
'

&

$

%

Unification in Assertion Checking

Over Logical Lattices

Ashish Tiwari
Tiwari@csl.sri.com

Computer Science Laboratory

SRI International

Menlo Park CA 94025

http://www.csl.sri.com/˜tiwari

Joint work with Sumit Gulwani

Ashish Tiwari, SRI Unification and Assertion Checking: 1

'

&

$

%

Assertion Checking Problem

Given:

P : Program

φ : An assertion over program variables at pointπ in P

Problem:Is φ aninvariantatπ ?

In contrast,assertion generationproblem seeks to synthesize all invariants at

pointπ.

Ashish Tiwari, SRI Unification and Assertion Checking: 2

'

&

$

%

Language and Theory Restrictions

Assume the symbols used for specifying the programP and the assertionφ

come from some

Σ: signature

Th: theory

General programs areabstractedto the chosen language by abstracting each

assignment and conditional in the program (preserving its control flow)

Skipped Detail: How do we go from general program to such an abstraction.

Ashish Tiwari, SRI Unification and Assertion Checking: 3

'

&

$

%

Example

x :=0; y := 0; x := c; y := c; x :=0; y := 0;

u := 0; v := 0; u := c; v := c; u := 0; v := 0;

while (*) { while (*) { while (*) {

x := u + 1; x := G(u, 1); x := u + 1;

y := 1 + v; y := G(1, v); y := 1 + v;

u := F(x); u := F(x); u := *;

v := F(y); v := F(y); v := *;

} } }

assert(x = y) assert(x = y) assert(x = y)

Σ = ΣLA ∪ ΣUFS Σ = ΣUFS Σ = ΣLA

Th = ThLA + ThUFS Th = ThUFS Th = ThLA

Ashish Tiwari, SRI Unification and Assertion Checking: 4

'

&

$

%

Outline of this Talk

• Abstract interpretationfor assertion generation+checking overlogical

lattices

• Link betweenunificationandassertion checking

• Two consequences:

◦ NP-hardnessof assertion checking (forloop-free programs) over

UFS+LA language

◦ decidabilityof assertion checking for UFS+LA language

Ashish Tiwari, SRI Unification and Assertion Checking: 5

'

&

$

%

Abstract Interpretation

• Fix a lattice

• Map sets of stateφ of the program ontolattice elementsα(φ)

• Computetransfer functions:

{φ1}x := e{φ2} 7→ α(φ1) → α(φ2)

{φ1} if (c) then{φ2} else{φ3} 7→ α(φ1) → α(φ1) ∧ α(c);

α(φ1) → α(φ1) ∧ α(¬c);

conditionals 7→ meet in the lattice

merges 7→ join in the lattice

loop 7→ fixpoint in the lattice

Ashish Tiwari, SRI Unification and Assertion Checking: 6

'

&

$

%

Logical Lattices

Lattice defined overconjunctionφ of atomic formulasin Th by

meetin the lattice 7→ logical and

join in the lattice 7→ {φ : Th |= (φ1 ∨ φ2) ⇒ φ}

Question 1.Is this a well-defined lattice?

Answer.Depends on the theory.

• Linear arithmetic with equality (Karr 1976)

• Linear arithmetic with inequalities (Cousot and Halbwachs1978)

• Nonlinear (polynomial) equations (Rodriguez-Carbonell and Kapur 2004)

• UFS + injectivity/acyclicity (Gulwani, T. and Necula 2004)
...

Ashish Tiwari, SRI Unification and Assertion Checking: 7

'

&

$

%

UFS does not define a logical lattice

The join of two finite sets of facts need not be finitely presented. [Gulwani, T.

and Necula 2004]

φ1 ≡ a = b

φ2 ≡ fa = a ∧ fb = b ∧ ga = gb

φ1 ⊔ φ2 ≡
∧

i

gf ia = gf ib

The formula
∧

i gf
ia = gf ib can not be represented by finite set of ground

equations.

Proof. It induces infinitely many congruence classes with more thanone

signature.Ex: Complete the proof.

Ashish Tiwari, SRI Unification and Assertion Checking: 8

'

&

$

%

Example: Abstract Intprtn over acyclic UFS lattice

With additionalacyclicity restriction, UFS can be used to define a logical

lattice.

u := c; v := c;

[u = c ∧ v = c]

while (*) {

u := F(u);

v := F(v);

[(u = F (c) ∧ v = F (c)) ⊔ (u = c ∧ v = c)]

}

[u = v]

Wegeneratethe invariantu = v this way.

Ashish Tiwari, SRI Unification and Assertion Checking: 9

'

&

$

%

Known Results

Assertion checkingover lattices defined by:

• Acyclic UFS theory: Polynomialtime [Gulwani and Necula 2004]

• Linear arithmetic with equality. Polynomialtime [Karr 1976]

Question.What about the combination?

Ashish Tiwari, SRI Unification and Assertion Checking: 10

'

&

$

%

Outline of this Talk

• Abstract interpretationfor assertion generation+checking overlogical

lattices

• Link betweenunificationandassertion checking

• Two consequences for UFS+LA combination:

◦ NP-hardnessof assertion checking (forloop-free programs) over above

language

◦ decidabilityof assertion checking for above language

Ashish Tiwari, SRI Unification and Assertion Checking: 11

'

&

$

%

Unification in Assertion Checking

Assume that all assignments in programP are of the form

x := e

An assertion e1 = e2 holds at point π in P iff

the assertion Unif (e1 = e2) hold at π in P .

