**Combining Abstract Interpreters** 

#### Ashish Tiwari

Tiwari@csl.sri.com

Computer Science Laboratory SRI International Menlo Park CA 94025 http://www.csl.sri.com/~tiwari

Joint work with Sumit Gulwani

Ashish Tiwari, SRI

# **Outline of this Talk**

- Abstract Interpretation
- Logical Lattices
- Combining Logical Lattices
- Combination can be hard
- Logical Product: The Correct Combination Lattice
- Combination Abstract Interpreter

### **Abstract Interpretation**

| X                                          | : | state space                          |
|--------------------------------------------|---|--------------------------------------|
| $\rightarrow$                              | • | binary transition relation on $X$    |
| $X_{init}$                                 | : | set of initial states, subset of $X$ |
| $\langle X, \rightarrow, X_{init} \rangle$ | • | Program                              |
|                                            |   |                                      |

$$\langle 2^X, \rightarrow, X_{init} \rangle$$
 : Dynamical system  
:  $\bigcup_i \rightarrow^i (X_{init})$  = reachable states

٠

$$\langle A, \rightarrow, a_{init} \rangle$$
 : Approximate system over a lattice A  
:  $\bigsqcup_i \rightarrow^i (a_{init})$  = approx reachable states

fixpoint computation :

#### **Abstract Interpretation: Lattice**

To build an abstract interpreter, we require

- A : lattice
- $\rightarrow$  : transfer function
  - : ability to compute  $\rightarrow$  given  $\langle X, \rightarrow, X_{init} \rangle$  and A
- $\square$  : ability to compute the join in A
  - : ability to decide the lattice pre-order

For imperative programming languages, computing  $\rightarrow$  (*a*) often requires computing  $\sqcap$  and more.

#### **Abstract Interpretation: Example**

$$x := 0;$$
 while (1) {  $x := x+2;$  }

The concrete state transition system:

| X                                          | • | $\mathbb{Z}$        |
|--------------------------------------------|---|---------------------|
| $\rightarrow$                              | • | $i \rightarrow i+2$ |
| $X_{init}$                                 | • | $\{0\}$             |
| $\langle X, \rightarrow, X_{init} \rangle$ | • | Program             |

Lattice:

| Even | • | $\{\ldots,-2,0,2,4,\ldots\}$                             |
|------|---|----------------------------------------------------------|
| Odd  | • | $\{\ldots, -3, -1, 1, 3, \ldots\}$                       |
| A    | • | $\{\emptyset, Even, Odd, \mathbb{Z}\}$                   |
|      | • | $\emptyset \sqsubseteq Even, Odd \sqsubseteq \mathbb{Z}$ |

Ashish Tiwari, SRI

**Example: Contd** 

In the abstract lattice,

- $A \qquad : \quad \{\emptyset, Even, Odd, \mathbb{Z}\}$
- $\rightarrow$  :  $a \rightarrow a$  for all  $a \in A$

 $a_{init}$  : Even

Reachable states = 
$$\bigsqcup_{i} \rightarrow^{i} (a_{init})$$
  
=  $Even \sqcup Even \sqcup Even \sqcup \cdots$   
=  $Even$ 

Thus, we have generated the invariant "x is even."

# Logical Theory

Components of a logical theory *Th*:

| es    |
|-------|
|       |
|       |
| tives |
|       |
|       |
|       |

#### **Logical Theory: Examples**

 $\Sigma_{LAE}$  : {0,1,+,-}  $Th_{LAE}$  : Equality Axioms of +, - (linear arithmetic with equality)  $\Sigma_{LA}$  : {0,1,+,-,<}  $Th_{LA}$  : Equality and inequality axioms of +, - (LA with inequalities)  $\Sigma_{Pol}$  : {0, 1, +, -, \*}  $Th_{Pol}$  : Polynomial ring axioms  $\Sigma_{UF}$  : { $c_1, c_2, \ldots, f, g, \ldots$ }  $Th_{UF}$  : No axioms (Theory of uninterpreted functions/pure equality)

# **Logical Lattices**

Semi-lattice defined by

elements : conjunction  $\phi$  of atomic formulas in Th

```
preorder : \phi \sqsubseteq \phi' if Th \models \phi \Rightarrow \phi'
```

We have

meet  $\sqcap \mapsto \text{logical and } \land$ join  $\sqcup \mapsto \phi_1 \sqcup \phi_2$  is the strongest  $\phi$  s.t.  $Th \models (\phi_1 \lor \phi_2) \Rightarrow \phi$ 

Question: Is this semi-lattice a lattice?

