

Jena Research Papers in
Business and Economics

Optimally Routing and Scheduling
Tow Trains for JIT-Supply

of Mixed-Model Assembly Lines

Simon Emde, Nils Boysen

08/2010

Jenaer Schriften zur Wirtschaftswissenschaft

Working and Discussion Paper Series
School of Economics and Business Administration

Friedrich-Schiller-University Jena

ISSN 1864-3108

Publisher:

Wirtschaftswissenschaftliche Fakultät
Friedrich-Schiller-Universität Jena
Carl-Zeiß-Str. 3, D-07743 Jena

www.jbe.uni-jena.de

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

www.jbe.uni-jena.de

Optimally Routing and Scheduling Tow

Trains for JIT-Supply of Mixed-Model

Assembly Lines

Simon Emde, Nils Boysen

Friedrich-Schiller-Universität Jena, Lehrstuhl für Operations Management,

Carl-Zeiÿ-Straÿe 3, D-07743 Jena, Germany,

{simon.emde,nils.boysen}@uni-jena.de

Abstract

In recent years, more and more automobile producers adopted the supermarket-
concept to enable a �exible and reliable Just-in-Time (JIT) part supply of
their mixed-model assembly lines. Within this concept, a supermarket is a
decentralized in-house logistics area where parts are intermediately stored
and then loaded on small tow trains. These tow trains travel across the shop
�oor on speci�c routes to make frequent small-lot deliveries which are needed
by the stations of the line. To enable a reliable part supply in line with the
JIT-principle, the interdependent problems of routing, that is, partitioning
stations to be supplied among tow trains, and scheduling, i.e., deciding on
the start times of each tow train's tours through its assigned stations, need
to be solved. This paper introduces an exact solution procedure which solves
both problems simultaneously in polynomial runtime. Additionally, manage-
ment implications regarding the trade-o� between number and capacity of
tow trains and in-process inventory near the line are investigated within a
comprehensive computational study.

Keywords: Mixed-model assembly lines; Just-in-Time; Material supply; Tow
Trains

1 Introduction

With increasing product variety, which nowadays seems inevitable to satisfy highly diver-
si�ed customer demands, thousands of di�erent parts need to be delivered Just-in-Time
(JIT) to a multitude of stations of today's mixed-model assembly lines, e.g., in auto-
mobile industry. On the one hand, a reliable and �exible part supply is indispensable,

1

because otherwise material shortages leading to line-stoppages and hundreds of assem-
bly workers being idle threaten. On the other hand, enlarged safety stocks near the
line impede the assembly process within the scarce space of stations. Thus, to enable a
reliable, small-lot part supply in line with the JIT-principle an increasing number of au-
tomobile producers implements the so-called �supermarket-concept�. Here, supermarkets
serve as decentralized logistics areas, where parts assembled in neighboring line segments
are intermediately stored and sorted according to the needs of the assembly process.
The remaining distance between supermarket and assembly line is bridged via small tow
trains (or tuggers). A tugger consists of a towing vehicle (driven by an operator), which
is connected with a few waggons. These waggons are loaded with parts in a supermarket
and, then, a train circulates through assigned stations along its given tour. At each stop,
bins �lled with parts for the respective station are unloaded and empty bins are returned.
Finally, an empty train returns to the supermarket to be reloaded for its next tour.
Clearly, the routing and scheduling of tow trains is an important optimization problem

in this context. Each tow train is to be assigned to a subset of stations to be supplied
with parts and the sequence of station visits is to be speci�ed (routing). Moreover, for
a given route the delivery schedule de�ning arrivals and departures at each stopover is
to be determined (scheduling). Obviously, both problems are heavily interdependent,
so that a very complex decision problem arises. However, some real-world conditions
in automobile industry, i.e., limited maneuverability of tow trains when driven through
the narrow aisles of a shop �oor and loading tuggers according to the JIT-principle,
allow for some simpli�cations, so that optimal solutions can be determined in one joint
optimization approach. For this purpose, this paper introduces an exact nested dynamic
programming procedure with polynomial runtime.
The remainder of the paper is organized as follows. Section 2 characterizes the orga-

nizational settings of a supermarket in detail and provides a literature review. Then,
Section 3 introduces the routing and scheduling problem of tow trains and formalizes
them. The optimization procedure is described in Section 4 and extensions of the base
model (and required modi�cations of solutions procedures) are presented in Section 5. In
a comprehensive computational study (Section 6) we investigate the bene�ts of optimal
routes and schedules as well as the elementary trade-o� between number and capacity of
tuggers and in-process inventory near the line. Finally, Section 7 concludes the paper.

2 Organization principles of JIT-supermarkets and literature

review

A supermarket as a decentralized storage area for parts used at nearby line segments
substitutes frequent small-lot deliveries for centralized part supply from a remote re-
ceiving store, so that the intermediate node �supermarket� can be interpreted as being
the in-house logistics counterpart of a cross dock (e.g., see Boysen and Fliedner, 2010).
Supermarkets are replenished from receiving store with (comparatively) large industrial
trucks, whereas line segments are served with small tow trains. This way, part supply
can be adjusted more �exibly to unforeseen events as small-lot deliveries can be quickly

2

replanned while large-lot deliveries, once made, are hard to revoke. This advantage of the
supermarket-concept is very important in today's automobile production as the space at
the stations of the line is notoriously scarce. Finally, small-lot deliveries entail smaller
bins, which can be stored in comfortable racks near the line. Assembly workers can access
parts in an ergonomic and e�cient manner, which reduces the strain on the workforce
and saves handling time when parts are fetched. The complete part supply process via
supermarkets is described in the following:
When an industrial truck arrives at the supermarket, logistics workers sort incoming

parts into the racks of the supermarket. There, parts are intermediately stored until a
part demand from an assembly station is communicated to the supermarket. Then, a
pick list is generated and a logistics worker assembles bins according the pick list, where
some parts, e.g., windshields, additionally need to be sorted just-in-sequence as de�ned
by the given assembly sequence of automobiles. Filled bins are loaded on empty waggons
and moved to the stopping point of tow trains. Note that, typically, bins are assigned to
waggons such that each waggon contains parts for a separate station.
As soon as a towing vehicle arrives at a supermarket's stopping point, the driver couples

waggons for the stations assigned to his/her tour and starts visiting them as de�ned by
the tow train schedule. Similar to a bus schedule, it precisely speci�es the sequence of
station visits and the point in time of each stopover. One automobile producer we visited
was experimenting with display panels installed at each station similar to those of bus
and railway stations. Here, a countdown until the tugger's next arrival was announced,
so that anticipating material shortages in a credible and timely manner got much easier
for assembly workers and team leaders.
When a tugger arrives at a station, the driver unloads bins and exchanges empty with

�lled bins in the material racks of the station without impeding the assembly process.
Empty bins are reloaded into the tow train. Some automobile producers have already
fully automated these stops by applying �shooter-racks� (see Emde et al., 2009). These
special gravity �ow racks allow tow train waggons to dock while driving by. As soon
as a tugger stops, gates sideways of the waggon and at the back of the rack are opened
automatically and bins are injected by elastic springs into the rack and vice versa. These
racks reduce the length of a stopover to merely a few seconds, so that reliable tow train
schedules can be derived. As soon as all stations on a tugger's tour have been supplied,
the vehicle returns to the supermarket, decouples empty waggons and will repeat the
above steps to set o� on its next tour.
A typical supermarket we observed at multiple German OEMs shows the following

properties: A supermarket serves between 20 and 30 stations and is located in direct
vicinity of the assigned line segment, so that a complete tow train tour typically amounts
to merely 200-500 meters. Three to �ve tow trains are assigned to each supermarket, so
that �ve stations is a representative number of stopovers visited per tour and up to three
visits per station and hour are planned.

