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Language: Signatures
A signature, Σ, is a finite set of
Function Symbols : ΣF = {f, g, . . .}

Predicate Symbols : ΣP = {P,Q, . . .}
along with an arity function arity : Σ 7→ N.

Function symbols with arity 0 are called constants and
denoted by a, b, . . ., with possible subscripts.

A countable set V of variables is assumed disjoint of Σ.
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Language: Terms
The set T (Σ,V) of terms is the smallest set s.t.

• V ⊂ T (Σ,V), and

• f(t1, . . . , tn) ∈ T (Σ,V) whenever
t1, . . . , tn ∈ T (Σ,V) and arity(f) = n.

The set of ground terms is defined as T (Σ, ∅).
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Language: Atomic Formulas
An atomic formula is an expression of the form

P (t1, . . . , tn)

where P is a predicate in Σ s.t. arity(P ) = n and
t1, . . . , tn ∈ T (Σ,V).

If t1, . . . , tn are ground terms, then P (t1, . . . , tn) is called a
ground (atomic) formula.

Mostly, we assume a special binary predicate = to be
present in Σ.
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Language: Logical Symbols
The set of quantifier-free formula (over Σ), QFF (Σ,V), is
the smallest set s.t.
• Every atomic formula is in QFF (Σ,V),

• If φ ∈ QFF (Σ,V), then ¬φ ∈ QFF (Σ,V),

• If φ1, φ2 ∈ QFF (Σ,V), then

φ1 ∧ φ2 ∈ QFF (Σ,V)

φ1 ∨ φ2 ∈ QFF (Σ,V)

φ1 ⇒ φ2 ∈ QFF (Σ,V)

φ1 ⇔ φ2 ∈ QFF (Σ,V).

An atomic formula or its negation is a literal.
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Language: Sentence, Theory
The closure of QFF (Σ,V) under existential (∃) and
universal (∀) quantification defines the set of (first-order)
formulas.

A sentence is a FO formula with no free variables.

A (first-order) theory T (over a signature Σ) is a set of
(deductively closed) set of sentences (over Σ and V).

A theory T is consistent if false 6∈ T .

Due to completeness of first-order logic, we can identify a
a FO theory T with the class of all models of T .
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Semantic Characterization
A model A is defined by a
• Domain A: set of elements
• Interpretation fA : An 7→ A for each f ∈ ΣF with

arity(f) = n

• Interpretation PA ⊆ An for each P ∈ ΣP with
arity(P ) = n

• Assignment xA ∈ A for each variable x ∈ V

A formula φ is true in a model A if it evaluates to true
under the given interpretations over the domain A.

If all sentences in a T are true in a model A, then A is a
model for the theory T .
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Satisfiability and Validity
A formula φ(~x) is satisfiable in a theory T if there is a
model of T ∪ {∃~x.φ(~x)}, i.e., there exists a model M for T
in which φ evaluates to true, denoted by,

M |=T φ

A formula φ(~x) is valid in a theory T if ∀~x.φ(~x) ∈ T , i.e.,
φ evaluates to true in every model M of T . T -validity is
denoted by |=T φ.

φ is T -unsatisfiable if it is not the case that |=T φ.
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Decision Procedure
Given
• T : Some FO-theory
• φ: A QFF in T

Decide if φ is satisfiable in T .

Algorithm which always
• Terminates
• Produces correct answer

Wlog φ is a conjunction of literals
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Example: Theory of Equality
• Σ0 = {a, b, c}
φ0 : a= b ∧ b= c ∧ a 6= c

• Σ1 = Σ0 ∪ {f (1)}
φ1 : a= fffa ∧ fffffa = a ∧ a 6= fa
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Combination of Theories
Σ = Σ1 ∪ Σ2

T1, T2 : Theories over Σ1 and Σ2

T = Deductive closure of T1 ∪ T2

Problem1. Is T consistent?

Problem2. Given satisfiability procedures for
(quantifier-free) conjunction of literals in T1 and T2, how to
decide satisfiability in T ?

Problem3. What is the complexity of the combination
procedure?
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Stably-Infinite Theories
A theory is stably-infinite if every satisfiable QFF is
satisfiable in an infinite model.

Example. Theories with only finite models are not stably
infinite. Thus, theory induced by the axiom
∀x, y, z.(x= y ∨ y = z ∨ z = x) is not stably-infinite.

Proposition. If E is an equational theory, then
E ∪ {∃x, y.x 6=y} is stably-infinite.
Proof. If M is a model, then M ×M is a model as well.
Hence, by compactness, there is an infinite model.