This also extends to arbitrary assertion φ.

If {σ1, . . . , σk} is a complete set ofTh-unifiers fore1 = e2, then

Unif (e1 = e2) =
k∨

i=1

(
∧

x

x = xσi)

Ashish Tiwari, SRI Unification and Assertion Checking: 12

'

&

$

%

Proof of Main Result

First, if Th |= Unif (e1 = e2) thenTh |= e1 = e2 .

Conversely, letθ: substitutionthat mapsx to a symbolic value ofx at pointπ

(along some exectution path)

(Symbolic value is in terms of input variables)

If assertione1 = e2 holds atπ, then,

Th |= θ ⇒ e1 = e2, i.e., Th |= e1θ = e2θ

Since{σ1, . . . , σk} is a complete set ofTh-unifiers,∴ θ =Th σjθ
′ for somej

We will show

Th |= θ ⇒ x = xσj , i.e., Th |= xθ = xσjθ

But

Th |= (xθ = xσjθ
′ = xσjσjθ

′ = xσjθ)

Ashish Tiwari, SRI Unification and Assertion Checking: 13

'

&

$

%

coNP-hardness of Assertion Checking

for Combination

Key Idea: Disjunctive assertion can be encoded in the combination.

x = a ∨ x = b ⇔ F (a) + F (b) = F (x) + F (a+ b− x)

Using thisrecursively, we can write an assertion (atomic formula) which

holds iff x = 0 ∨ x = 1 ∨ · · · ∨ x = m− 1 holds.

For e.g., encoding forx = 0 ∨ x = 1 ∨ x = 2 is obtained by encoding

Fx = F2 ∨ Fx = F0 + F1 − F (1 − x):

F (F0+F1−F (1−x))+FF2 = FFx+F (F0+F1+F2−F (1−x)−Fx)

Ashish Tiwari, SRI Unification and Assertion Checking: 14

'

&

$

%

coNP-hardness of Assertion Checking

ψ: boolean 3-SAT instance withm clauses

xi := 0, for i = 1, 2, . . . ,m

for i = 1 to k do

if (*) then

xj := 1, ∀j: variablei occurs positively in clausej

else

xj := 1, ∀j: variablei occurs negatively in clausej

sum := x1 + · · · + xm

assert(sum = 0 ∨ · · · ∨ sum = m− 1)

Assertion is valid IFFψ is unsatisfiable

Ashish Tiwari, SRI Unification and Assertion Checking: 15

'

&

$

%

coNP-hardness of Assertion Checking

This procedure checks whetherx ∈ {0, . . . ,m− 1}. h0 := F (x);

for j = 0 tom− 1 do

h0,j := F (j);

for i = 1 tom− 1 do

si−1 := hi−1,0 + hi−1,i;

hi := F (hi−1) + F (si−1 − hi−1);

for j = 0 tom− 1 do

hi,j := F (hi−1,j) + F (si−1 − hi−1,j);

Assert(hm−1 = hm−1,0);

The assertion holds iffx ∈ {0, . . . ,m− 1}.

Assertion checking on combination lattice is coNP-hard.

Ashish Tiwari, SRI Unification and Assertion Checking: 16

'

&

$

%

Assertion Checking Algorithm

Backward analysis:

• Starting with the assertion, useweakest preconditioncomputation

• At each step, replace the formulaψ computed at any program point by

Unif (ψ)

This method is bothsoundandcompletedue to

• correctness of WP computation

• main result of this talk

Question. Does it terminate (reach fixpoint across loops)?

Ashish Tiwari, SRI Unification and Assertion Checking: 17

'

&

$

%

Why it need not terminate?

Forward analysis willnot terminate since thelatticehasinfinite height:

x := 0;

while (*) do

x := x+ 1;

Assert(x = 0 ∨ x = 1 ∨ · · · ∨ x = m);

But due to the unifier computations, backward analysis terminates

Ashish Tiwari, SRI Unification and Assertion Checking: 18

'

&

$

%

Termination of Algorithm

At each program point, the proof obligation formula is of theform

m∨

l=1

∧

x

(x = xσl)

In backward analysis across a loop, in each successive iteration, this formula

will becomestronger

But this can not happen indefinitely:

Assign the following measure to the abovw formula

{n− ||
∧

x

(x = xσ)||}

This measure decreases in the well-founded ordering>m.

Ashish Tiwari, SRI Unification and Assertion Checking: 19

'

&

$

%

Assertion Checking and Unification

UFS unitary PTime

LA unitary PTime

UFS+LA finitary* coNP-hard for loop-free, decidable in general

*Skipped detail:

Unification in Abelian Groups + free function symbols follows from general

combination result

• Schmidt-Schuass 1989

• Baader-Schulz 1992

Ashish Tiwari, SRI Unification and Assertion Checking: 20

'

&

$

%

Conclusion

• Equationsin an assertion can be replaced by itscomplete set ofTh-unifiers

for purposes ofassertion checking

• Assertion checking over lattices defined bycombinationof two logical

lattices can behard, even when it is in PTime for the lattices defined by

individual theories

• FinitaryTh-unification algorithm implies decidability of assertion checking

for the logical lattices defined byTh

Ashish Tiwari, SRI Unification and Assertion Checking: 21