Ashish Tiwari, SRI

#### **Logical Lattices**

Answer depends on the theory. Theories that define a logical lattice:

- Linear arithmetic with equality (Karr 1976) Eg.  $\{x = 0, y = 1\} \sqcup \{x = 1, y = 0\} = (x + y = 1)$
- Linear arithmetic with inequalities (Cousot and Halbwachs 1978) Eg.  $\{x = 0\} \sqcup \{x = 1\} = \{0 \le x, x \le 1\}$
- Nonlinear equations (polynomials) (Rodriguez-Carbonell and Kapur 2004) Eg.  $\{x = 0\} \sqcup \{x = 1\} = \{x(x - 1) = 0\}$
- UFS + injectivity/acyclicity (Gulwani, T. and Necula 2004) Eg.  $\{x = a, y = f(a)\} \sqcup \{x = b, y = f(b)\} = \{y = f(x)\}$

When this semilattice is a lattice, we call it a logical lattice

#### **UFS does not define a logical lattice**

The join of two finite sets of facts need not be finitely presented. [Gulwani, T. and Necula 2004]

$$\phi_1 \equiv a = b$$
  

$$\phi_2 \equiv fa = a \wedge fb = b \wedge ga = gb$$
  

$$\phi_1 \sqcup \phi_2 \equiv \bigwedge_i gf^i a = gf^i b$$

The formula  $\bigwedge_i gf^i a = gf^i b$  can not be represented by finite set of ground equations.

*Proof.* It induces infinitely many congruence classes with more than one signature.

#### **Example:** Abstract Intprtn over acyclic UFS lattice

With additional acyclicity restriction, UFS can be used to define a logical lattice.

u := c; v := c; [ $u = c \land v = c$ ] while (\*) { u := F(u); v := F(v);} [ $(u = F(c) \land v = F(c)) \sqcup (u = c \land v = c)$ ] [u = v]

We generate the invariant u = v this way.

# **Examples: Logical Lattices**

Most of the standard lattices considered for AI can be described as logical lattices over an appropriate theory Th

Parity: $\Sigma = \{0, 1, +, -, even, odd\}, Th = axioms of even, odd (no =)$ Sign: $\Sigma = \{0, 1, +, -, pos, neg\}, Th = axioms of pos, neg (no =)$ Intervals: $\Sigma = \{0, 1, +, -, <_c, >_c\}$ 

In the above cases, atomic formulas of only special form (predicate applied on variables) are considered as lattice elements.

# Recap

- Overview of abstract interpretation
  - Abstract interpretation can be used to generate invariants
- Overview of logical theories
  - Logical theories are described over a signature (a set of symbols) by axioms for those symbols
- Interesting lattices for AI obtained by considering conjunctions of atomic formulas in a given theory
- These semilattices may not be a lattice for arbitrary theories *Th*.
   As they are missing ∨ (⊔)

# **Abstract Interpreter for Logical Lattices**

| Lattice Op             |   | Computing          |   | When required                           |
|------------------------|---|--------------------|---|-----------------------------------------|
| Meet ⊓                 | : | $\wedge$           | : | computing transfer functions            |
| Join ⊔                 | • | ??                 | • | control-flow merge (loop, if-then-else) |
| Preorder $\sqsubseteq$ | • | $\Rightarrow_{Th}$ | • | fixpoint detection                      |
| ??                     | • | Quant Elim         | • | transfer function for assignments       |

Join computation for logical lattices is not well-studied.

