
'

&

$

%

Combining Abstract Interpreters

Ashish Tiwari
Tiwari@csl.sri.com

Computer Science Laboratory
SRI International

Menlo Park CA 94025
http://www.csl.sri.com/˜tiwari

Joint work with Sumit Gulwani

Ashish Tiwari, SRI Combining Abstract Interpreters: 1

'

&

$

%

Outline of this Talk

• Abstract Interpretation

• Logical Lattices

• Combining Logical Lattices

• Combination can be hard

• Logical Product: The Correct Combination Lattice

• Combination Abstract Interpreter

Ashish Tiwari, SRI Combining Abstract Interpreters: 2

'

&

$

%

Abstract Interpretation

X : state space
→ : binary transition relation on X
Xinit : set of initial states, subset of X
〈X,→, Xinit〉 : Program

〈2X ,→, Xinit〉 : Dynamical system
:

⋃
i →

i (Xinit) = reachable states

〈A,→, ainit〉 : Approximate system over a lattice A
:

⊔
i →

i (ainit) = approx reachable states
: fixpoint computation

Ashish Tiwari, SRI Combining Abstract Interpreters: 3

'

&

$

%

Abstract Interpretation: Lattice

To build an abstract interpreter, we require
A : lattice
→ : transfer function

: ability to compute→ given 〈X,→, Xinit〉 and A
t : ability to compute the join in A
v : ability to decide the lattice pre-order

For imperative programming languages, computing→ (a) often requires
computing u and more.

Ashish Tiwari, SRI Combining Abstract Interpreters: 4

'

&

$

%

Abstract Interpretation: Example

x := 0; while (1) { x := x+2; }

The concrete state transition system:

X : Z

→ : i→ i+ 2

Xinit : {0}

〈X,→, Xinit〉 : Program

Lattice:
Even : {. . . ,−2, 0, 2, 4, . . .}

Odd : {. . . ,−3,−1, 1, 3, . . .}

A : {∅, Even,Odd,Z}

v : ∅ v Even,Odd v Z

Ashish Tiwari, SRI Combining Abstract Interpreters: 5

'

&

$

%

Example: Contd

In the abstract lattice,

A : {∅, Even,Odd,Z}

→ : a→ a for all a ∈ A
ainit : Even

Reachable states =
⊔

i

→i (ainit)

= Even tEven tEven t · · ·

= Even

Thus, we have generated the invariant “x is even.”

Ashish Tiwari, SRI Combining Abstract Interpreters: 6

'

&

$

%

Logical Theory

Components of a logical theory Th:

Σ : Signature containing function symbols, predicates
T (Σ,V) : terms, t := c | x | f(t, . . . , t)

AF (Σ,V) : atomic formulas, φ := t = t | p(t, . . . , t)

Formulas : atomic formulas combined with boolean connectives
Th : Set of sentences (valid in the theory)
Th |= φ : φ is valid in the theory Th

Ashish Tiwari, SRI Combining Abstract Interpreters: 7

'

&

$

%

Logical Theory: Examples

ΣLAE : {0, 1,+,−}

ThLAE : Equality Axioms of +,− (linear arithmetic with equality)

ΣLA : {0, 1,+,−, <}

ThLA : Equality and inequality axioms of +,− (LA with inequalities)

ΣPol : {0, 1,+,−, ∗}

ThPol : Polynomial ring axioms

ΣUF : {c1, c2, . . . , f, g, . . .}

ThUF : No axioms (Theory of uninterpreted functions/pure equality)

Ashish Tiwari, SRI Combining Abstract Interpreters: 8

'

&

$

%

Logical Lattices

Semi-lattice defined by
elements : conjunction φ of atomic formulas in Th
preorder : φ v φ′ if Th |= φ⇒ φ′

We have

meet u 7→ logical and ∧
join t 7→ φ1 t φ2 is the strongest φ s.t. Th |= (φ1 ∨ φ2)⇒ φ

Question: Is this semi-lattice a lattice?

