Uniform Description of

Efficient Decision Procedures

Using Extended Signatures

Ashish Tiwari

Tiwari@csl.sri.com

Computer Science Laboratory SRI International Menlo Park CA 94025

Part of the work was done jointly with Prof. Leo Bachmair, SUNY Stony

Brook

Ashish Tiwari, SR I

Formal logic provides languages for precise formulation of

- specification of hardware and software designs, protocols,
- correctness properties of programs,
- queries for database search, ...

Inference mechanisms help to

- prove correctness of specifications,
- answer search queries, ...

Formal Logic

Applications usually involve many different "theories".

For example, in a typical program correctness application, if,

select (v, i):Select the *i*-th element of array vstore (v, i, e):Store e as the *i*-th element of array v

then, we may obtain:

$$\begin{array}{ll} \phi & : & \mathbf{select}(\mathbf{store}(v,i,e+1),i) \approx [1+\mathbf{select}(v,i)] \land \\ & (e < \mathbf{select}(v,i)) \end{array}$$

Ashish Tiwari, SR I

General theorem provers are systems that automatically infer new facts from known ones.

How to handle applications involving different "theories"? Add axioms corresponding to various useful theories into a general-purpose deduction system.

But...theorem provers are:

+: Powerful (expressiveness) -: Unpredictable and slow

and adding more axioms does not help!

Decision Procedures

Decision procedures are specialized procedures designed for subclass of formulas possibly from a particular domain.

-: Limited in use +: Fast, predictable

Examples include

- algorithms in a computer algebra system
- Presburger arithmetic
- congruence closure
- model checking, ...

Ashish Tiwari, SR I

The Combination Problem

T_1, T_2	•	FO theories over signatures Σ_1, Σ_2 .
$T = T_1 \cup T_2$:	FO theory over $\Sigma_1 \cup \Sigma_2$.
$\Pi(T)$	•	Satisfiability problem of quantifier-free
		formulas in theory T .

Given decision procedures for $\Pi(T_1)$ and $\Pi(T_2)$, can we get one for $\Pi(T)$?

Variable Abstraction

Terms
$$t[s]$$
 \mapsto $t[x]$ \wedge $x \approx s$ Formulae ϕ \mapsto ϕ_1 \wedge ϕ_2 $(\Sigma_1 \cup \Sigma_2)$ $(\Sigma_1 \cup \mathcal{V})$ $(\Sigma_2 \cup \mathcal{V})$

Example:

$$\phi : \operatorname{select}(\operatorname{store}(v, i, e+1), i) \approx [1 + \operatorname{select}(v, i)] \land \\ (e < \operatorname{select}(v, i)) \\ \phi_1 : \operatorname{select}(\operatorname{store}(v, i, z_0), i) \approx z_1 \land (\operatorname{select}(v, i) \approx z_2) \\ \phi_2 : (z_0 \approx e+1) \land (1 + z_2 \approx z_1) \land (e < z_2) \\ \end{cases}$$

Ashish Tiwari, SR I

Congruence Closure: Problem

 $\Sigma : \text{Signature containing constants and function symbols} \\ \Sigma = \{f_1, f_2, f_3, \dots, f_n\} \\ \phi : t_1 \approx s_1 \land t_2 \approx s_2 \land \dots \land t_k \approx s_k \land \\ (t'_1 \not\approx s'_1 \land \dots \land t'_l \neq s'_l) \\ t_i, s_i, t'_i, s'_i \text{ are terms over } \Sigma \end{cases}$