In recent years, supermarkets and tow trains became increasingly popular for a JIT-
supply of mixed-model assembly lines. However, a �kanban supermarket� is not a novel
phenomenon but rather a core element of the famous Toyota Production System (see

3

Vatalaro and Taylor, 2005, Holweg, 2007) with a long tradition in many industrial sectors
(Rees et al., 1989, Hodgson and Wang, 1991, Spencer, 1995).
The planning and control of this in-house logistics concept amounts to a complex task

where several interrelated decision problems have to be solved:

(i) Decide on the number and location of decentralized supermarkets and assign line
segments.

(ii) Determine the number of tow trains per supermarket and decide on the route of
each tugger.

(iii) Determine each tow train's delivery schedule for supplying parts on its given tour.

(iv) Decide on the bins to be loaded per tour of a tow train.

In spite of their great practical relevance, literature on supermarkets and the coordi-
nation of tow trains is extremely scarce. Up to now, merely Emde et al. (2009) explicitly
treat one of the aforementioned problems. They consider problem (iv) and present an
exact solution procedure which determines the bins to be loaded for each tour (of a given
schedule) with limited tugger capacity, so that inventory near the line is minimized. Up
to now, the other problems have not been considered in the context of supermarkets.
However, these in-house logistics decision problems show some similarities to problems
of designing and operating traditional distribution networks. This paper jointly treats
problems (ii) and (iii), which are related to traditional vehicle routing (see, e.g., Campbell
et al., 1998) and inventory routing problems (e.g., Cordeau et al., 2007).
However, the VRP only explicitly covers the routing aspect of the problem and further-

more demands that customers (or stations) are visited exactly once without restrictions
on the order in which this is done, which does not re�ect the reality of the assembly
line parts supply. The IRP on the other hand does take into account multiple deliver-
ies over a longer horizon but presupposes stochastic or constant consumption rates and
delivery volumes assigned by the delivery company (or the supermarket) instead of the
customers/stations. This runs counter to the JIT-philosophy of most assembly setups
where exactly the required amount of parts must be delivered in each tour. The problem
considered in this paper therefore falls into neither the VRP nor IRP category.

3 Problem description

For a given line segment of a mixed-model assembly system to be served by a respective
supermarket, this paper jointly treats the routing and scheduling problem of tow trains,
which is to be solved for each production shift.
The routing problem is to determine the �eet size of tow trains to be applied for part

replenishment and the partition of the given station set among tuggers. Furthermore, in
a typical routing problem the sequence of stopovers has to be decided on. However, two
peculiarities in the automobile industry facilitate this additional decision. With multiple
waggons attached a tugger cannot drive in reverse direction and, typically, the turning

4

Figure 1: Schematic representation of interdependent routing and scheduling decisions

radius is far too large for the narrow corridors of a shop �oor. Thus, merely unidirectional
tugger tours along the �ow-direction of the assembly line are possible. Furthermore, to
avoid congestions of tuggers in narrow aisles, typically automobile producers aim at a
consecutive partition of stations among tuggers. This means that it is impossible to have
stations 3, 5 and 7 on a route but not the intervening ones. With these two peculiarities
on hand, the routing problem reduces to a partition problem of stations into consecutive
subsets among a variable number of tow trains. As an extensive �eet of vehicles entails
both acquisition as well as maintenance and sta�ng cost, it is desirable to keep this
number minimal. On the other hand, more vehicles facilitate part supply and make
more frequent deliveries and thus lower stocks at the line possible.
The scheduling problem is to be solved for each tow train and its corresponding subset of

stations as determined by the superordinate routing problem. On the one hand, for each
tugger its number of tours has to be determined, where a tour comprises a tugger's loading
operation in the supermarket and a complete cycle through all its assigned stations. On
the other hand, the arrival time of each stopover along each tour is to be speci�ed.
However, again special circumstances in automobile industry allow for a simpli�cation of
the latter decision task. Due to short distances between supermarket and stations and
brief station visits, tours can be approximated as having identical duration irrespective
of the bin composition loaded on a tugger. Thus, our scheduling problem reduces to
determining the number of tours and the start time of each tour. This decision task aims
at avoiding material shortages at the stations while minimizing inventory near the line
given the limited capacity of a tugger. Note that less than a handful of waggons can
be connected to an engine, because otherwise a tugger cannot be driven safely through
the sharp turns of a shop �oor. The demand for parts to be delivered is determined by
the production sequence of product models launched down the mixed-model assembly
line. In the automobile industry, the production sequence is determined three to four
days before production starts (and communicated to part suppliers). As the routing and
scheduling problem of tow trains is a daily problem solved for each production shift,
the production sequence is known with certainty and part demands for each station
and production cycle are exactly de�ned. Clearly, material shortages and resultant line
stoppages must be avoided, which, however, is not always possible for any subset of
stations as assigned by solving the routing problem and production sequence given the
limited tugger capacity. On the other hand, in line with the JIT-principle, inventory is
to be reduced. Excessive inventory in a station obstructs assembly operations and moves

5

reorder dates of previous storage locations forward. Thus, we aim at minimizing the sum
of inventories over all production cycles and stations.
Obviously, both problems are heavily interdependent. The routing problem determines

the subset of stations to be served per tow train. This decision variable of the routing
problem serves as an instruction (given parameter) at the subordinate level of scheduling
each tugger. On the other hand, only solving the respective scheduling problem can
determine whether or not a speci�c subset of stations allows for a feasible delivery sched-
ule given the limited tugger capacity. Likewise, to exactly determine part inventory at
a tugger's assigned stations, a scheduling problem has to be solved. Thus, due to this
strong interdependency it seems advisable to solve both problems simultaneously. Figure
1 depicts the decisions tasks of both levels and the relations among them.

To precisely model the joint tow train routing and scheduling problem the following
premises are introduced:

• Time units are normalized to the equidistant length of a production cycle, which is
not a very restrictive premise as typical cycle times are fairly short, e.g., between
60 and 90 seconds in the automobile industry.

• To avoid congestions in the narrow aisles stations on a tugger's route are always
consecutive and served in �ow direction of the assembly line.

• All bins are of identical standardized size, which is a requirement of the aforemen-
tioned shooter racks. With a given number of waggons per tow train and standard-
ized bins the capacity restriction of vehicles can be measured one-dimensionally by
limiting the number K of bins to be loaded. As all tuggers are su�ciently powerful
an additional weight restriction is a non-issue.

• Once departed, a tow train will always cycle through all the stations on its route
without interruption. The duration of each stopover is not dependent on a tugger's
bin load, so that all tours of a single tugger take equal duration.

• In line with the JIT-principle it is assumed that each tugger tour exactly loads
the complete number of bins demanded by stations up to the next visit of the
tugger. Note that additional bins to avoid capacity bottlenecks on later tours are
excluded by this premise. This, however, is a typical policy applied at many OEMs
to obviate a sophisticated loading problem (see Emde et al., 2009) to be solved for
each tugger.