Ashish Tiwari, SRI Combining Abstract Interpreters: 9

'

&

$

%

Logical Lattices

Answer depends on the theory. Theories that define a logical lattice:

• Linear arithmetic with equality (Karr 1976)
Eg. {x = 0, y = 1} t {x = 1, y = 0} = (x+ y = 1)

• Linear arithmetic with inequalities (Cousot and Halbwachs 1978)
Eg. {x = 0} t {x = 1} = {0 ≤ x, x ≤ 1}

• Nonlinear equations (polynomials) (Rodriguez-Carbonell and Kapur 2004)
Eg. {x = 0} t {x = 1} = {x(x− 1) = 0}

• UFS + injectivity/acyclicity (Gulwani, T. and Necula 2004)
Eg. {x = a, y = f(a)} t {x = b, y = f(b)} = {y = f(x)}

When this semilattice is a lattice, we call it a logical lattice

Ashish Tiwari, SRI Combining Abstract Interpreters: 10

'

&

$

%

UFS does not define a logical lattice

The join of two finite sets of facts need not be finitely presented. [Gulwani, T.
and Necula 2004]

φ1 ≡ a = b

φ2 ≡ fa = a ∧ fb = b ∧ ga = gb

φ1 t φ2 ≡
∧

i

gf ia = gf ib

The formula
∧

i gf
ia = gf ib can not be represented by finite set of ground

equations.

Proof. It induces infinitely many congruence classes with more than one
signature.

Ashish Tiwari, SRI Combining Abstract Interpreters: 11

'

&

$

%

Example: Abstract Intprtn over acyclic UFS lattice

With additional acyclicity restriction, UFS can be used to define a logical
lattice.

u := c; v := c;
[u = c ∧ v = c]
while (*) {

u := F(u);
v := F(v);

} [(u = F (c) ∧ v = F (c)) t (u = c ∧ v = c)]
[u = v]

We generate the invariant u = v this way.

Ashish Tiwari, SRI Combining Abstract Interpreters: 12

'

&

$

%

Examples: Logical Lattices

Most of the standard lattices considered for AI can be described as logical
lattices over an appropriate theory Th

Parity : Σ = {0, 1,+,−, even, odd}, Th = axioms of even,odd (no =)
Sign : Σ = {0, 1,+,−, pos, neg}, Th = axioms of pos,neg (no =)
Intervals : Σ = {0, 1,+,−, <c, >c}

In the above cases, atomic formulas of only special form (predicate applied on
variables) are considered as lattice elements.

Ashish Tiwari, SRI Combining Abstract Interpreters: 13

'

&

$

%

Recap

• Overview of abstract interpretation
◦ Abstract interpretation can be used to generate invariants

• Overview of logical theories
◦ Logical theories are described over a signature (a set of symbols) by

axioms for those symbols

• Interesting lattices for AI obtained by considering conjunctions of atomic
formulas in a given theory

• These semilattices may not be a lattice for arbitrary theories Th.
As they are missing ∨ (t)

Ashish Tiwari, SRI Combining Abstract Interpreters: 14

'

&

$

%

Abstract Interpreter for Logical Lattices

Lattice Op Computing When required
Meet u : ∧ : computing transfer functions
Join t : ?? : control-flow merge (loop, if-then-else)
Preorder v : ⇒Th : fixpoint detection
?? : Quant Elim : transfer function for assignments

Join computation for logical lattices is not well-studied.

Ashish Tiwari, SRI Combining Abstract Interpreters: 15

'

&

$

%

Join Algorithms for Logical Lattices: Examples

ThLAE : {x = z − 1, y = 1} t {z = y + 2, x = 2} = {x+ y = z}

Karr’s 1976 algorithm

ThUF : {x = a, y = fa} t {x = fa, y = ffa} = {y = fx}

Gulwani, T., Necula 2004

ThLA : {x < 1, y < 0} t {x < 0, y < 1} = {x < 1, y < 1, x+ y < 1}

Convex Hull

ThPol : {x = 0} t {y = 0} = {xy = 0}

Ideal Intersection

Many interesting unexplored problems here.

Ashish Tiwari, SRI Combining Abstract Interpreters: 16

'

&

$

%

Combining Abstract Interpreters: Motivation

x :=0; y := 0; x := c; y := c; x :=0; y := 0;
u := 0; v := 0; u := c; v := c; u := 0; v := 0;
while (*) { while (*) { while (*) {

x := u + 1; x := G(u, 1); x := u + 1;
y := 1 + v; y := G(1, v); y := 1 + v;
u := F(x); u := F(x); u := *;
v := F(y); v := F(y); v := *;

} } }

assert(x = y) assert(x = y) assert(x = y)

Σ = ΣLA ∪ ΣUFS Σ = ΣUFS Σ = ΣLA

Th = ThLA + ThUFS Th = ThUFS Th = ThLA

Ashish Tiwari, SRI Combining Abstract Interpreters: 17

'