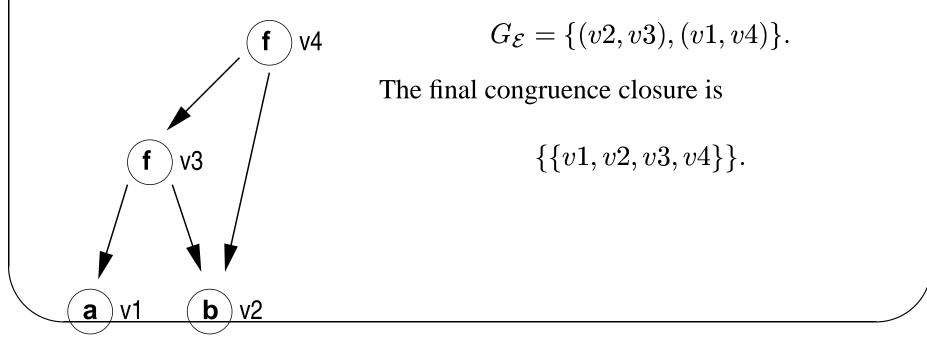
Is ϕ satisfiable?

Compute congruence closure of the equations and check for each inequality.

Ashish Tiwari, SR I

Example of Congruence Closure

If $\mathcal{E} = \{f(f(a, b), b) \approx b, f(a, b) \approx a\}$, then the terms are represented by the DAG below, and:



Ashish Tiwari, SR I

Congruence Closure: A Different Look

 T_i : Theory of equality over $\Sigma_i = \{f_i\}$ and constants U

$$\phi : t_1 \approx s_1 \land t_2 \approx s_2 \land \dots \land t_k \approx s_k \land \\ (t'_1 \not\approx s'_1 \land \dots \land t'_l \neq s'_l) \\ s_i, t_i, s'_i, t'_i \text{ terms over } \cup_i \Sigma_i$$

Is ϕ satisfiable?

Use variable abstraction and deal with T_i separately!

Ashish Tiwari, SR I

Signatures and Extensions

How do equations look like?

D-rules : $f(c_1, \ldots, c_k) \to c_0$, where $f \in \Sigma$ and $c_0, \ldots, c_k \in U$. *C*-rules : $c \to d$, where $c, d \in U$. *Example*. Let $\Sigma_0 = \{a, b, f\}$, and let $\mathcal{E}_0 = \{f(f(a, b), b) \approx b, f(a, b) \approx a\}.$