### **Join Algorithms for Logical Lattices: Examples**

$$\begin{array}{ll} Th_{LAE} & : & \{x=z-1,y=1\} \sqcup \{z=y+2,x=2\} = \{x+y=z\} \\ & \text{Karr's 1976 algorithm} \end{array}$$

$$Th_{UF} & : & \{x=a,y=fa\} \sqcup \{x=fa,y=ffa\} = \{y=fx\} \\ & \text{Gulwani, T., Necula 2004} \end{array}$$

$$Th_{LA} & : & \{x<1,y<0\} \sqcup \{x<0,y<1\} = \{x<1,y<1,x+y<1\} \\ & \text{Convex Hull} \end{array}$$

$$Th_{Pol} & : & \{x=0\} \sqcup \{y=0\} = \{xy=0\} \\ & \text{Ideal Intersection} \end{array}$$
Many interesting unexplored problems here.

#### **Combining Abstract Interpreters: Motivation**

| x := 0; y := 0;                          | x := c; y := c;                         | x :=0; y := 0;         |
|------------------------------------------|-----------------------------------------|------------------------|
| u := 0; v := 0;                          | u := c; v := c;                         | u := 0; v := 0;        |
| while $(*)$ {                            | while (*) $\{$                          | while (*) {            |
| x := u + 1;                              | x := G(u, 1);                           | x := u + 1;            |
| y := 1 + v;                              | y := G(1, v);                           | y := 1 + v;            |
| u := F(x);                               | $\mathbf{u} := \mathbf{F}(\mathbf{x});$ | u := *;                |
| $\mathbf{v} := \mathbf{F}(\mathbf{y});$  | $\mathbf{v} := \mathbf{F}(\mathbf{y});$ | v := *;                |
| }                                        | }                                       | }                      |
| assert( $x = y$ )                        | assert( x = y )                         | assert( x = y )        |
| $\Sigma = \Sigma_{LA} \cup \Sigma_{UFS}$ | $\Sigma = \Sigma_{UFS}$                 | $\Sigma = \Sigma_{LA}$ |
| $Th = Th_{LA} + Th_{UFS}$                | $Th = Th_{UFS}$                         | $Th = Th_{LA}$         |
|                                          |                                         |                        |

Ashish Tiwari, SRI

## **Combining Logical Lattices**

Combining abstract interpreters is not easy [Cousot76]

Given logical lattices  $L_1$  and  $L_2$ :

- Direct product:  $\langle L_1 \times L_2, \Rightarrow_{Th_1} \times \Rightarrow_{Th_2} \rangle$
- Reduced product:  $\langle L_1 \times L_2, \Rightarrow_{Th_1 \cup Th_2} \rangle$
- Logical+ product: (Infinite\* conjunctions of  $AF(\Sigma_1 \cup \Sigma_2, \mathcal{V}), \Rightarrow_{Th_1 \cup Th_2}$ )
- Logical product:

 $\langle \text{Conjunctions of } AF(\Sigma_1 \cup \Sigma_2, \mathcal{V}), \Rightarrow_{Th_1 \cup Th_2} \text{ with some restriction} \rangle$ 

### **Different Kinds of Combinations**

| Kind     | Lattice elements                        | Lattice Preorder                             | Can verify |
|----------|-----------------------------------------|----------------------------------------------|------------|
| Logical+ | Inf conj of atm facts in $T_1 \cup T_2$ | $\Rightarrow_{T_1 \cup T_2}$                 | 1,2, 3, 4  |
| Logical  | conj of atm facts in $T_1 \cup T_2$     | $\Rightarrow_{T_1\cup T_2}^{\prec}$          | 1,2, 3     |
| Reduced  | $L_1 \times L_2$                        | $\Rightarrow_{T_1 \cup T_2}$                 | 1,2        |
| Direct   | $L_1 \times L_2$                        | $\Rightarrow_{T_1} \times \Rightarrow_{T_2}$ | 1          |

```
if (*)

x := 1; y := F(1); z := G(2);

else

x := 4; y := F(8-x); z := G(5);

Assertions: x \ge 1, y = F(x), z = G(x+1),

H(x) + H(5-x) = H(1) + H(4)
```

Ashish Tiwari, SRI

### **Issues in Combining Logical Lattices**

Why not use the logical+ product?