• W.l.o.g. safety stock must not explicitly be considered, but can simply be added
to the �rst demand period. Furthermore, all items are assumed to be available for
consumption in the next production cycle after a tugger's arrival at the respective
station.

• The production sequence was previously determined, so that the demand for ma-
terial bins at each station and in each production cycle is known with certainty.
Preprocessing these part demands is clari�ed by the following example.

6

Example: Consider the example demand for parts per station and model given in
Table 1a. In this problem, there is a production setting with �ve stations s = 1, . . . , 5
and three di�erent models k = 1, 2, 3. For example, assembling one unit of model k = 3
will require dmod13 = 2 parts at station s = 1. Note that in this introductory example
we restrict ourselves to only one kind of part per station, but extending the problem
to account for di�erent parts used in di�erent quantities at di�erent stations is entirely
possible.
The total demand for models in the current shift, depending on customer orders, is

to be satis�ed by the following given production sequence: < 2, 1, 1, 2, 3]. With this
sequence and the part requirements per model in mind, we can calculate the number of
parts used at each station in each cycle. Table 1b shows the numbers of parts per station
and cycle: The �rst unit to be launched down the line is of model 2 which requires one of
the parts used at station 1 (dcyc11 = 1). As the workpieces move down the line sequentially,
the unit will arrive in station 2 not before cycle 2 where it consumes 3 parts (dcyc22 = 3).
Meanwhile, in cycle 2, the next unit (of model 1) is launched but does not need any parts
in station 1 thus dcyc12 = 0. The rest of the values are computed analogously.
Parts are usually not delivered one at a time but in bins containing multiple units of

one kind of part. While bins are of standard size, parts come in a variety of shapes and
sizes therefore di�ering numbers of parts will �t into a standardized container. The bin
capacities in the example can be found in Table 1c. In the table, we can use the station
index s to number the parts because, as mentioned before, in this example we have only
one kind of part per station.
Now, we can calculate the number of bins needed at each station in each cycle. Consider

station 2: Consulting Table 1b, we see that three parts are required in cycle two. As no
bins have yet been brought to the station, one bin containing 4 parts must be in stock
in this cycle, hence d22 = 1. Note that the bin is not immediately emptied in cycle 2:
A residue of 4− 3 = 1 part remains. Production in cycle 3 requires another single part,
however this can simply be taken from the bin already at the station, which will then
be empty. Cycle 4 claims one more part which is, however, not in stock at the station,
thus we must set d24 = 1. The remaining 4− 1 = 3 parts su�ce to meet the demand of
dcyc25 = 3 parts in cycle 5 rendering further deliveries unnecessary. The bin demand for
all stations and cycles can be found in Table 1d.

7

dmodsk 1 2 3

1 0 1 2
2 1 3 0
3 3 1 1
4 1 1 0
5 1 0 2

(a) Example demands
of parts per station
and model.

dcycsc 1 2 3 4 5 6 7 8 9

1 1 0 0 1 2 0 0 0 0
2 0 3 1 1 3 0 0 0 0
3 0 0 1 3 3 1 1 0 0
4 0 0 0 1 1 1 1 0 0
5 0 0 0 0 0 1 1 0 2

(b) Example demands of parts per station and
cycle.

s size

1 1
2 4
3 4
4 3
5 5

(c) Example
bin ca-
pacities.

dst 1 2 3 4 5 6 7 8 9

1 1 0 0 1 2 0 0 0 0
2 0 1 0 1 0 0 0 0 0
3 0 0 1 0 1 0 1 0 0
4 0 0 0 1 0 0 1 0 0
5 0 0 0 0 0 1 0 0 0

(d) Example demand of bins per cycle.

Table 1: Example data.

With these premises on hand and the notation summarized in Table 2, a more formal-
ized de�nition of both problems can be derived.

Routing problem: Given s = 1, . . . , S stations to be supplied with parts the supermar-
ket routing problem (SRP) aims at a partition of these stations into a variable number
n ∈ {1, . . . , S} of disjunct subsets of consecutive stations each served by a separate
tow train. This decision task is encoded by a vector X(n) = {0, x1, . . . , xn−1, S} −→
{1, . . . , S − 1}, where xi denotes the right hand border of the line segment assigned to
tugger i. This vector is of variable length (n + 1) and is to be determined such that it
minimizes objective function (1) subject to constraints (2):

(SRP) minimize Z(X(n)) = γ · n+
n∑
i=1

F ∗(xi−1 + 1, xi) (1)

subject to

xi ≥ xi−1 + 1 ∀ i = 1, . . . , n (2)

Objective function (1) aims at minimizing total cost consisting of tugger and inven-
tory costs. Tugger cost comprise, e.g., maintenance and sta�ng cost per train and, thus,
depend on the number n of tow trains applied (weighted with cost factor γ). The addi-
tional term of objective function (1) denotes inventory cost resulting from assigning all
stations from left border xi−1 + 1 to right border xi to tugger i aggregated over all tug-
gers. These inventory costs per tugger i, however, cannot directly be determined within

8

S number of stations (index s = 1, . . . , S)
n number of tow trains (index i = 1, . . . , n)
C number of cycles (index c = 1, . . . , C)
m variable encoding the number of tours on a given route (index t =

1, . . . ,m)
γ total cost of applying a tugger during a shift
δs unit inventory cost at station s per cycle
K maximum number of containers that can be loaded onto the tow

train
P (l, r) number of cycles the tugger needs to reach the supermarket after

last station r, be replenished and then reach the �rst station l of the
next tour

pss′ number of cycles the tugger needs to get from station s to station s′

dsc number of bins in demand at station s in cycle c
ats auxiliary variable denoting the number of bins delivered to station

s in tour t
xi variable encoding the last station on the route of tugger i
yt variable encoding the cycle of a tugger's arrival at the �rst station

of tour t

Table 2: Notation

SRP but require the solution of a subordinate scheduling problem, where F ∗(l, r) denotes
the objective function value of the optimal solution to a tugger's scheduling problem if
assigned a line segment ranging from left border l to right border r. Finally, constraints
(2) ensure that line segments are consistently ordered from left to right and that each of
the n tuggers serves at least one station.

Scheduling problem: For each tugger and its consecutive line segment ranging from
station l to r, a supermarket scheduling problem (SSP) is to be solved, which exactly
de�nes the number of tours and their start cycles. The optimal objective value F ∗ of the
SSP is passed back to the SRP as the resulting inventory cost. Note that if no feasible
solution for SSP can be determined, i.e., the capacity of a tugger is not su�cient to serve
the assigned stations, a prohibitive value (in�nity) is returned. Within SSP, start times
of a variable number of m tours are encoded as vector Y (m) = {−D, y1, . . . , ym, C} −→
{0, . . . , C − D}, where C denotes the overall number of production cycles and D :=
plr + P (l, r) the overall duration a tour takes consisting of the duration plr of cycling
through the assigned stations and the replenishment time P (l, r) in the supermarket.
The �rst tour, starting in cycle −D, is a �dummy tour� that must not carry any actual
load. Inserting such a tour is necessary because otherwise the start cycle y1 of the real
�rst tour would have to speci�ed in advance. The optimal value for y1, however, is not an
input but the product of the optimization; always setting this to 0, for example, would

9

not necessarily lead to optimal results. Since a time of at least D cycles must elapse
between any two tours, having the dummy tour start in cycle −D will ensure that the
true �rst tour may start in the optimal cycle y∗1 between 0 and the time of occurrence
of the �rst demand at any station on the route. Vector Y (m) is chosen such that it
minimizes objective function (3) subject to constraints (4) to (7):