&

$

%

Combining Logical Lattices

Combining abstract interpreters is not easy [Cousot76]

Given logical lattices L1 and L2:

• Direct product: 〈L1 × L2, ⇒Th1
× ⇒Th2

〉

• Reduced product: 〈L1 × L2, ⇒Th1∪Th2
〉

• Logical+ product: 〈Infinite* conjunctions of AF (Σ1 ∪ Σ2,V),⇒Th1∪Th2
〉

• Logical product:
〈Conjunctions of AF (Σ1 ∪ Σ2,V),⇒Th1∪Th2

with some restriction〉

Ashish Tiwari, SRI Combining Abstract Interpreters: 18

'

&

$

%

Different Kinds of Combinations

Kind Lattice elements Lattice Preorder Can verify
Logical+ Inf conj of atm facts in T1 ∪ T2 ⇒T1∪T2

1,2, 3 , 4
Logical conj of atm facts in T1 ∪ T2 ⇒�

T1∪T2
1,2, 3

Reduced L1 × L2 ⇒T1∪T2
1,2

Direct L1 × L2 ⇒T1
× ⇒T2

1

if (*)

x := 1; y := F(1); z := G(2);

else

x := 4; y := F(8-x); z := G(5);

Assertions: x ≥ 1, y = F (x), z = G(x+ 1) ,
H(x) +H(5− x) = H(1) +H(4)

Ashish Tiwari, SRI Combining Abstract Interpreters: 19

'

&

$

%

Issues in Combining Logical Lattices

Why not use the logical+ product?

The logical+ product is undesirable for two reasons:

1. Th1 ∪ Th2 need not define a lattice on finite conjunctions even if Th1 and
Th2 define logical lattices

ThUFI : theory of uninterpreted functions with injectivity
ThLAE : theory of linear arithmetic with only equality

Now,

(x = 0 ∧ y = 1) t (x = 1 ∧ y = 0)

= x+ y = 1 ∧ C[x] + C[y] = C[0] + C[1]

2. Combination can be hard

Let us consider the decision version of the abstract interpretation problem

Ashish Tiwari, SRI Combining Abstract Interpreters: 20

'

&

$

%

Assertion Checking Problem

Given:

P : Program
φ : Assertion over program variables at point π in P

Problem: Is φ an invariant at π ?

In contrast, assertion generation problem seeks to synthesize all invariants at
point π.

Ashish Tiwari, SRI Combining Abstract Interpreters: 21

'

&

$

%

Program Model

A program is given as a flowchart with three kinds of nodes:

(a) Join Node

x := e;

E
0

E

(c) Conditional Node

p
True False

E

E
1

E
2

(b) Assignment Node

E
2

E

E
1

Fixing a theory Th:
e : term (expression) in the theory
p : atomic formula in the theory
E : elements of the logical lattice induced by Th

Ashish Tiwari, SRI Combining Abstract Interpreters: 22

'

&

$

%

Assertion Checking over Logical Lattices

Undecidable in general for most theories

So we consider non-deterministic conditionals in the program model

• Acyclic UFS theory: Polynomial time [Gulwani and Necula 2004]

• Linear arithmetic with equality. Polynomial time [Karr 1976]

Question. What about the combination?

Logical+ product :
elements : inf conjunction φ of atomic formulas in Th1 ∪ Th2

preorder : ⇒Th1∪Th2

Ashish Tiwari, SRI Combining Abstract Interpreters: 23

'

&

$

%

Example

x :=0; y := 0; x := c; y := c; x :=0; y := 0;
u := 0; v := 0; u := c; v := c; u := 0; v := 0;
while (*) { while (*) { while (*) {

x := u + 1; x := G(u, 1); x := u + 1;
y := 1 + v; y := G(1, v); y := 1 + v;
u := F(x); u := F(x); u := *;
v := F(y); v := F(y); v := *;

} } }

assert(x = y) assert(x = y) assert(x = y)

Σ = ΣLA ∪ ΣUFS Σ = ΣUFS Σ = ΣLA

Th = ThLA + ThUFS Th = ThUFS Th = ThLA

Ashish Tiwari, SRI Combining Abstract Interpreters: 24

'

&

$

%

coNP-hardness of Assertion Checking

for Combination

Key Idea: Disjunctive assertion can be encoded in the combination.

x = a ∨ x = b ⇔ F (a) + F (b) = F (x) + F (a+ b− x)

Using this recursively, we can write an assertion (atomic formula) which
holds iff x = 0 ∨ x = 1 ∨ · · · ∨ x = m− 1 holds.

