Unification in Assertion Checking

Over Logical Lattices

Ashish Tiwari

Tiwari@csl.sri.com

Computer Science Laboratory SRI International Menlo Park CA 94025 http://www.csl.sri.com/~tiwari

Joint work with Sumit Gulwani

Ashish Tiwari, SRI

Assertion Checking Problem

Given:

- P : Program
- ϕ : An assertion over program variables at point π in P

Problem: Is ϕ an invariant at π ?

In contrast, assertion generation problem seeks to synthesize all invariants at point π .

Ashish Tiwari, SRI

Language and Theory Restrictions

Assume the symbols used for specifying the program P and the assertion ϕ come from some

- Σ : signature
- Th: theory

General programs are abstracted to the chosen language by abstracting each assignment and conditional in the program (preserving its control flow)

Skipped Detail: How do we go from general program to such an abstraction.

Example

x :=0; y := 0;	x := c; y := c;	x :=0; y := 0;
u := 0; v := 0;	u := c; v := c;	u := 0; v := 0;
while (*) $\{$	while (*) {	while (*) $\{$
x := u + 1;	x := G(u, 1);	x := u + 1;
y := 1 + v;	y := G(1, v);	y := 1 + v;
$\mathbf{u} := \mathbf{F}(\mathbf{x});$	$\mathbf{u} := \mathbf{F}(\mathbf{x});$	u := *;
v := F(y);	$\mathbf{v} := \mathbf{F}(\mathbf{y});$	v := *;
}	}	}
assert($x = y$)	assert($x = y$)	assert($x = y$)
$\Sigma = \Sigma_{LA} \cup \Sigma_{UFS}$	$\Sigma = \Sigma_{UFS}$	$\Sigma = \Sigma_{LA}$
$Th = Th_{LA} + Th_{UFS}$	$Th = Th_{UFS}$	$Th = Th_{LA}$

Ashish Tiwari, SRI

Outline of this Talk

- Abstract interpretation for assertion generation+checking over logical lattices
- Link between unification and assertion checking
- Two consequences:
 - NP-hardness of assertion checking (for loop-free programs) over UFS+LA language
 - decidability of assertion checking for UFS+LA language

Abstract Interpretation

- Fix a lattice
- Map sets of state ϕ of the program onto lattice elements $\alpha(\phi)$
- Compute transfer functions:

$$\{\phi_1\}x := e\{\phi_2\} \quad \mapsto \quad \alpha(\phi_1) \to \alpha(\phi_2)$$

$$\{\phi_1\} \text{ if } (c) \text{ then } \{\phi_2\} \text{ else } \{\phi_3\} \quad \mapsto \quad \alpha(\phi_1) \to \alpha(\phi_1) \land \alpha(c);$$

$$\alpha(\phi_1) \to \alpha(\phi_1) \land \alpha(\neg c);$$

conditionals \mapsto meet in the lattice

merges \mapsto join in the lattice

loop \mapsto fixpoint in the lattice

Ashish Tiwari, SRI

Logical Lattices

Lattice defined over conjunction ϕ of atomic formulas in Th by meet in the lattice \mapsto logical and join in the lattice \mapsto { $\phi : Th \models (\phi_1 \lor \phi_2) \Rightarrow \phi$ }

Question 1. Is this a well-defined lattice?

Answer. Depends on the theory.

- Linear arithmetic with equality (Karr 1976)
- Linear arithmetic with inequalities (Cousot and Halbwachs 1978)
- Nonlinear (polynomial) equations (Rodriguez-Carbonell and Kapur 2004)
- UFS + injectivity/acyclicity (Gulwani, T. and Necula 2004)

UFS does not define a logical lattice

The join of two finite sets of facts need not be finitely presented. [Gulwani, T. and Necula 2004]

$$\phi_1 \equiv a = b$$

$$\phi_2 \equiv fa = a \wedge fb = b \wedge ga = gb$$

$$\phi_1 \sqcup \phi_2 \equiv \bigwedge_i gf^i a = gf^i b$$

The formula $\bigwedge_i gf^i a = gf^i b$ can not be represented by finite set of ground equations.

Proof. It induces infinitely many congruence classes with more than one signature. *Ex: Complete the proof.*

Example: Abstract Intprtn over acyclic UFS lattice

With additional acyclicity restriction, UFS can be used to define a logical lattice.

```
u := c; v := c;

[u = c \land v = c]

while (*) {

u := F(u);

v := F(v);

[(u = F(c) \land v = F(c)) \sqcup (u = c \land v = c)]

}

[u = v]

We generate the invariant u = v this way.
```

Known Results

Assertion checking over lattices defined by:

- Acyclic UFS theory: Polynomial time [Gulwani and Necula 2004]
- Linear arithmetic with equality. Polynomial time [Karr 1976]

Question. What about the combination?

Outline of this Talk

- Abstract interpretation for assertion generation+checking over logical lattices
- Link between unification and assertion checking
- Two consequences for UFS+LA combination:
 - NP-hardness of assertion checking (for loop-free programs) over above language
 - decidability of assertion checking for above language

Unification in Assertion Checking

Assume that all assignments in program P are of the form

$$x := e$$

An assertion $e_1 = e_2$ holds at point π in P iff the assertion $Unif(e_1 = e_2)$ hold at π in P. This also extends to arbitrary assertion ϕ .