(SSP) minimize F (l, r, Y (m)) =
m∑
t=1

r∑
s=l

δs ·
min{yt+1+pls;C}∑
k=yt+pls+1

ats − k∑
τ=yt+pls+1

dsτ

 (3)

subject to

min{yt+1+pls;C}∑
k=yt+pls+1

dsk = ats ∀ t = 0, . . . ,m; s = l, . . . , r (4)

yt + plr + P (l, r) ≤ yt+1 ∀ t = 0, . . . ,m (5)
r∑
s=l

ats ≤ K ∀ t = 1, . . . ,m (6)

a0s = 0 ∀ s = l, . . . , r (7)

Equations (4) assign the number of containers delivered in tour t to station s to aux-
iliary variable ats. Note that, according to the premises, the tugger brings exactly as
many bins to a station as are needed until its next arrival, hence it su�ces to add up the
demand dsk between two tours t and t + 1 in each station s in order to get the number
ats of delivered bins. To exactly calculate the point in time parts delivered on tour t are
available at station s the time pls required from start station l to current station s are to
be added to start time yt plus one additional cycle (since parts are available in the next
cycle after delivery). Constraints (5) make sure that the tugger has su�cient time to
�nish a tour before the next one starts, which means that enough time is scheduled for
driving through stations (pls), reaching the supermarket from last station r, reloading
the vehicle and arriving at initial station l (P (l, r)). Constraints (6) ensure that it is
possible to satisfy the demand in between any two tours without exceeding the tugger
capacity K while constraints (7) declare the �rst tour a �dummy tour� without load. The
objective function (3) seeks to minimize the sum of all bins lying in stock over all cycles
and stations on the route weighted with station speci�c cost factor δs. As the bins that
are needed (ats) in each station s in the interval between any two tours equals exactly
the amount delivered, the respective stock in each cycle in that interval can be easily
calculated by subtracting the amount of parts consumed up to that cycle from the total
demand.

10

4 Dynamic programming

4.1 Routing

For any tow train, the rightmost station on its route has to be determined; this auto-
matically sets the left border of the next vehicle's route since no station may be left out
and only non overlapping routes are allowed (see Figure 2). Therefore, a current tugger's
route only depends on its left and right border (and not on the detailed routes of previous
tuggers), so that the problem can be evaluated with a dynamic programming procedure.

Figure 2: Supermarket supplying nine stations with three tow trains (i = 1, 2, 3) on
routes de�ned by left (xi + 1) and right (xi+1) borders representing solution
vector X = {0, 3, 5, 9}.

The decision process is subdivided into S + 1 (0, . . . , S) states, where each state i
denotes a station representing the right-hand border of a route. The algorithm operates
with a forward recursion. Partial objective values for transitions from state i to another
state j, j > i, are given by

w(i, j) = γ + F ∗(i+ 1, j), (8)

where F ∗(i+1, j) denotes the objective value of the optimal solution to the corresponding
scheduling problem with the given route from station i+ 1 to station j. Let G(j) be the
optimal objective value for the station interval from 0 to j and G(0) be zero. Because
routes are independent of each other, the following recursion holds:

G(j) = min
0≤i≤j−1

{G(i) + w(i, j)} . (9)

The optimal solution is now given by the path leading to target state S with minimal
G(S) and the optimal partition can be determined by a simple backward recovery. A
formal de�nition of the forward recursion is given in Figure 3.

11

G(0) := 0;1

G(j) :=∞ ∀j = 1, . . . , S;2

for j := 1 to S do3

for i := 0 to j − 1 do4

if w(i, j) +G(i) < G(j) then5

p(j) := i;6

G(j) := w(i, j) +G(i);7

end8

end9

end10

Figure 3: Dynamic programming algorithm for solving the SRP. Optimal routes will be
stored in p, total optimal cost in G(S).

Example (cont.): Figure 4 visualizes the progression of the algorithm for the example
problem; vertices denote states/stations and arcs stand for transitions/routes weighted
with function w and cost factor γ = 3. The optimal solution (bold faced) comprises two
arcs, i.e., two vehicles are required to optimally service the line in this example, the �rst
one serving stations 1 through 3 and the second stations 4 and 5. This leads to a total
objective value of 14. Note that for determining each arc weight w a separate scheduling
problem (SSP) is to be solved. Further note that a solution with only one edge does not
feasibly exist in the example due to the tugger capacity K = 10 being too low to supply
all stations with only one vehicle; the arc weight therefore equals ∞.

Figure 4: Dynamic programming graph for the example problem; optimal solution is
bold.

4.2 Scheduling

In the previous section, we used the optimal objective value F ∗ to calculate the arc
weights w(l, r) in the routing graph, which, of course, must �rst be determined itself by
drawing up the optimal tugger schedule given the route between stations l and r. The
tugger, once departed, will take a constant amount of time D := plr + P (l, r) to cycle
through all the stations on its route and to be replenished at the supermarket. During

12

this time, no further tour can be scheduled, of course, but it can be expedient to delay
the next tour for a couple of cycles to reduce inventory. According to the premises, the
tugger cannot bring more bins to any station than are needed until its subsequent arrival.
The tours are therefore independent of each other. The problem thus consists of dividing
an array of C cycles into distinct intervals, each of at least length D, which can also be
e�ciently solved via dynamic programming.
This problem is best represented by a weighted digraph de�ned by a three-tuple

(V,E, f), with V being the set of nodes, E being the set of arcs between nodes and
f the weighting function f : E → R. Nodes represent cycles in which a tour can end
and therefore the next one start, with a unique source node −D and a unique sink C.
Keeping in mind that at least D cycles must lie between tours, we can de�ne:

V = {−D} ∪ {c |c = 0, . . . , C −D} ∪ {C}

\

c
∣∣∣∣∣∣
r∑
s=l

c+pls∑
c′=pls

dsc′ > 0; c = 1, . . . , D − 1

 ,

with dsc = 0 ∀ s = l, . . . , r; c = −D, . . . , 0. The �rst tour starting in −D is a �dummy
tour� that must not actually deliver any bins. Therefore this initial tour cannot end in
or after a cycle where bins are consumed at a station on the tugger's route. Also, since
cycle 0 is the �rst cycle in which any real tour may start and a tour takes D cycles to
complete, a node c, ∀c = 1, . . . , D − 1 cannot be the head of an arc if any bins have
already been needed before or at c. Such nodes can thus be removed from the graph.
Similarly, all cycles in the interval (C −D,C] need not be considered since no tour can
start (or end) there because the remaining time is insu�cient for completing a tour.
An arc between one node c and another c′ exists only if the number of cycles between

the two nodes is large enough to accommodate a tour. For reasons already explained,
arcs from the dummy source −D can only end in nodes up to which no demand for bins
has occurred. Thus, arc set E is de�ned as follows:

E =
{
(c, c′)

∣∣c′ ≥ c+D; c, c′ ∈ V \ {−D}
}

∪

(−D, c)

∣∣∣∣∣∣
r∑
s=l

c+pls∑
c′=pls

dsc′ = 0; c ∈ V \ {−D}

 .