The logical+ product is undesirable for two reasons:

- 1.  $Th_1 \cup Th_2$  need not define a lattice on finite conjunctions even if  $Th_1$  and  $Th_2$  define logical lattices
  - $Th_{UFI}$  : theory of uninterpreted functions with injectivity

 $Th_{LAE}$  : theory of linear arithmetic with only equality Now,

$$(x = 0 \land y = 1) \sqcup (x = 1 \land y = 0)$$
  
=  $x + y = 1 \land C[x] + C[y] = C[0] + C[1]$ 

2. Combination can be hard

Let us consider the decision version of the abstract interpretation problem

# **Assertion Checking Problem**

Given:

- P : Program
- $\phi$  : Assertion over program variables at point  $\pi$  in P

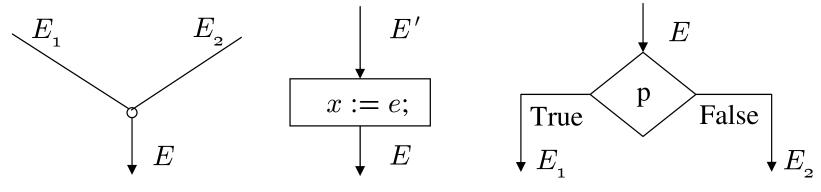
**Problem:** Is  $\phi$  an invariant at  $\pi$ ?

In contrast, assertion generation problem seeks to synthesize all invariants at point  $\pi$ .

Ashish Tiwari, SRI

# **Program Model**

A program is given as a flowchart with three kinds of nodes:



(a) Join Node

(b) Assignment Node

(c) Conditional Node

#### Fixing a theory *Th*:

- *e* : term (expression) in the theory
- *p* : atomic formula in the theory
- E : elements of the logical lattice induced by Th

#### **Assertion Checking over Logical Lattices**

Undecidable in general for most theories

So we consider non-deterministic conditionals in the program model

- Acyclic UFS theory: Polynomial time [Gulwani and Necula 2004]
- Linear arithmetic with equality. Polynomial time [Karr 1976]

Question. What about the combination?

Logical+ product :

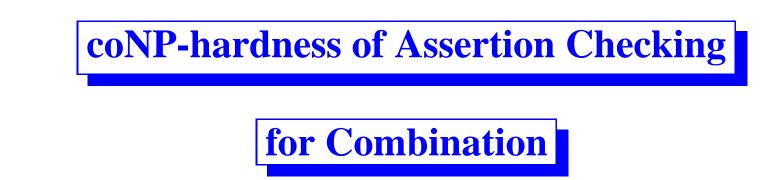
elements : inf conjunction  $\phi$  of atomic formulas in  $Th_1 \cup Th_2$ 

preorder :  $\Rightarrow_{Th_1 \cup Th_2}$ 

# Example

| x :=0; y := 0;                           | x := c; y := c;                         | x :=0; y := 0;         |
|------------------------------------------|-----------------------------------------|------------------------|
| u := 0; v := 0;                          | u := c; v := c;                         | u := 0; v := 0;        |
| while $(*)$ {                            | while (*) {                             | while (*) $\{$         |
| x := u + 1;                              | x := G(u, 1);                           | x := u + 1;            |
| y := 1 + v;                              | y := G(1, v);                           | y := 1 + v;            |
| $\mathbf{u} := \mathbf{F}(\mathbf{x});$  | $\mathbf{u} := \mathbf{F}(\mathbf{x});$ | u := *;                |
| $\mathbf{v} := \mathbf{F}(\mathbf{y});$  | $\mathbf{v} := \mathbf{F}(\mathbf{y});$ | v := *;                |
| }                                        | }                                       | }                      |
| assert( $x = y$ )                        | assert(x = y)                           | assert(x = y)          |
| $\Sigma = \Sigma_{LA} \cup \Sigma_{UFS}$ | $\Sigma = \Sigma_{UFS}$                 | $\Sigma = \Sigma_{LA}$ |
| $Th = Th_{LA} + Th_{UFS}$                | $Th = Th_{UFS}$                         | $Th = Th_{LA}$         |
|                                          |                                         |                        |

Ashish Tiwari, SRI



Key Idea: Disjunctive assertion can be encoded in the combination.

$$x = a \lor x = b \quad \Leftrightarrow \quad F(a) + F(b) = F(x) + F(a + b - x)$$

Using this recursively, we can write an assertion (atomic formula) which holds iff  $x = 0 \lor x = 1 \lor \cdots \lor x = m - 1$  holds.