For e.g., encoding for x = 0 ∨ x = 1 ∨ x = 2 is obtained by encoding
Fx = F2 ∨ Fx = F0 + F1− F (1− x):

F (F0+F1−F (1−x))+FF2 = FFx+F (F0+F1+F2−F (1−x)−Fx)

Ashish Tiwari, SRI Combining Abstract Interpreters: 25

'

&

$

%

coNP-hardness of Assertion Checking

ψ: boolean 3-SAT instance with m clauses and k variables

xi := 0, for i = 1, 2, . . . ,m

for i = 1 to k do
if (*) then
xj := 1, ∀j: variable i occurs positively in clause j

else
xj := 1, ∀j: variable i occurs negatively in clause j

sum := x1 + · · ·+ xm

assert(sum = 0 ∨ · · · ∨ sum = m− 1)

Assertion is valid IFF ψ is unsatisfiable

Ashish Tiwari, SRI Combining Abstract Interpreters: 26

'

&

$

%

coNP-hardness of Assertion Checking

This procedure checks whether x ∈ {0, . . . ,m− 1}. h0 := F (x);
for j = 0 to m− 1 do

h0,j := F (j);
for i = 1 to m− 1 do

si−1 := hi−1,0 + hi−1,i;
hi := F (hi−1) + F (si−1 − hi−1);
for j = 0 to m− 1 do

hi,j := F (hi−1,j) + F (si−1 − hi−1,j);
Assert(hm−1 = hm−1,0);

The assertion holds iff x ∈ {0, . . . ,m− 1}.

Assertion checking on combination lattice is coNP-hard.

Ashish Tiwari, SRI Combining Abstract Interpreters: 27

'

&

$

%

Recap

• Logical theories used to define logical lattices

• There are different ways of combining these logical lattices

• The ideal way would have been the logical+ product

• Logical+ product has two problems:
◦ In general, it is a lattice only if we consider infinite conjunctions
◦ Assertion checking for nondeterministic programs is hard on logical+

products even when it is in PTime for individual lattices

Is assertion checking for UFS+LA language even decidable?

Ashish Tiwari, SRI Combining Abstract Interpreters: 28

'

&

$

%

Assertion Checking Algorithm

Backward analysis:

• Starting with the assertion, use weakest precondition computation

• At each step, replace the formula ψ computed at any program point by
Unif (ψ)

This method is both sound and complete due to

• correctness of WP computation

• connection between unification and assertion checking

Question. What is Unif (ψ) ?
Question. Does it terminate (reach fixpoint across loops)?

Ashish Tiwari, SRI Combining Abstract Interpreters: 29

'

&

$

%

Unification in Assertion Checking

Assume that all assignments in program P are of the form

x := e

An assertion e1 = e2 holds at point π in P iff

the assertion Unif (e1 = e2) hold at π in P .

This also extends to arbitrary assertion φ.

If {σ1, . . . , σk} is a complete set of Th-unifiers for e1 = e2, then

Unif (e1 = e2) =
k∨

i=1

(
∧

x

x = xσi)

Ashish Tiwari, SRI Combining Abstract Interpreters: 30

'

&

$

%

Why is Unification Sound in Backward Analysis?

First, if Th |= Unif (e1 = e2) then Th |= e1 = e2 .

Conversely, let θ: substitution that maps x to a symbolic value of x at point π
(along some exectution path)

(Symbolic value is in terms of input variables)

If assertion e1 = e2 holds at π, then,

Th |= θ ⇒ e1 = e2, i.e., Th |= e1θ = e2θ

Since {σ1, . . . , σk} is a complete set of Th-unifiers, ∴ θ =Th σjθ
′ for some j

We will show

Th |= θ ⇒ x = xσj , i.e., Th |= xθ = xσjθ

But
Th |= (xθ = xσjθ

′ = xσjσjθ
′ = xσjθ)

Ashish Tiwari, SRI Combining Abstract Interpreters: 31

'

&

$

%

Why backward analysis need not terminate?