Keeping in mind that stocks do not carry over from one tour to the next, the weight
of an arc from c to c′ can be calculated as the sum of the bins lying in stock during
the tour interval. When calculating these values, the amount of time, i.e., cycles, the
tugger needs to get from one station to the next will also have to be taken into account.
If, for example, a tour supplying stations l = 1 through r = 5 is scheduled to begin in
cycle c = 12 but the vehicle needs p1,5 = 10 cycles to even get to station 5, then the
amount of stock in station 5 that can be ascribed to the current tour can be only that
of cycle 22 onwards. Previous stocks must stem from an earlier tour and must therefore

13

be added to a preceding arc's weight. Consequently, the weights can be determined with
the following function:

f(c, c′) =


∞, if

r∑
s=l

as > K

r∑
s=l

δs ·
min{c′+pls,C}∑
k=c+pls+1

as − k∑
τ=c+pls+1

dsτ

, else

(10)

with

as =
min{c′+pls,C}∑
k=c+pls+1

dsk ∀s = l, . . . , r.

Due to the independence of tours, we can de�ne the following recursion:

H(c′) = min
(c,c′)∈E

{
H(c) + f(c, c′)

}
, (11)

with H(−D) := 0. Figure 5 outlines the corresponding forward recursive dynamic pro-
gramming algorithm. Note that if H(C) =∞, no feasible schedule with route borders l
and r exists.

14

Set c0 to the cycle in which the �rst tour can start at the latest;1

D := plr + P (l, r);2

for c := 0 to c0 − 1 do3

q(c) := 0;4

H(c) := 0;5

end6

H(c) :=∞ ∀c = c0, . . . , C;7

for c = 0 to C −D do8

for c′ := c+D to C −D do9

if H(c) + f(c, c′) < H(c′) then10

q(c′) := c;11

H(c′) := H(c) + f(c, c′);12

end13

end14

if H(c) + f(c, C) < H(C) then15

q(C) := c;16

H(C) := H(c) + f(c, C);17

end18

end19

Figure 5: Dynamic programming algorithm for solving the SSP, given the left (l) and
right (r) borders of its route. Optimal schedule will be stored in q, total optimal
cost in H(C).

Example (cont.): Consider the arc (1, 3) in the routing example above (Figure 4).
This arc reads as �one tow train supplies stations 2 and 3�, i.e., l = 2 and r = 3. To
calculate the respective arc weight (SRP), the optimal schedule of the vehicle needs to be
determined (SSP). First o�, the total duration of a tour is D = p2,3 +P (2, 3) = 1+2 = 3
cycles. As such, no adjacent or semi-adjacent nodes can be connected by an arc. Figure
6 depicts the graph for this subproblem in the example. The sink node is C = 9, while
the source is −D = −3; arcs originating from this latter node designate �dummy tours�.
Looking at Table 1d, we see that in cycle 2 bins are required for the �rst time in station
2. Since the �dummy tour� must not carry any actual load, its arcs may only connect
to nodes 0 and 1, meaning that the cycle when the �rst real tour starts can be either
of those two cycles. In the example we see that it would not make any di�erence: Both
nodes lie on paths with a total length of H(9) = 4. One of the optimal solutions (bold in
the �gure) from −3 to 9 is via 0 and 3. This translates to �the �rst tour starts in cycle
0, the second in cycle 3�, with a total objective value of (given δ1 = δ2 = 1):

15

F ∗(2, 3) = G(9) = f(−3, 0) + f(0, 3) + f(3, 9)

= f(−3, 0) +
3∑
s=2

δs ·
min{3+p2s,9}∑
k=1+p2s

min{3+p2s,9}∑
τ=1+p2s

dsτ −
k∑

τ=1+p2s

dsτ

+ f(3, 9)

= 0︸︷︷︸
f(-3, 0)

+ 1 · ((1− 0) + (1− 1) + (1− 1))︸ ︷︷ ︸
station 2

+

1 · ((1− 0) + (1− 1) + (1− 1))︸ ︷︷ ︸
station 3

+ 2︸︷︷︸
f(3, 9)

= 0 + 2 + 2 = 4.

We now have the optimal schedule and the corresponding objective value (inventory
cost) for the route supplying stations 2 and 3. Whether or not this route (and hence
this schedule) will actually be part of the optimal solution depends on the superordinate
routing algorithm. We can see by looking at Figure 4 that in this example the edge (1, 3)
turns out not to be part of the optimal solution.

1 3 4 5 6

4
4

8

9

8

0

0

1

0-3

0
0

2
8

8
13

13

2
2

Figure 6: Dynamic programming with l = 2 and r = 3 in the example; optimal solution
is bold.

4.3 Time complexity

The routing dynamic programming (DP) graph for solving the SRP consists of S + 1
nodes where each node is connected to at most S others. The number of arcs is thus
bounded by O(S2).
For each arc in the routing graph the scheduling function F ∗ must be evaluated which

necessitates the drawing-up of a tow train schedule. The scheduling DP graph for solving
the SSP consists of at most C+1 nodes, each node connected to no more than C others.
The number of arcs in this graph is therefore bounded by O(C2).
Finally, the weight f of each arc in the scheduling graph must be determined. With

the proposed Equation (10) this can be done in O(S · C) time. However, this function

16

f can be e�ectively memoized if the following connection is considered: Let f l,r(c, c′) be
the weight of the arc from c to c′ in the scheduling graph that was created for the route
from l to r. If r is raised by one we make the following observation:

f l,r+1(c, c′) =
r+1∑
s=l

δs ·
min{c′+pls,C}∑
k=c+pls+1

as − k∑
τ=c+pls+1

dsτ


= f l,r(c, c′) + δr+1 ·

min{c′+pl,r+1,C}∑
k=c+pl,r+1+1

ar+1 −
k∑

τ=c+pl,r+1+1

dr+1,τ


with

ar+1 =
min{c′+pl,r+1,C}∑
k=c+pl,r+1+1

dr+1,k

Storing the f l,r(c, c′) values, the need for summing over all stations is eliminated. The
arc weights can thus be calculated in O(C). Note that, for simplicity's sake, we omitted
the feasibility check in the above equation; the sum al,r(c, c′) =

∑r
s=l

∑min{c′+pls,C}
k=c+pls+1 dsk

needs to be likewise memorized. This memoization technique leads to a space requirement
bounded in O(S2 · C2) and results in a total time complexity for the whole algorithm
of O(S2 · C2 · C). Assuming that the number of cycles C is greater than the number of
stations S, which is very reasonable in practice, this equates to O(C5).

5 Modi�cations of basic tow train routing and scheduling

In this section several extensions and modi�cations of both the routing and scheduling
problems and algorithms are investigated. First, we will discuss some simpli�cations of
the original problems often encountered in practical applications and then we will look at
ways to avoid the potentially di�cult-to-determine inventory cost δs in objective function
(3).

5.1 Cyclic deliveries

To make part supply of tow trains even more reliable and easier to supervise some
automobile producers aim at cyclic deliveries, which means that a tour of a speci�c tugger
starts in equidistant time intervals, e.g., every twentieth cycle. Then, each assembly
worker knows the (planned) arrival of the tugger's next visit and potential material
shortages can be anticipated earlier. However, in this case, the question of the optimal
interval arises. Figure 7 outlines a simple algorithm that can be used to create a cyclic
delivery schedule. The algorithm simply tests all possible combinations of start cycles,
the number of which is bounded by C, and numbers of tours, also bounded by C, each
of which entails the evaluation of bC/Dc (bounded by C) f values, which can be done in
O(C) time each as we have seen, leading to a time complexity bounded in O(C4). Using

17

these F values to calculate the arc weights in the routing DP, the total time complexity
of the whole algorithm (routing + scheduling) rises to O(C6).