For e.g., encoding for  $x = 0 \lor x = 1 \lor x = 2$  is obtained by encoding  $Fx = F2 \lor Fx = F0 + F1 - F(1 - x)$ :

$$F(F0 + F1 - F(1 - x)) + FF2 = FFx + F(F0 + F1 + F2 - F(1 - x) - Fx)$$

## **coNP-hardness of Assertion Checking**

 $\psi :$  boolean 3-SAT instance with m clauses and k variables

 $x_i := 0, \text{ for } i = 1, 2, \dots, m$ for i = 1 to k do if (\*) then  $x_j := 1, \forall j$ : variable i occurs positively in clause jelse  $x_j := 1, \forall j$ : variable i occurs negatively in clause j $sum := x_1 + \dots + x_m$ assert( $sum = 0 \lor \dots \lor sum = m - 1$ )

Assertion is valid IFF  $\psi$  is unsatisfiable

#### **coNP-hardness of Assertion Checking**

This procedure checks whether  $x \in \{0, ..., m-1\}$ .  $h_0 := F(x)$ ; for j = 0 to m - 1 do  $h_{0,j} := F(j)$ ; for i = 1 to m - 1 do  $s_{i-1} := h_{i-1,0} + h_{i-1,i}$ ;  $h_i := F(h_{i-1}) + F(s_{i-1} - h_{i-1})$ ; for j = 0 to m - 1 do  $h_{i,j} := F(h_{i-1,j}) + F(s_{i-1} - h_{i-1,j})$ ; Assert $(h_{m-1} = h_{m-1,0})$ ;

The assertion holds iff  $x \in \{0, \ldots, m-1\}$ .

Assertion checking on combination lattice is coNP-hard.

# Recap

- Logical theories used to define logical lattices
- There are different ways of combining these logical lattices
- The ideal way would have been the logical+ product
- Logical+ product has two problems:
  - In general, it is a lattice only if we consider infinite conjunctions
  - Assertion checking for nondeterministic programs is hard on logical+ products even when it is in PTime for individual lattices

Is assertion checking for UFS+LA language even decidable?

# **Assertion Checking Algorithm**

Backward analysis:

- Starting with the assertion, use weakest precondition computation
- At each step, replace the formula  $\psi$  computed at any program point by  $Unif(\psi)$

This method is both sound and complete due to

- correctness of WP computation
- connection between unification and assertion checking

Question. What is  $Unif(\psi)$ ?

Question. Does it terminate (reach fixpoint across loops)?

#### **Unification in Assertion Checking**

Assume that all assignments in program P are of the form

$$x := e$$

An assertion  $e_1 = e_2$  holds at point  $\pi$  in P iff the assertion  $Unif(e_1 = e_2)$  hold at  $\pi$  in P. This also extends to arbitrary assertion  $\phi$ .

If  $\{\sigma_1, \ldots, \sigma_k\}$  is a complete set of *Th*-unifiers for  $e_1 = e_2$ , then

$$Unif(e_1 = e_2) = \bigvee_{i=1}^k (\bigwedge_x x = x\sigma_i)$$

Ashish Tiwari, SRI

#### Why is Unification Sound in Backward Analysis?

First, if 
$$Th \models Unif(e_1 = e_2)$$
 then  $Th \models e_1 = e_2$ .

Conversely, let  $\theta$ : substitution that maps x to a symbolic value of x at point  $\pi$  (along some exectution path)

(Symbolic value is in terms of input variables)

If assertion  $e_1 = e_2$  holds at  $\pi$ , then,

$$Th \models \theta \Rightarrow e_1 = e_2, \quad i.e., \quad Th \models e_1\theta = e_2\theta$$

Since  $\{\sigma_1, \ldots, \sigma_k\}$  is a complete set of *Th*-unifiers,  $\therefore \theta =_{Th} \sigma_j \theta'$  for some *j* We will show

$$Th \models \theta \Rightarrow x = x\sigma_j, \quad i.e., \quad Th \models x\theta = x\sigma_j\theta$$

But

$$Th \models (x\theta = x\sigma_j\theta' = x\sigma_j\sigma_j\theta' = x\sigma_j\theta)$$