Proposition. The union of two consistent, disjoint,
stably-infinite theories is consistent.
Proof. Later! Combining Decision Procedures (p.13 of 55)



Convexity
A theory is convex if whenever a conjunction of literals
implies a disjunction of atomic formulas, it also implies
one of the disjuncts.

Example. The theory of integers over a signature
containing < is not convex. The formula 1 < x ∧ x < 4
implies x= 2 ∨ x= 3, but it does not imply either x= 2
or x= 3 independently.

Example. The theory of rationals over the signature
{+, <} is convex.

Example. Equational theories are convex, but need not be
stably-infinite.
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Convexity: Observation

Proposition. A convex theory T with no trivial models is
stably-infinite.
Proof. If not, then for some QFF φ, T ∪ φ has only finite
models. Thus, φ implies a disjunction ∨i,jxi = xj , without
implying any disjunct.

Example. If E is an equational theory, then
E ∪ {∃x, y.x 6=y} has no trivial models, and hence it is
stably-infinite.
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Nelson-Oppen Combination Result
Theorem 1 Let T1 and T2 be consistent, stably-infinite
theories over disjoint (countable) signatures. Assume
satisfiability of (quantifier-free) conjunction of literals can
be decided in O(T1(n)) and O(T2(n)) time respectively.
Then,

1. The combined theory T is consistent and stably
infinite.

2. Satisfiability of (quantifier-free) conjunction of literals
in T can be decided in O(2n2

∗ (T1(n) + T2(n))) time.
3. If T1 and T2 are convex, then so is T and satisfiability

in T is in O(n4 ∗ (T1(n) + T2(n))) time.

Proof. Later.
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Examples
Convexity is important for point (3) above.

T1 T2 T1 ∪ T2

Signature ΣF {Z, <} {Z, <} ∪ ΣF

Satisfiability O(n log(n)) O(n2) NP-complete!

Note that T2 is not convex.

We can allow a “add constant” operator in signature of T2.
Atomic formulae are of the form x− y < c, for some
constant c, and satisfiability can be tested by searching for
negative cycles in a “difference graph”.

For NP-completeness of the union theory, see [Pratt77].
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Nelson-Oppen Result: Correctness
Recall the theorem. The combination procedure:
Initial State : φ is a conjunction of literals over Σ1 ∪ Σ2.
Purification : Preserving satisfiability, transform φ to

φ1 ∧ φ2, s.t. φi is over Σi.
Interaction : Guess a partition of V(φ1) ∩ V(φ2) into

disjoint subsets.
Express it as a conjunction of literals ψ.
Example. The partition {x1}, {x2, x3} is represented
as x2 = x3 ∧ x1 6=x2 ∧ x1 6=x3.

Component Procedures : Use individual procedures to
decide if φi ∧ ψ is satisfiable.

Return : If both answer yes, return yes. No, otherwise.
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Separating Concerns: Purification

Purification:
φ ∧ P (. . . , s[t], . . .)

φ ∧ P (. . . , s[x], . . .) ∧ t= x
if s[t] is not
a variable.

Proposition. Purification is satisfiability preserving: if φ′

is obtained from φ by purification, then φ is satisfiable in
the union theory iff φ′ is satisfiable in the union theory.

Proposition. Purification is terminating.

Proposition. Exhaustive application results in conjunction
where each conjunct is over exactly one signature.
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Purification: Illustration

f(x− 1
︸ ︷︷ ︸

u1

) − 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x
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Purification: Illustration

f(x− 1
︸ ︷︷ ︸

u1

) − 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x

f(u1)
︸ ︷︷ ︸

u2

− 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x

x− 1 = u1

Combining Decision Procedures (p.20 of 55)



Purification: Illustration

f(x− 1
︸ ︷︷ ︸

u1

) − 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x

f(u1)
︸ ︷︷ ︸

u2

− 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x

u2 − 1 = x+ 1, f(y)
︸︷︷︸

u3

+ 1 = y − 1, y + 1 = x

x− 1 = u1 ,f(u1) = u2
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Purification: Illustration

f(x− 1
︸ ︷︷ ︸

u1

) − 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x

f(u1)
︸ ︷︷ ︸

u2

− 1 = x+ 1, f(y) + 1 = y − 1, y + 1 = x

u2 − 1 = x+ 1, f(y)
︸︷︷︸

u3

+ 1 = y − 1, y + 1 = x

u2 − 1 = x+ 1, u3 + 1 = y − 1, y + 1 = x

x− 1 = u1 ,f(u1) = u2 ,f(y) = u3
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NO Procedure Soundness
Each step is satisfiability preserving.
Say φ is satisfiable (in the combination).