Set c0 to the cycle in which the �rst tour can start at the latest;1

F ∗ :=∞;2

for c := 0 to c0 − 1 do3

for t := 1 to b(C − c)/Dc do4

F := 0;5

for i := 1 to t do6

F := F + f(c+ d(i− 1) · (C − c)/te, c+ di · (C − c)/te);7

end8

if F < F ∗ then9

F ∗ := F ;10

t∗ := t;11

c∗ := c;12

end13

end14

end15

Figure 7: Algorithm for constructing cyclic delivery schedules, given a route. Best num-
ber of tours will be stored in t∗, best start cycle of �rst tour y1 will be c∗ and
corresponding objective value will be F ∗.

5.2 Equal-length routes

For reasons of fairness and to omit a sophisticated routing problem car manufacturers
might aim at dividing the stations to be served equally among tuggers and their respective
operators. A suitable algorithm is outlined in Figure 8: For every possible number of tow
trains n = 1, . . . , S, stations are divided equally among the n vehicles and objective values
Z(X(n)) are calculated. The vehicle count n∗ with the lowest Z(X(n∗)) is returned.
Note that in order to evaluate Z the subordinate scheduling problem will still have
to be solved. This can either be done optimally with the DP or simply by assigning
cyclic delivery schedules with the algorithm from the preceding section. Either way, the
complexity of the routing itself (sans scheduling) remains obviously bounded by O(S2).

18

for n := 1 to S do1

segment := S/n;2

x0 := 0;3

xn := S;4

for i := 1 to n− 1 do5

xi := dsegment · ie6

end7

Calculate Z(X(n));8

Store the lowest Z =: Z∗ and the corresponding X =: X∗;9

end10

Figure 8: Algorithm for assigning equal-length routes. Best solution will be stored in
X∗ and corresponding objective value in Z∗.

5.3 Fleet size vs. inventory

While a trade-o� between the number of tow trains and associated capital consumption,
sta�ng and maintenance cost on the one hand, and the amount of in-process inventory
required at the line on the other most certainly exists, it may be di�cult to valuate these
two very di�erent cost factors in one joint objective function. Especially, unit inventory
cost might only be imputed cost for impeding the assembly process, e.g., by initiating
additional searching and sorting e�ort for assembly workers. Also, the e�ect of moving
reorder dates of storage locations forward, when prematurely moving inventory from
supermarket to the line, might be hard to quantify accurately over the multiple stages
relevant in the real-world, e.g., station, supermarket, central stock, supplier. One way to
avoid this quanti�cation problem is to split the two metrics up and construct an e�cient
frontier, plotting them against each other. The decision maker can then easily see the
additional bene�t in terms of reduced inventory a greater tow train �eet would a�ord
him and may thus decide whether it is worth it or not.
This can be achieved by removing the number of vehicles n from the objective function

(i.e., setting γ := 0) and �xing it for the DP algorithm. The number of tow trains in a
solution is determined by its number of arcs in the DP graph, therefore if, for example,
n = 2 is given, only paths from source 0 to sink S with two edges may be considered.
The shortest such path is then the optimal solution for the given n. If this is done for
all n = 1, . . . , S, the e�cient frontier is the result.

Example (cont.): Figure 9 shows the graph in the example for n = 2. The grey arcs
were inserted in the �rst step and denote all (partial) solutions with n = 1. Building
on these, the black arrows represent all (partial) solutions with n = 2; black arcs with
head node 5 are complete, feasible solutions with two vehicles. Of these, the lowest-cost
solution is bold in the �gure, resulting in an objective value of 8. Note that it would be
an easy matter to add another set of arcs continuing the path of the black ones and thus
obtain the optimal solution for n = 3 and so on.

19

0 1 2 3 4 51

4

7

0

4
6

12

0

3

6

0

1

Figure 9: Dynamic programming with given number of vehicles n = 2. Optimal solution
is bold.

Table 3 contains the optimal objective function values Z∗ with γ = 0, i.e., the in-
process inventory, for all possible numbers of tow trains n = 1, . . . , 5. As seen earlier, the
optimal solution to this example problem with γ = 3 made use of two tuggers, while a
look at the table below reveals that the sum of all inventory at the line can be reduced by
another 37.5% if an extra tugger is added. Whether this decrease in inventory outweighs
the additional cost of increasing the size of the tow train �eet is for the decision maker
to ascertain.

n 1 2 3 4 5

Z∗ infeasible 8 5 2 1

Table 3: Optimal objective function values Z∗ (γ = 0) for n = 1, . . . , 5 tuggers.

The modi�ed DP algorithm for constructing the entire e�cient frontier has to solve
the routing problem n times, where n is obviously bounded in S. The time complexity
of the routing is hence bounded in O(S3). Note that, alternatively, the complete routing
graph can be constructed upfront (see Section 4.1) and, then, the shortest path procedure
of Saigal (1968) can be applied to determine all shortest paths with i = 1, . . . , n steps.
However, the number of scheduling problems to be solved remains the same (i.e., bounded
by O(S2)) because the objective function F ∗(l, r) can obviously supply at most S2 unique
values seeing that both its parameters l, r are in {1, . . . , S}. Solving these scheduling
problems before starting the routing and storing the results, the runtime of the whole
algorithm remains bounded by the complexity of the scheduling algorithm and thus
unchanged, assuming that C > S. The space requirements for saving the scheduling
results are bounded in O(S2). Table 4 summarizes all combinations of routing and
scheduling algorithms presented in this paper and their aggregated time complexity.

20

routing
DP given γ, δ DP, e�. frontier equal-length routes

scheduling
DP O(C5)∗ O(C5)∗ O(C5)
Cyclic deliveries O(C6) O(C6) O(C6)

Table 4: Time complexity for all presented algorithms (assuming C > S) with rout-
ing and scheduling combined; combinations that solve both SRP and SSP to
optimality are marked with an asterisk.

6 Computational study

6.1 Instance generation

As there is no established test data for the joint tow train routing and scheduling problem
(SRP/SSP), we will �rst describe how the instances for this paper were generated.
We aim at instances being of representative size for real-world automobile assembly.

Thus, we presuppose 400 production cycles, which is a typical output per shift, and up
to 60 stations served by the supermarket. With these parameters on hand SRP/SSP
instances are derived from the parts usages of di�erent models at the stations. De-
pending on the production sequence of the models, the number of parts and, conse-
quently, containers consumed at any station in between any two tours will �uctuate.
For each station count from Table 5, the models are randomly generated by assigning
a demand dparmw for parts w ∈ W to each model m ∈ M . The parts usages dparmw are
calculated as brnd(um, um)e, ∀m ∈ M,w ∈ W , where um = rnd(0.5, 0.5) ∀m ∈ M and
rnd(µ, σ) ∼ N(µ, σ) is a normally distributed random number greater than 0 and b·e de-
notes rounding to the nearest integer. Bins have di�ering capacities depending on what
kind of part w ∈ W is stored in them, namely a uniformly distributed random number
from the interval [1; 20], to allow for the fact that di�erent parts may have di�erent sizes
while the size of the bins is standardized. At each station three di�erent kinds of parts
w are used. For each station count from the table, 50 random sequences of 400 units
each were created. Each of these was tested with varying tugger capacities K and delays
between tours P as printed in the table, so that in total 5,400 instances were generated.
Travel times P from/to the supermarket as well as between stations p are set to constant
values as given below. The cost factor δ (unit inventory cost) is normalized to 1 for all
stations.