Ashish Tiwari, SRI

### Why backward analysis need not terminate?

Forward analysis will not terminate since the lattice has infinite height:

x := 0;while (\*) do x := x + 1;Assert( $x = 0 \lor x = 1 \lor \cdots \lor x = m$ );

But due to the unifier computations, backward analysis terminates

#### **Termination of Algorithm**

At each program point, the proof obligation formula is of the form

$$\bigvee_{l=1}^{m} \bigwedge_{x} (x = x\sigma_l)$$

In backward analysis across a loop, in each successive iteration, this formula will become stronger

But this can not happen indefinitely: Assign the following measure to the above formula

$$\{n - ||\bigwedge_{x} (x = x\sigma)||\}$$

This measure decreases in the well-founded ordering  $>^m$ .

#### **Assertion Checking and Unification**

| UFS    | unitary   | PTime                                         |
|--------|-----------|-----------------------------------------------|
| LA     | unitary   | PTime                                         |
| UFS+LA | finitary* | coNP-hard for loop-free, decidable in general |

\*Skipped detail:

Unification in Abelian Groups + free function symbols follows from general combination result

- Schmidt-Schuass 1989
- Baader-Schulz 1992



- Logical+ product is not a good choice for defining combinations
- Digression:
  - UFS+LA assertion checking problem is coNP-hard–even for loop-free programs
  - UFS+LA assertion checking problem is decidable

Both these results depend on a novel connection between unification and assertion checking

We wish to get PTime overhead for the operations  $\sqcup$ ,  $\sqcap$ ,  $\sqsubseteq$ , fixpoint, and *SP* in the combination

## **Logical Product**

Given two logical lattices, we define the logical product as:

elements : conjunction  $\phi$  of atomic formulas in  $Th_1 \cup Th_2$ 

$$E \sqsubseteq E'$$
 :  $E \Rightarrow_{Th_1 \cup Th_2} E'$  and  $\underline{AlienTerms}(E') \subseteq \underline{Terms}(E)$ 

 $\begin{array}{lll} AlienTerms(E) &= & \text{subterms in } E \text{ that belong to different theory} \\ Terms(E) &= & \text{all subterms in } E, \text{ plus all terms equivalent} \\ & & \text{to these subterms (in } Th_1 \cup Th_2 \cup E) \end{array}$ 

Eg. 
$$\{x = F(a+1), y = a\} \sqcup \{x = F(b+1), y = b\} = \{x = F(y+1)\}$$
  

$$x = F(a+1) \land y = a \implies x = F(y+1)$$

$$x = F(b+1) \land y = b \implies x = F(y+1)$$

$$x = F(\underline{a+1}) \land y = a \implies y+1 = \underline{a+1}$$

$$x = F(\underline{b+1}) \land y = b \implies y+1 = \underline{b+1}$$

Ashish Tiwari, SRI



- Includes only those atomic facts in the least upper bound of E and E' whose alien terms occur semantically in both elements E and E'
- Is more powerful than direct product and reduced product
- Allows us to combine the abstract interpreters modularly in some cases

We will discuss how to combine the abstract interpretation operations

## **Combining the Preorder Test**

Required for testing convergence of fixpoint

 $E \sqsubseteq E'$  iff

1.  $Th_1 \cup Th_2 \models E \Rightarrow E'$ 

2. 
$$AlienTerms(E') \subseteq Terms(E)$$

So, the crucial problem is (1)

(1) is solved by combining satisfiability testing decision procedures for  $Th_1$ and  $Th_2$ 

 $Th_1 \cup Th_2 \models E \Rightarrow E'$ 

IFF  $E \wedge \neg E'$  is unsatisfiable

IFF  $E \land \neg e$  is unsatisfiable for all  $e \in E'$ 

## **Satisfiability in** $Th_1 \cup Th_2$

Nelson-Oppen presented a general method for combining satisfiability decision procedures of  $Th_1$  and  $Th_2$  to get one for  $Th_1 \cup Th_2$ 

- *E*: conjunction of atomic formulas in  $Th_1 \cup Th_2$
- 1. First purify E into  $E_1$  and  $E_2$ Eg.  $4y_3 \le f(2y_2 - y_1) \mapsto \{4y_3 \le a_2, a_1 = 2y_2 - y_1\}$  and  $\{a_2 = f(a_1)\}$
- 2. Each  $Th_i$  generates variable equalities implied by  $E_i$  and passes it on the other theory

