	
SensorID	125	
EntityType	66	Memory
EntityInstanceNumber	1	Memory Instance #
ContainerID	100	Accelerator card
BaseUnit	2	Degrees C

660

Figure 25 – Memory temperature sensor PDR

661 6.6.3 Memory error statistics sensors

662

Memory correctable errors PDR		
Field	Value	Description
RecordHandle	1255	
SensorID	150	
EntityType	66	Memory
EntityInstanceNumber	1	Memory instance #
ContainerID	100	Accelerator card
BaseUnit	80	Correctable Errors

663

Figure 26 – Memory correctable errors PDR

664

Memory uncorrectable errors PDR		
Field	Value	Description
RecordHandle	1275	
SensorID	180	
EntityType	66	Memory
EntityInstanceNumber	1	Memory Instance #
ContainerID	100	Accelerator card
BaseUnit	81	Uncorrectable Errors

665

Figure 27 – Memory uncorrectable errors PDR

666 6.6.4 Memory composite state sensor

667

Memory composite state sensor PDR		
RecordHandle	1220	
EntityType	66	Memory
EntityInstanceNumber	1	
ContainerEntityContainerID	100	Accelerator card

PLDMTerminusHandle	0
SensorID	120
CompositeSensorCount	4

StateSetID	1	Health state
PossibleStates	Refer to the "General state sets" table in <u>DSP0249</u> .	

StateSetID	320	Memory cache status
PossibleStates	Refer to the "Memory-Related State Sets" table in <u>DSP0249</u> .	

StateSetID	321	Memory error status
PossibleStates	Refer to the "Memory-Related State Sets" table in <u>DSP0249</u> .	

StateSetID	322	Redundant Memory activity status
PossibleStates	Refer to the "Memory-Related State Sets" table in <u>DSP0249</u> .	

668

Figure 28 – Memory composite state sensor PDR

669 670			ANNEX A (informative)
671			(intornative)
672			
673			Notation and conventions
674	A.1	Notation	าร
675	Examp	les of notat	ions used in this document are as follows:
676 677 678	•	2:N	In field descriptions, this will typically be used to represent a range of byte offsets starting from byte two and continuing to and including byte N. The lowest offset is on the left; the highest is on the right.
679 680	•	(6)	Parentheses around a single number can be used in message field descriptions to indicate a byte field that may be present or absent.
681 682	•	(3:6)	Parentheses around a field consisting of a range of bytes indicates the entire range may be present or absent. The lowest offset is on the left; the highest is on the right.
683 684 685	•	<u>PCIe</u>	Underlined, blue text is typically used to indicate a reference to a document or specification called out in "Normative references" clause or to items hyperlinked within the document.
686	•	rsvd	This case-insensitive abbreviation is for "reserved."
687 688	•	[4]	Square brackets around a number are typically used to indicate a bit offset. Bit offsets are given as zero-based values (that is, the least significant bit [LSb] offset = 0).
689 690	•	[7:5]	This notation indicates a range of bit offsets. The most significant bit is on the left; the least significant bit is on the right.
691 692	•	1b	The lowercase "b" following a number consisting of 0s and 1s is used to indicate the number is being given in binary format.
693	•	0x12A	A leading " $0x$ " is used to indicate a number given in hexadecimal format.
694			

695

696

697

698

699

(informative)

ANNEX B

Change log

Version	Date	Description	
1.0.0	2022-05-25	Initial draft	
1.0.1	2024-09-19		

700