1. Purification: ∴ φ1 ∧ φ2 is satisfiable.
2. Interaction: ∴ for some partition ψ, φ1 ∧ φ2 ∧ ψ is

satisfiable.
3. Components Procedures: ∴, φ1 ∧ ψ and φ2 ∧ ψ are

both satisfiable in component theories.

Therefore, if the procedure returns unsatisfiable, then the
formula φ is indeed unsatisfiable.
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NO Procedure Correctness
Suppose the procedure returns satisfiable.

• Let ψ be the partition and A and B be models of
T1 ∧ φ1 ∧ ψ and T2 ∧ φ2 ∧ ψ.

• Component theories are stably-infinite, ∴ assume
models are infinite (of same cardinality).

• Let h be a bijection between A and B s.t. h(xA) = xB

for each shared variable x. We can do this ∵ of ψ.
• Extend B to B by interpretations of symbols in Σ1:

fB(b1, . . . , bk) = h(fA(h−1(b1), . . . , h
−1(bk)))

Such an extended B is a model of

T1 ∧ T2 ∧ φ1 ∧ φ2 ∧ ψ

.
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Model Construction Picture
Consider Ti-models A and B of φi ∧ ψ:

x1 a1 b1 x2

x2 a2 b2 x1

x3, x4 a3 b3 x3, x4

a4 b4

a5 b5

... ...
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Alternate Correctness Proof
Say T1 ∧ T2 ∧ φ is unsatisfiable.
• Purification: (T1 ∧ φ1) ∧ (T2 ∧ φ2) is unsatisfiable

• Compactness: (T1 ∧ φ1) ∧ (T2 ∧ φ2) is unsatisfiable

• Logically: (T1 ∧ φ1) ⇒ ¬(T2 ∧ φ2)

• Craig’s Interpolation Lemma: There exists a formula
ψ s.t.

(T1 ∧ φ1) ⇒ ψ

ψ ⇒ ¬(T2 ∧ φ2)

Each nonlogical free symbol in ψ is free in the other
two.
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Alternate Proof Contd
• Craig’s Interpolation Lemma:

(T1 ∧ φ1) ⇒ ψ

(T2 ∧ φ2) ⇒ ¬ψ

• ψ: quantified formula, atomic formulas are equations
between variables

• If T1 and T2 are stably-infinite, then ψ is equivalent to
a quantifier-free formula, call it ψ.

• For any partition ψ0 of variables, either ψ or ¬ψ
evaluates to false.

• For no partition ψ0 are both T1 ∧ φ1 ∧ ψ0 and
T2 ∧ φ2 ∧ ψ0 satisfiable.
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NO Procedure Complexity
Proposition. The non-deterministic procedure can be
determinised to give a O(2n2

∗ (T1(n) + T2(n)))-time
algorithm.
Proof.

1. Number of purification steps < n and size of resulting
φ1 ∧ φ2 is O(n).

2. Number of partition of a set with n variables:
B(n) < 2n2

.

3. For each B(n) choices, the component procedures
take T1(n) and T2(n)-time respectively.
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NO Deterministic Procedure
Instead of guessing, we can deduce the equalities to be
shared. The new combination procedure:
Purification : As before.
Interaction : Deduce an equality x= y:

T1 ` (φ1 ⇒ x= y)

Update φ2 := φ2 ∧ x= y. And vice-versa. Repeat
until no further changes to get φi∞.

Component Procedures : Use individual procedures to
decide if φi∞ is satisfiable.

Note, Ti ` (φi ⇒ x = y) iff φ1 ∧ x = y is not satisfiable in
Ti.
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Deterministic Version: Correctness
Each step is satisfiability preserving, ∴ soundness follows.

Assume that the theories are convex.
• Let φi∞ be satisfiable.
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Deterministic Version: Correctness
Each step is satisfiability preserving, ∴ soundness follows.

Assume that the theories are convex.
• Let φi∞ be satisfiable.

• If {x1, . . . , xm} is the set of variables not yet
identified, Ti 6` φi∞ ⇒ (xj = xk).

• By convexity, Ti 6` φi∞ ⇒
∨

j 6=k(xj = xk).

• ∴ φi∞ ∧
∧

j 6=k(xj 6=xk) is satisfiable.