This step can be done by a  $Th_i$ -satisfiability procedure

- 3. Repeat Step (2) until no more variable equalities can be exchanged
- 4. Declare satisfiable if  $Th_1$  and  $Th_2$  both declare satisfiable

Works for convex, stably-infinite, disjoint theories

#### **Combining preorder test: NO Procedure**

We can modify NO procedure to also deduce facts

Now, the linear arithmetic procedure can deduce  $y_1 = 4y_3$ 

Works for convex, stably-infinite, disjoint theories

#### **Combining Join Operator**

Given procedures:

- $Join_{L_1}(E_l, E_r)$  : Computes  $E_l \sqcup E_r$  in lattice  $L_1$
- $Join_{L_2}(E_l, E_r)$  : Computes  $E_l \sqcup E_r$  in lattice  $L_2$

We wish to compute  $E_l \sqcup E_r$  in the logical product  $L_1 * L_2$ 

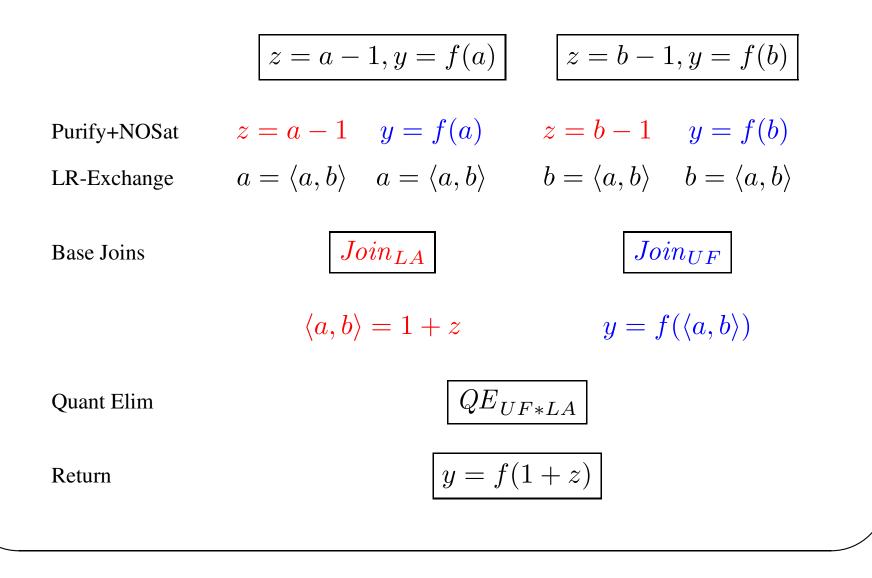
Example.