21

Symbol description values

|M | number of distinct models 100
C number of production cycles / units per

sequence
400

K capacity of each tugger 5, 10, 15, 20, 25,
30

P delay between tours 1, 5, 10
p driving time between stations 1
S number of stations 10, 20, 30, 40, 50,

60

Table 5: Parameters for instance generation

6.2 Computational results

The two nested DP algorithms were implemented in C# 2008 and run on an x86 PC with
an Intel Core 2 Quad Q9550 2.8 GHz CPU and 4096 MB of RAM. To avoid quantifying
tugger and inventory cost in a joint cost function (see Section 5.3), we will use the
DP algorithms to construct e�cient frontiers in this computational evaluation and thus
regard only the inventory at the line as optimal objective value Z∗ (i.e., γ = 0). The
scheduling problems were solved before the routing started and the results stored. As
these schedules are independent of each other, they can be calculated in parallel on a
multi-core/multi-CPU workstation. Corresponding CPU times ordered by station count
S, averaged over all 50 sequences per parameter set, can be found in Table 6, listing both
the single-threaded and four-threaded runtimes. Keeping in mind the sequence length of
C = 400 and the fact that the algorithm outputs both optimal routes as well as optimal
schedules for all possible numbers of vehicles n = 1, . . . , S in just one go, running times of
under 10 seconds even in the instances with S = 60 stations make the algorithm appear
well-suited to solving even the most di�cult real-world instances in good time, especially
considering the remarkable speed-up achievable through parallel processing, by about a
factor of three on a four-core CPU.

S 10 20 30 40 50 60

CPU time ST 1 4 5 10 15 26
CPU time MT <1 2 2 4 5 9

Table 6: CPU time of the proposed algorithm in seconds, both on a single thread (ST)
and on four threads (MT); C = 400, K = 20 and P = 5.

Table 7 shows the average results for the 50 sequences with S = 10 stations and a
replenishment time of P = 5 cycles. Remember that the algorithm outputs optimal
routes and schedules for all possible numbers of vehicles, in this case n = 1, . . . , 10

22

(the rows of the table). The decision maker can thus judge if the improvement in the
objective function value (labeled Z∗ in the table) is su�cient to o�set the additional cost
another tow train at the supermarket would infer. Apart from the optimal Z∗ values
obtained by our nested dynamic programming algorithms, for comparison Table 7 also
lists the average objective function values for solutions with unoptimized (equal-length)
routes with optimal schedules (the column labeled Eq.-len. routes), optimal routes with
unoptimized schedules (Cyclic deliveries) and both unoptimized (Both non-DP) with the
procedures as described in the preceding section. Values in brackets denote the number
of sequences (out of the total of �fty) for which a feasible solution could be found, i.e.,
where the line did not starve for parts at any time.
Looking at the table, the �rst thing that comes to attention is the lack of feasible

solutions when only one tow train is available. Even with the maximum capacity of
K = 25 and optimal routes and schedules, it is not possible to supply all ten stations
with just one vehicle in this data set. Di�erences between the various algorithms �rst
become obvious when considering the solutions with n = 2 tuggers: With a capacity of
K = 15 the line could be feasibly supplied in 30% of the sequences, provided that both
routes and schedules are optimal. Concerning objective values, there is a consistent trend
discernible with all the instances: Optimal schedules are more important than optimal
routes when it comes to reducing surplus stock at the line. Consequently, simply using
equal-length routes turns out to be a fair approximation of optimal routing, whereas
cyclic delivery schedules tend to be signi�cantly worse than optimal ones. If both routes
and schedules are naively (non-optimally) set, tugger capacities need to be adjusted to
achieve feasibility and even then objective function values are about 69% greater than
optimal ones on average. Optimal routes do not improve these �gures much as long
as the schedules remain non-optimal (about 65% worse objective values) while optimal
schedules help a lot even if the routes are non-DP-assigned (only about 3% worse than
optimal). These observations are visualized in Figure 10b for S = 50.
This graph also illustrates that, while using more vehicles to supply the stations always

improves objective function values, no such thing can be said for the tugger capacity K.
The latter parameter is only useful to at all reach feasibility. Once achieved, further
increasing K has little to no e�ect, regardless of the routing and scheduling method
used, which can also be seen in Figure 10a. This graph also shows the in�uence of
the number of tow trains n on Z∗: Although more vehicles entail better solutions (i.e.,
reduced surplus stock), this additional bene�t is marginalized with increasing n. In the
�gure, the graph more or less �attens out after n = 15.

23

n K Cost (# feasible) Eq.-len. routes (# f.) Cyclic deliveries (# f.) Both non-DP (# f.)

5 - (0) - (0) - (0) - (0)
10 - (0) - (0) - (0) - (0)

1 15 - (0) - (0) - (0) - (0)
20 - (0) - (0) - (0) - (0)
25 - (0) - (0) - (0) - (0)
5 - (0) - (0) - (0) - (0)
10 - (0) - (0) - (0) - (0)

2 15 2.326,20 (15) 2.420,40 (5) 2.914,14 (7) - (0)
20 2.272,49 (47) 2.314,59 (39) 2.786,39 (46) 2.864,08 (37)
25 2.261,42 (50) 2.307,29 (49) 2.758,60 (50) 2.827,12 (49)
5 - (0) - (0) - (0) - (0)
10 1.770,39 (18) 1.796,67 (3) 2.426,63 (8) - (0)

3 15 1.701,28 (50) 1.711,36 (47) 2.274,26 (50) 2.318,04 (45)
20 1.697,68 (50) 1.709,82 (50) 2.262,00 (50) 2.304,44 (50)
25 1.697,56 (50) 1.709,70 (50) 2.262,00 (50) 2.304,44 (50)
5 - (0) - (0) - (0) - (0)
10 1.373,47 (49) 1.396,65 (43) 2.016,90 (48) 2.075,88 (34)

4 15 1.367,08 (50) 1.393,90 (50) 1.992,22 (50) 2.055,13 (48)
20 1.367,08 (50) 1.393,90 (50) 1.992,22 (50) 2.056,00 (50)
25 1.367,08 (50) 1.393,90 (50) 1.992,22 (50) 2.056,00 (50)
5 - (0) - (0) - (0) - (0)
10 1.149,14 (49) 1.191,70 (43) 1.833,10 (48) 1.911,03 (35)

5 15 1.148,36 (50) 1.188,28 (50) 1.825,98 (50) 1.889,56 (48)
20 1.148,36 (50) 1.188,28 (50) 1.825,98 (50) 1.889,48 (50)
25 1.148,36 (50) 1.188,28 (50) 1.825,98 (50) 1.889,48 (50)
5 1.242,00 (1) - (0) - (0) - (0)
10 997,94 (49) 1.097,90 (48) 1.720,71 (48) 1.804,34 (47)

6 15 997,26 (50) 1.096,68 (50) 1.715,90 (50) 1.799,94 (50)
20 997,26 (50) 1.096,68 (50) 1.715,90 (50) 1.799,94 (50)
25 997,26 (50) 1.096,68 (50) 1.715,90 (50) 1.799,94 (50)
5 1.017,00 (1) - (0) - (0) - (0)
10 892,24 (49) 922,92 (49) 1.642,60 (48) 1.679,56 (48)