If $\{\sigma_1, \ldots, \sigma_k\}$ is a complete set of *Th*-unifiers for $e_1 = e_2$, then

$$Unif(e_1 = e_2) = \bigvee_{i=1}^k (\bigwedge_x x = x\sigma_i)$$

Ashish Tiwari, SRI

Proof of Main Result

First, if $Th \models Unif(e_1 = e_2)$ then $Th \models e_1 = e_2$.

Conversely, let θ : substitution that maps x to a symbolic value of x at point π (along some exectution path)

(Symbolic value is in terms of input variables)

If assertion $e_1 = e_2$ holds at π , then,

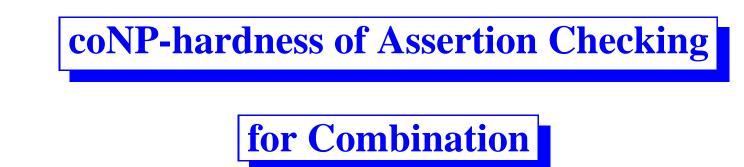
$$Th \models \theta \Rightarrow e_1 = e_2, \quad i.e., \quad Th \models e_1\theta = e_2\theta$$

Since $\{\sigma_1, \ldots, \sigma_k\}$ is a complete set of *Th*-unifiers, $\therefore \theta =_{Th} \sigma_j \theta'$ for some *j* We will show

$$Th \models \theta \Rightarrow x = x\sigma_j, \quad i.e., \quad Th \models x\theta = x\sigma_j\theta$$

But

$$Th \models (x\theta = x\sigma_j\theta' = x\sigma_j\sigma_j\theta' = x\sigma_j\theta)$$



Key Idea: Disjunctive assertion can be encoded in the combination.

$$x = a \lor x = b \quad \Leftrightarrow \quad F(a) + F(b) = F(x) + F(a + b - x)$$

Using this recursively, we can write an assertion (atomic formula) which holds iff $x = 0 \lor x = 1 \lor \cdots \lor x = m - 1$ holds.

For e.g., encoding for $x = 0 \lor x = 1 \lor x = 2$ is obtained by encoding $Fx = F2 \lor Fx = F0 + F1 - F(1 - x)$:

$$F(F0 + F1 - F(1 - x)) + FF2 = FFx + F(F0 + F1 + F2 - F(1 - x) - Fx)$$

coNP-hardness of Assertion Checking

 ψ : boolean 3-SAT instance with m clauses

 $\begin{aligned} x_i &:= 0, \text{ for } i = 1, 2, \dots, m \\ \text{ for } i &= 1 \text{ to } k \text{ do} \\ &\text{ if (*) then} \\ &x_j &:= 1, \forall j \text{: variable } i \text{ occurs positively in clause } j \\ &\text{ else} \\ &x_j &:= 1, \forall j \text{: variable } i \text{ occurs negatively in clause } j \\ &sum &:= x_1 + \dots + x_m \\ &\text{ assert}(sum = 0 \lor \dots \lor sum = m - 1) \end{aligned}$

Assertion is valid IFF ψ is unsatisfiable

coNP-hardness of Assertion Checking

This procedure checks whether $x \in \{0, ..., m-1\}$. $h_0 := F(x)$; for j = 0 to m - 1 do $h_{0,j} := F(j)$; for i = 1 to m - 1 do $s_{i-1} := h_{i-1,0} + h_{i-1,i}$; $h_i := F(h_{i-1}) + F(s_{i-1} - h_{i-1})$; for j = 0 to m - 1 do $h_{i,j} := F(h_{i-1,j}) + F(s_{i-1} - h_{i-1,j})$; Assert $(h_{m-1} = h_{m-1,0})$;

The assertion holds iff $x \in \{0, \ldots, m-1\}$.

Assertion checking on combination lattice is coNP-hard.

Assertion Checking Algorithm

Backward analysis:

- Starting with the assertion, use weakest precondition computation
- At each step, replace the formula ψ computed at any program point by $Unif(\psi)$

This method is both sound and complete due to

- correctness of WP computation
- main result of this talk

Question. Does it terminate (reach fixpoint across loops)?

Why it need not terminate?

Forward analysis will not terminate since the lattice has infinite height:

x := 0;while (*) do x := x + 1;Assert($x = 0 \lor x = 1 \lor \cdots \lor x = m$);

But due to the unifier computations, backward analysis terminates

Termination of Algorithm

At each program point, the proof obligation formula is of the form

$$\bigvee_{l=1}^{m} \bigwedge_{x} (x = x\sigma_l)$$

In backward analysis across a loop, in each successive iteration, this formula will become stronger

But this can not happen indefinitely: Assign the following measure to the abovw formula

$$\{n - ||\bigwedge_{x} (x = x\sigma)||\}$$

This measure decreases in the well-founded ordering $>^m$.

Assertion Checking and Unification

UFS	unitary	PTime
LA	unitary	PTime
UFS+LA	finitary*	coNP-hard for loop-free, decidable in general

*Skipped detail:

Unification in Abelian Groups + free function symbols follows from general combination result

- Schmidt-Schuass 1989
- Baader-Schulz 1992

Conclusion

- Equations in an assertion can be replaced by its complete set of *Th*-unifiers for purposes of assertion checking
- Assertion checking over lattices defined by combination of two logical lattices can be hard, even when it is in PTime for the lattices defined by individual theories
- Finitary *Th*-unification algorithm implies decidability of assertion checking for the logical lattices defined by *Th*