$$\{z = a + 1, y = f(a)\} \sqcup \{z = b - 1, y = f(b)\} = \{y = f(1 + z)\}$$

Ashish Tiwari, SRI

Combining Abstract Interpreters: 41

#### **Combining Join Operators**



Ashish Tiwari, SRI

Combining Abstract Interpreters: 42

## **Existential Quantification Operator**

Required to compute transfer function for assignments

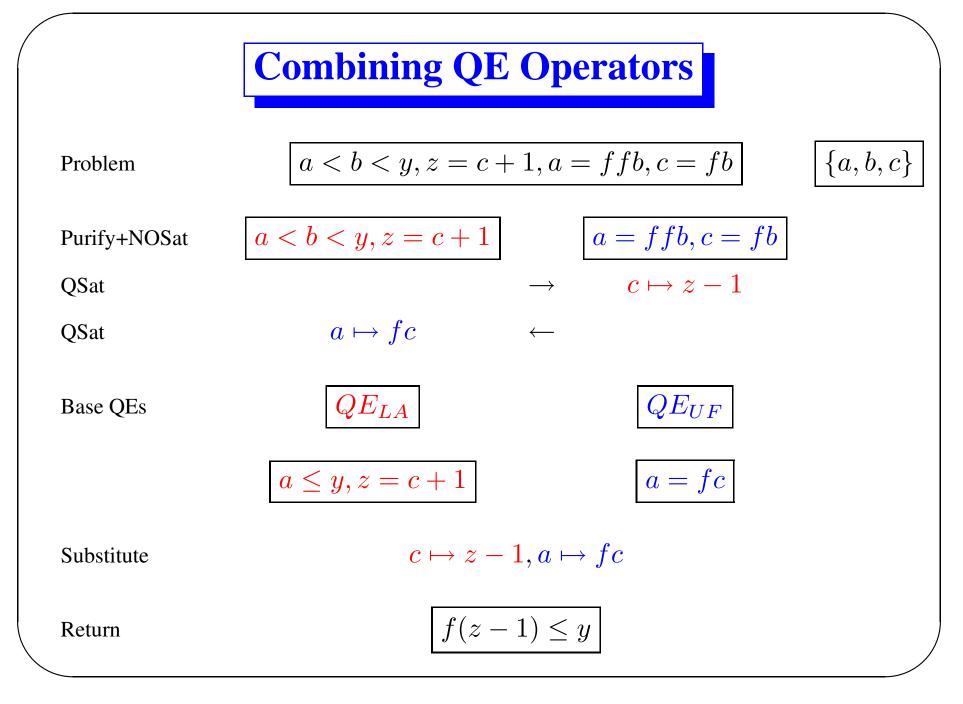
 $E = QE_L(E', V)$  if E is the least element in lattice L s.t.

- $E' \sqsubseteq_L E$
- $Vars(E) \cap V = \emptyset$

Examples:

- $QE_{LA}(\{x < a, a < y\}, \{a\}) = \{x \le y\}$
- $QE_{UF}(\{x = f(a), y = f(f(a))\}, \{a\}) = \{y = f(x)\}$
- $QE_{LA*UF}(\{a < b < y, z = c + 1, a = ffb, c = fb\}, \{a, b, c\}) = \{f(z-1) \le y\}$

How to construct  $QE_{LA*UF}$  using  $QE_{LA}$  and  $QE_{UF}$ ?



Ashish Tiwari, SRI

Combining Abstract Interpreters: 44

## **Fixpoint Computation**

Termination of analysis across loops required bounding height of lattice

 $H_L(E) \doteq$  no. of elements in any chain above E in lattice L

#### $H_{L_1*L_2}(E) \leq H_{L_1}(E_1) + H_{L_2}(E_2) + |AlienTerms(E)|$

where  $E_1, E_2$  are purified and NO-saturated components of E

## **Correctness and Complexity**

- Algorithms  $QE_{L_1*L_2}$  and  $Join_{L_1*L_2}$  are sound
- They are complete when the underlying theories  $T_1$  and  $T_2$  are convex, stably infinite and disjoint
- Proof of correctness is technical Heavily based on the correctness of NO procedure
- Complexity of *QE* and *Join* is worst-case quadratic in the complexity of these operations for individual lattices

#### **Example of Incompleteness**

 $QE_P(\{odd(x'), x = x' - 1\}, \{x'\}) = \{even(x)\}\$   $QE_S(\{pos(x'), x = x' - 1\}, \{x'\}) = \{\}\$   $QE_{P*S}(\{pos(x'), odd(x'), x = x' - 1\}, \{x'\}) = \{pos(x), even(x)\}\$ But our algorithm only outputs even(x). Why? The theories of parity and sign are not disjoint.



- Logical lattices are good candidates for thinking about and building abstract interpreters
- Logical lattices can be combined in a new and important way Logical Products:
  - Logical product is more powerful than direct or reduced product
  - Operations on logical lattices can be modularly combined to yield operations for logical products
  - Using ideas from the classical Nelson-Oppen combination method

# Conclusions

- The assertion checking problem:
  - Equations in an assertion can be replaced by its complete set of *Th*-unifiers for purposes of assertion checking
  - Assertion checking over "lattices" defined by combination of two logical lattices can be hard, even when it is in PTime for the lattices defined by individual theories
  - $\circ$  Finitary *Th*-unification algorithm implies decidability of assertion checking for the logical lattices defined by *Th*

# References

- 1. S. Gulwani and A. Tiwari, "Combining abstract interpreters". PLDI 2006.
- 2. S. Gulwani and A. Tiwari, "Assertion checking in the combined abstraction of linear arithmetic and uninterpreted functions". ESOP 2006.