Then,

$$D_0 = \{a \to c_1, b \to c_2, f(c_1, c_2) \to c_3, f(c_3, c_2) \to c_4\},$$

$$C_0 = \{c_4 \to c_2, c_3 \to c_1\}.$$

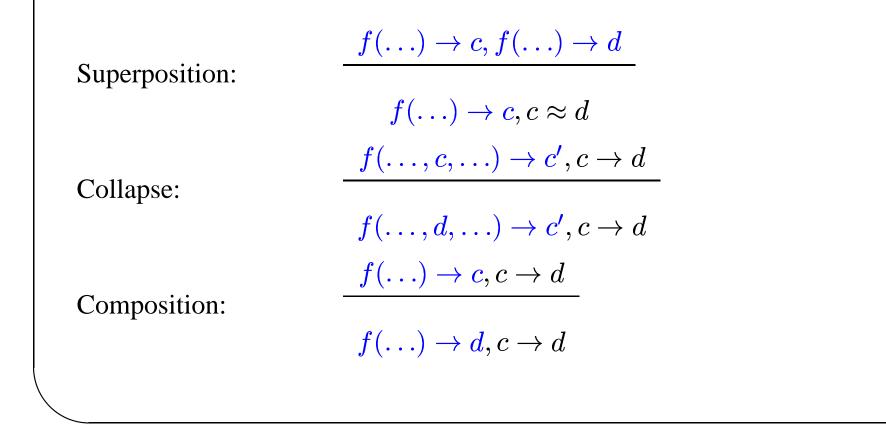
Here, $U = \{c_1, c_2, \ldots\}.$

Ashish Tiwari, SR I

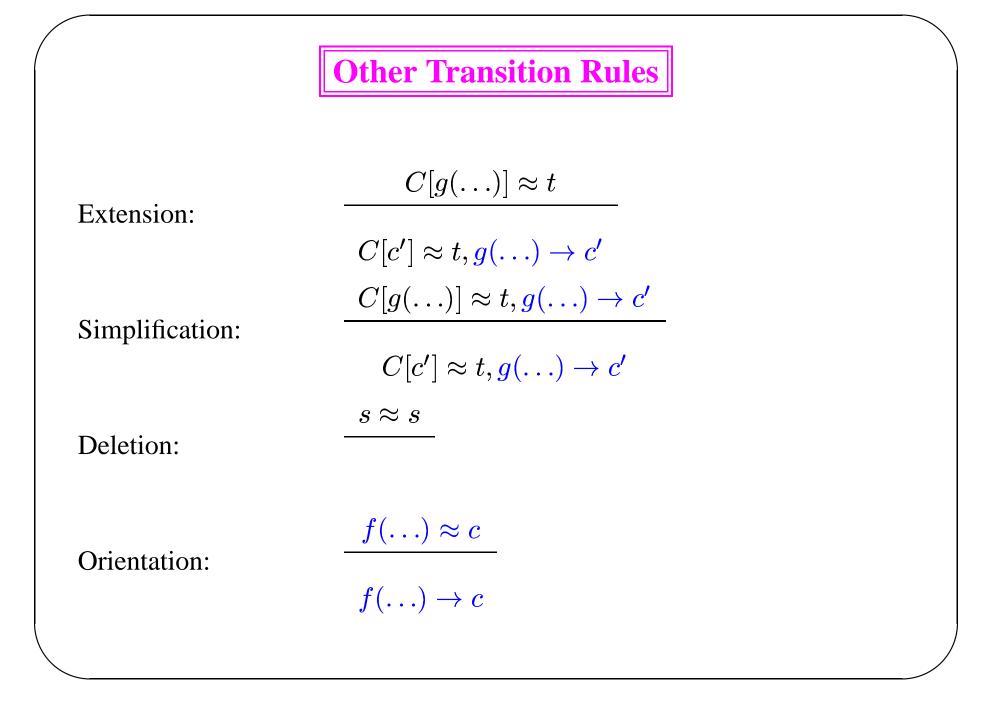
Individual Theories

How to reason in T_i ?

Use standard critical-pair completion for ground equations over $\Sigma_i \cup U$.



Ashish Tiwari, SR I



Ashish Tiwari, SR I

Abstract Congruence Closure

A ground rewrite system $R = D \cup C$ is an *(abstract) congruence closure* (over Σ and $K \subset U$) for E if

- 1. Every normal form $c \in K$ represents a term $t \in \mathcal{T}(\Sigma)$ via R, and
- 2. *R* is a fully reduced, ground convergent rewrite system over terms in $\mathcal{T}(\Sigma \cup K)$.
- 3. For all terms $s, t \in \mathcal{T}(\Sigma)$, we have:

 $s \leftrightarrow_E^* t$ if and only if $s \downarrow_R t$.

Ashish Tiwari, SR I

Example: Abstract Congruence Closure

Let

$$E_0 = \{f(a,b) \approx a, f(f(a,b),b) \approx b\}.$$

Then,

$$D_0 = \{a \to c_1, b \to c_2, f(c_1, c_2) \to c_1, f(c_1, c_2) \to c_2\},$$

$$D_1 = \{a \to c_1, b \to c_2, f(c_1, c_2) \to c_2\}, C_1 = \{c_1 \to c_2\},$$

$$D_2 = \{a \to c_2, b \to c_2, f(c_2, c_2) \to c_2\}.$$

The set D_2 is an abstract congruence closure for E_0 .

Ashish Tiwari, SR I

What did we gain?