7 15 891,88 (50) 922,42 (50) 1.637,98 (50) 1.674,72 (50)
20 891,88 (50) 922,42 (50) 1.637,98 (50) 1.674,72 (50)
25 891,88 (50) 922,42 (50) 1.637,98 (50) 1.674,72 (50)
5 891,00 (1) - (0) - (0) - (0)
10 801,47 (49) 826,47 (49) 1.580,54 (48) 1.607,35 (48)

8 15 801,34 (50) 826,08 (50) 1.576,04 (50) 1.603,38 (50)
20 801,34 (50) 826,08 (50) 1.576,04 (50) 1.603,38 (50)
25 801,34 (50) 826,08 (50) 1.576,04 (50) 1.603,38 (50)
5 813,00 (1) - (0) - (0) - (0)
10 726,08 (49) 766,65 (49) 1.529,96 (48) 1.561,17 (48)

9 15 726,00 (50) 766,36 (50) 1.525,70 (50) 1.556,86 (50)
20 726,00 (50) 766,36 (50) 1.525,70 (50) 1.556,86 (50)
25 726,00 (50) 766,36 (50) 1.525,70 (50) 1.556,86 (50)
5 771,00 (1) 771,00 (1) - (0) - (0)
10 674,94 (49) 674,94 (49) 1.493,98 (48) 1.493,98 (48)

10 15 674,90 (50) 674,90 (50) 1.489,84 (50) 1.489,84 (50)
20 674,90 (50) 674,90 (50) 1.489,84 (50) 1.489,84 (50)
25 674,90 (50) 674,90 (50) 1.489,84 (50) 1.489,84 (50)

Table 7: Results for S = 10.

In Figure 11a the following question is explored: What e�ect does the length of the line
segment served by a single supermarket have on the stock kept at the stations? In other
words, given a number of tow trains per supermarket, how many supermarkets should
be created along the line? The graph shows that the relationship between the number

24

of stations served by one supermarket and Z∗ is almost linear, meaning that, ceteris
paribus, doubling the stations served by a single supermarket also doubles the number
of bins in stock at each station on average. On the other hand, space constraints and
cost caused by creating and maintaining additional supermarkets will also play a role in
deciding on the optimal number of supermarkets installed per assembly line. Knowing
about the linear connection between station count and stock at the line may, however,
be helpful in determining the optimal trade-o�.
Finally, Figure 11b shows the e�ects of the replenishment time P on Z∗. Recall

that P may be interpreted as the resupply time that the tugger has to wait out at the
supermarket and as the transit time between supermarket and line segment. The graphs
clearly show that increasing replenishment times have a considerable adverse e�ect on the
objective. The individual values (P = 1, 5, 10 cycles in the �gure) may not be particularly
important, seeing that these parameters cannot be changed on short notice in practice
anyhow, however the fact that the time of turnover so distinctly increases the necessary
stock at the line is a clear vindication of the supermarket concept as and of itself: It is
the very purpose of supermarkets to shorten resupply times and facilitate quick deliveries
to the line. In other words: Supermarkets have a naturally low P , which quite obviously
pays.

 5 10 15 20 25 30 35 40

 2
00

0
 4

00
0

 6
00

0
 8

00
0

10
00

0
12

00
0

14
00

0

10

15

20

25

30

n

K

Z
*

(a) E�ect of vehicle number n and capacity K
on objective function values.

10 20 30 40 50

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0

n

Z

Z
*

Z with cyclic deliveries
Z with equal-length routes
Z with cyclic deliveries and equal-length routes

(b) Di�erence between simple and optimal solu-
tions.

Figure 10: E�ects of vehicle number and capacity as well as delivery policy on Z∗.

25

10 20 30 40 50 60

50
00

10
00

0
15

00
0

S

Z
*

(a) E�ect of station number S on objective func-
tion values with n = 10, K = 30 and P = 5.

5 10 15 20

0
10

00
20

00
30

00
40

00
50

00

n

Z
*

P = 10
P = 5
P = 1

(b) E�ect of vehicle number n and replenish-
ment time P on objective function values
with S = 20 and K = 10.

Figure 11: E�ects of the number of stations and replenishment time on Z∗.

7 Conclusion

This paper studies the joint tow train routing and scheduling problem, which is to be
solved by automobile manufacturers supplying the stations of their mixed-model assem-
bly lines via decentralized in-house logistics areas, labeled supermarkets. Being loaded in
these supermarkets, small tow trains travel along their assigned line segments and supply
parts assembled at the stations according to the JIT-principle. The routing and schedul-
ing problem partitions the stations among tuggers and decides on the start times of each
tugger's tours. A nested dynamic programming procedure for solving this problem to
optimality in polynomial runtime is presented and in a comprehensive computational
study the trade-o� between the number of tuggers and their capacity on the one hand
and inventory held at the stations on the other is investigated.
Future research on supermarkets and tow trains should especially treat the not yet

considered decision problem (see Section 2) of determining the number and location of
supermarkets to be installed for supplying a complete assembly line. Additionally, the
bene�t of the supermarket concept should be compared to alternative forms of organiz-
ing part supply, e.g., more centralized alternatives. This way decision support for the
practitioner could be gained to decide on the right kind of part supply for his/her speci�c
problem setting.

References

Boysen, N.; Fliedner, M. (2010): Cross Dock Scheduling: Classi�cation, Literature Re-
view and Research Agenda. Omega 38, 413�422.

26

Campbell, A.; Clarke, L.; Kleywegt, A.; Savelsbergh, M.W.P. (1998): The Inventory
Routing Problem. In: Crainic, T.G.; Laporte, G. (eds.): Fleet Management and Lo-
gistics. Kluwer Academic Publishers, Dordrecht, Netherlands, 95�113.

Cordeau, J.-F.; Laporte, G.; Savelsbergh, M.W.P.; Vigo, D. (2007): Vehicle Routing. In:
Barnhart, C.; Laporte, G. (eds.): Handbook in Operations Research & Management
Science 14, Elsevier, Amsterdam, Netherlands, 367�428.

Emde, S.; Fliedner, M.; Boysen, N. (2009): Optimally loading clocked tow trains for
JIT-supply of mixed-model assembly lines. Jena Research Papers in Business and Eco-
nomics (JBE) 10/2009, FSU Jena, Germany.

Hodgson, T.J.; Wang, D. (1991): Optimal hybrid push/pull control strategies for a
parallel multistage system: part I. International Journal of Production Research 29,
1279�1287.

Holweg, M. (2007): The genealogy of lean production. Journal of Operations Manage-
ment 25, 420�437.

Rees, L.P.; Huang, P.Y.; Taylor III, B.W. (1989): A comparative analysis of an MRP
lot-for-lot system and a Kanban system for a multistage production operation. Inter-
national Journal of Production Research 27, 1427�1443.

Saigal, R. (1968): A constrained shortest route problem. Operations Research 16, 205�
209.

Spencer, M. (1995): Production planning in a MRP/JIT repetitive manufacturing envi-
ronment. Production Planning & Control 6, 176�184.

Vatalaro, J.; Taylor, R. (2005): Implementing a Mixed Model Kanban System: The Lean
Replenishment Technique for Pull Production. Productivity Press, Portland, OR.

27

	ADP78.tmp
	Simon Emde, Nils Boysen