• The proof is now identical to the previous case.
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Deterministic Version: Complexity
For convex theories, the combination procedure runs in
O(n4 ∗ (T1(n) + T2(n))) time:

1. Identifying if an equality x= y is implied by φi takes
O(n2 ∗ Ti(n)) time.

2. Since there are O(n2) possible equalities between
variables, fixpoint is reached in O(n2) iterations.

Modularity of convexity: Unsatisfiability is signaled when
any one procedures signals unsatisfiable.
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NO: Equational Theory Version
Equational Theory: Axiomatized by universally quantified
equations.
Examples: Semi-groups, Groups, Rings, etc.

1. Equational theories are always consistent.
2. If E ∪ {∃x, y.x 6=y} is consistent, then this theory is

also stably-infinite.
3. Equational theories are convex. (If E ` φ⇒ (l1 ∨ l2),

then consider the initial algebra induced by E ∪ φ over
an extended signature.)

4. Therefore, satisfiability procedures can be combined
with only a polynomial time overhead.
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Equational Decision Procedures
• Equations can either be oriented or not

0 + x = x

x+ y = y + x

• Oriented equations are handled using Superposition:

s[u] = t v = w

sσ[wσ] = tσ

if uσ≡vσ, s[u]�t, v�w.
• Non-orientable equations are handled in ≡
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Equational Decision Procedures
• Two kinds of equations:

• axioms of theory T
• literals in (purified) φ: These are “ground”

• Superposition modulo unorientable equations:
• axiom–axiom: Assume saturated
• axiom/groundLiteral–groundLiteral: Need to apply

rule
• Termination?: ??
• Correctness?: Yes
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A Simple Theory of Equality
Σ = ΣF = {f} (uninterpreted)
T = Deductive closure of axioms of equality

• Axioms = ∅

• “Ground” equations over {f} can be oriented:
f(u1, . . . , uk) = u

• Deduction rules:

f(u1, . . . , uk) = u f(u1, . . . , uk) = u′

u= u′

f(u1, . . . , uk) = u u1 = u′

f(u′, . . . , uk) = u
Combining Decision Procedures (p.34 of 55)



Application: Theory of Equality
Σ = ΣF = {f} ∪ {g} ∪ · · ·

T = Deductive closure of axioms of equality

• T is a stably-infinite equational theory.
• Above “congruence closure” procedure decides

satisfiability of QFF over Σi.
• ∴ congruence closure for disjoint Σi can be combined

in polynomial time.
• This way we get an “abstract congruence closure” for

the combined signature.
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Commutative Semigroup
Σ = {f}

T = Axioms of equality + AC axioms for f .

• Treat f as variable arity

f(. . . , f(. . .), . . .) = f(. . . , . . . , . . .) (F )

f(. . . , x, y, . . .) = f(. . . , y, x, . . .) (P )

• Flatten all equations and do completion modulo P

f(c1, c1, x)=f(c1, x) f(c1, c2, x)=f(c2, c2, x)

f(c1, c2, y) = f(c1, c2, c2, y)
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Commutative Semigroup
• All rules are of the form f(. . .) → f(. . .).
• Collapse guarantees termination of completion via

Dickson’s lemma.

f(c1, c1, c2)=c1 f(c1, c2)=c1

f(c1, c1, c2) = c1

• Using an appropriate ordering on multisets, we get a
algorithm to construct convergent systems (and decide
satisfiability of QFF).
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Example: Commutative Semigroup
If E0 = {c21c2 = c3, c1c

2
2 = c1c2}, we can use orientation,

superposition (modulo AC), collapse to get a convergent
(modulo AC) rewrite system

c21c2 → c3, c1c
2
2 → c1c2

c2c3 = c21c2

c21c2 → c2c3

c3 = c2c3

c2c3 → c3

c21c3 → c23
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Application: Ground AC-theories
Σ = ΣF ∪ ΣAC

T = Axioms of equality + AC axioms for each f ∈ ΣAC .

• Use purification
• Use abstract congruence closure on Σ − ΣAC

• Use completion modulo AC on each {f}, f ∈ ΣAC

• Combine by sharing equations between constants

Time Complexity: O(n2 ∗ (TAC(n) + n log(n))).
Similarly, ACU -symbols can be added.
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Gröbner Bases
Σ = {0, 1,+, ·, X1, . . . , Xn} ∪ Q

T = Polynomial ring K[X1, . . . , Xn] over field K

• Given a finite set of polynomial equations, new
equations (between variables) can be deduced using
Gröbner basis construction.