- Time complexity: Exponential to Polynomial jump
- Very simple ordering used
- Generalize to handle AC symbols: Suppose $\Sigma_{AC} \subset \Sigma$ defined to be AC. We additionally need completion procedure for commutative monoids. Almost straight-forward extension. Cf. regular ground AC-completion.
- Ground convergent systems:

 $E \mapsto R = D \cup C \mapsto^{?} E'$ $\Sigma \qquad \Sigma \cup K \qquad \Sigma (\text{ convergent})$

• Non-symmetric relations: Non-termination to Polynomial jump

Complexity Analysis

- 1. Extension, Simplification, Orientation, Deletion Steps: O(n) steps.
- 2. Superposition, Collapse, and Composition: $O(n\delta)$ steps, where δ is the depth of the ordering on K.

Consider a rule obtained after the first stage above:

$$\underline{f}(\underline{c_1}, \underline{c_2}, \dots, \underline{c_k}) \rightarrow \underline{c}$$

Each marked position changes at most δ times and there are O(n) such positions.

Time complexity: $O(n\delta)$.

Abstract Rewrite Closure

Reln	Ordered Inference Rule	Ground Case?	Our Method
\approx	superposition	EXP time	Poly time
\rightarrow	ordered partial para- modulation	non-terminating	Poly time
$\approx \cup \rightarrow$	combination	non-terminating	Poly time

Why?

Substructure sharing using new constants and extra flexibility in choosing ordering.

Combining Concepts from Different Areas

Interpretations for Extended Signatures:

The DAG interpretation for Congruence Closure Algorithms The

constants $c_1, c_2, \ldots \in U$ are pointers (to vertices in a DAG) and a D-rule $f(c_1, c_2) \rightarrow c$ says that the *c* points to the DAG vertex with symbol *f* and pointers c_1 and c_2 .

The states interpretation for Tree Automata The constants $c_1, c_2, \ldots \in U$ are states of an automaton and a D-rule $f(c_1, c_2) \rightarrow c$ represents a transition of a bottom-up tree automata.

In other words, we have combined techniques from tree automata, standard rewriting, and DAG-based implementations.

Deciding Confluence of Ground TRS

Consider

$$E_0 = \{a \to fab, \ fab \to fba\}$$

and

$$E_1 = \{gfa \to fgfa, \ gfa \to ffa, \ ffa \to fa\}$$

 E_1 is confluent, i.e., any two congruent terms can be rewritten to a common term, e.g., $fga \leftrightarrow_{E_1}^* ffgfa$ and

$$fga \rightarrow^* fa \leftarrow^* ffgfa$$

whereas E_0 is not, e.g., $f(fba, b) \leftrightarrow_{E_0}^* fba$, but

$$f(fba,b) \rightarrow^* ?? \leftarrow^* f(b,a)$$

Ashish Tiwari, SR I

What was known?

- Reachability for GTRS is decidable in polynomial time: Using tree automata techniques
- Congruence for GTRS is decidable in polynomial time: Using dag based congruence closure algorithms
- Confluence for GTRS is decidable in exponential time: Using tree automata techniques (Ground Tree Transducers)
- Open: Polynomial time algorithm for deciding confluence of ground term rewrite systems?

Polynomial Time Algorithms

Let E be the input set of ground rewrite rules.

- 1. Construct an abstract rewrite closure $D \cup F \cup B$ for E
- 2. Construct an abstract congruence closure R for E (over the same extended signature used above)
- 3. Check that every pair of constants c and d in the same congruence class (in R) rewrite to some common term using $D \cup F \cup B$
- 4. Check that every constant c and signature f(...) in the same congruence class (in R) rewrite to some common term using $D \cup F \cup B$

- 1. With L. Bachmair, "Abstract Congruence Closure", *To appear in JAR*, *Prelim version in CADE 2000*.
- 2. "Rewrite Closures for Ground and Cancellative AC Theories", In *FST&TCS* 2001.
- 3. "Polynomial time algorithms for deciding confluence of certain term rewrite systems", Submitted to *LICS 2002*.

http://www.csl.sri.com/users/tiwari/

Ashish Tiwari, SR I