• Main inference rule is superposition. For e.g.,

c21c2=0 c1c
2
2=1

c2 · 0 = c1 · 1

The equations are simplified and oriented s.t. the
maximal monomial occurs on LHS, for e.g., c1=0.
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Gröbner Bases: Contd
• Collapse simplifies LHS of rewrite rules.

c1 → 0 c1c
2
2 → 1

0 · c22 = 1

which simplifies to 0 = 1, a contradiction.
• Using suitable ordering on monomials and sums of

monomials, a convergent rewrite system (modulo AC
axioms), called a Gröbner basis, can be constructed in
finite steps.
Eg. GB({c21 = 0, c1c

2
2 = 1}) = {1 = 0}.

• Termination is established using Dickson’s lemma as
before.
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Application: Gröbner Bases Plus . . .
Σ = ΣF ∪ ΣAC ∪ ΣACU ∪ ΣGB

T = Union of the respective theories
Use NO combination, with the following decision
procedures to deduce equalities:
• Use abstract congruence closure on Σ − ΣAC

• Use completion modulo AC on each {f}, f ∈ ΣAC

• Use completion modulo ACU on each {f}, f ∈ ΣACU

• Use Gröbner basis algorithm on equations over ΣGB

Since each theory is convex and stably-infinite, we get a
polynomial time combination over the individual theories.
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Summary
The Nelson-Oppen theorem combines satisfiability
procedures for conjunctions of literals in disjoint and
stably-infinite theories.
• This is equivalent to deciding the validity of clauses:

T ` ∀~x.(φ1 ⇒ φ2) where φ1/φ2 are AND/OR of
atomic formulas.

• Using Purification, it is easy to see that we can restrict
φ2 to contain atomic formulae over variables.

• By definition, if T is convex and = is the only
predicate symbol, then validity above is equivalent to
horn validity: T ` ∀~x.(φ1 ⇒ x1 = x2). This motivates
the definition of convexity.
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Summary
• Convexity allows optimization.

• Convexity is also necessary for completeness of
deterministic version of the NO procedure.

• Additional assumptions, usually grouped under the
name Shostak theories, allow for further optimized
implementations of the deterministic NO
procedure.

• Stably-infiniteness is required for completeness, i.e., if
the component procedures return satisfiable, it allows
construction of the fusion model.
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Special Case: Theory with UIFs
Theorem 1 Let T1 be a theory over a signature Σ. Let ΣF

be a disjoint set of function symbols with pure theory T2 of
equality over it. If satisfiability of (quantifier-free)
conjunction of literals can be decided in O(T1(n)) time in
T1, then,

1. The combined theory T is consistent.
2. Satisfiability of (quantifier-free) conjunction of literals

in T can be decided in O(2n2

∗ (T1(n) + n log(n)))
time.

3. If T1 and T2 are convex, then so is T and satisfiability
in T is in O(n4 ∗ (T1(n) + n log(n))) time.
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Single Theory with UIFs
• We modify the deterministic and non-deterministic

procedures as follows:
• purification is applied until all disequations over

terms in Σ2 are reduced to disequations between
variables

• all variables introduced by purification are
considered shared between the two theories

• rest is identical to the NO procedure
• Stably-infiniteness was required to get a bijection

between the two models. Since there exist models of
any cardinality, above a minimum which is
communicated to T1, in T2, completeness holds.
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Combination for the Word Problem
The word problem concerns with validity of an atomic
formula.

• NO result can be modified to give a modularity result
for this case.

• NO result can not be used as such, because the
generated satisfiability checks may not be equivalent
to word problems.

• If E1 and E2 are non-trivial equational theories over
disjoint signatures with decidable word problems, then
the word problem for E1 ∪ E2 is decidable with a
polynomial time overhead.
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Non-Disjoint Signatures
Word problem in the union may not be decidable
E : semigroup presentation with undecidable word problem
E1 : Theory induced by E, with · uninterpreted

(decided by congruence closure).
E2 : Theory of semigroups

(decided by flattening).
Satisfiability in the union may not be decidable
E1 : {f(x, f(y, z)) = g(x, y, z)}

E2 : {f(f(x, y), z) = g(x, y, z)}

E : Theory of semi-groups
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Non-Disjoint Signatures
• If A is a model for theory T1 ∪ T2, then AΣ1 and AΣ2 is

a model for T1 and T2 respectively.
• Define fusion of models A1 and A2 s.t. converse hold

as well.
• Define a bijection between A1 and A2 and give

interpretations accordingly.
• Generalize “stably-infiniteness”: Identify conditions

under which two models can be fused.
• Kinds of assumptions:

- T Σ1∩Σ2

1 is identical to T Σ1∩Σ2

2
- Σ1 ∩ Σ2, or a subset thereof, generates both A2 and
A2

- Examples. Theories which admit constructors
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