Forward analysis will not terminate since the lattice has infinite height:

x := 0;

while (*) do
x := x+ 1;

Assert(x = 0 ∨ x = 1 ∨ · · · ∨ x = m);

But due to the unifier computations, backward analysis terminates

Ashish Tiwari, SRI Combining Abstract Interpreters: 32

'

&

$

%

Termination of Algorithm

At each program point, the proof obligation formula is of the form
m∨

l=1

∧

x

(x = xσl)

In backward analysis across a loop, in each successive iteration, this formula
will become stronger

But this can not happen indefinitely:
Assign the following measure to the above formula

{n− ||
∧

x

(x = xσ)||}

This measure decreases in the well-founded ordering >m.

Ashish Tiwari, SRI Combining Abstract Interpreters: 33

'

&

$

%

Assertion Checking and Unification

UFS unitary PTime
LA unitary PTime
UFS+LA finitary* coNP-hard for loop-free, decidable in general

*Skipped detail:

Unification in Abelian Groups + free function symbols follows from general
combination result

• Schmidt-Schuass 1989

• Baader-Schulz 1992

Ashish Tiwari, SRI Combining Abstract Interpreters: 34

'

&

$

%

Recap

• Logical+ product is not a good choice for defining combinations

• Digression:
◦ UFS+LA assertion checking problem is coNP-hard–even for loop-free

programs
◦ UFS+LA assertion checking problem is decidable

Both these results depend on a novel connection between unification and
assertion checking

We wish to get PTime overhead for the operations t, u, v, fixpoint, and SP
in the combination

Ashish Tiwari, SRI Combining Abstract Interpreters: 35

'

&

$

%

Logical Product

Given two logical lattices, we define the logical product as:
elements : conjunction φ of atomic formulas in Th1 ∪ Th2

E v E′ : E ⇒Th1∪Th2
E′ and AlienTerms(E′) ⊆ Terms(E)

AlienTerms(E) = subterms in E that belong to different theory
Terms(E) = all subterms in E, plus all terms equivalent

to these subterms (in Th1 ∪ Th2 ∪E)

Eg. {x = F (a+ 1), y = a} t {x = F (b+ 1), y = b} = {x = F (y + 1)} ∵

x = F (a+ 1) ∧ y = a ⇒ x = F (y + 1)

x = F (b+ 1) ∧ y = b ⇒ x = F (y + 1)

x = F (a+ 1) ∧ y = a ⇒ y + 1 = a+ 1

x = F (b+ 1) ∧ y = b ⇒ y + 1 = b+ 1

Ashish Tiwari, SRI Combining Abstract Interpreters: 36

'

&

$

%

Logical Product

• Includes only those atomic facts in the least upper bound of E and E ′

whose alien terms occur semantically in both elements E and E ′

• Is more powerful than direct product and reduced product

• Allows us to combine the abstract interpreters modularly in some cases

We will discuss how to combine the abstract interpretation operations

Ashish Tiwari, SRI Combining Abstract Interpreters: 37

'

&

$

%

Combining the Preorder Test

Required for testing convergence of fixpoint

E v E′ iff

1. Th1 ∪ Th2 |= E ⇒ E′

2. AlienTerms(E′) ⊆ Terms(E)

So, the crucial problem is (1)

(1) is solved by combining satisfiability testing decision procedures for Th1

and Th2

Th1 ∪ Th2 |= E ⇒ E′

IFF E ∧ ¬E′ is unsatisfiable
IFF E ∧ ¬e is unsatisfiable for all e ∈ E ′

Ashish Tiwari, SRI Combining Abstract Interpreters: 38

'

&

$

%

Satisfiability in Th1 ∪ Th2

Nelson-Oppen presented a general method for combining satisfiability
decision procedures of Th1 and Th2 to get one for Th1 ∪ Th2

E: conjunction of atomic formulas in Th1 ∪ Th2

1. First purify E into E1 and E2

Eg. 4y3 ≤ f(2y2 − y1) 7→ {4y3 ≤ a2, a1 = 2y2 − y1} and {a2 = f(a1)}

2. Each Thi generates variable equalities implied by Ei and passes it on the
other theory
This step can be done by a Thi-satisfiability procedure

3. Repeat Step (2) until no more variable equalities can be exchanged

4. Declare satisfiable if Th1 and Th2 both declare satisfiable

Works for convex, stably-infinite, disjoint theories

Ashish Tiwari, SRI Combining Abstract Interpreters: 39

'

&

$

%

Combining preorder test: NO Procedure

We can modify NO procedure to also deduce facts

y1 ≤ 4y3 ≤ f(2y2 − y1), y1 = f(y1), y2 = f(f(y1))⇒ y1 = 4y3

a1 = 2y2 − y1 a2 = f(a1)

y1 ≤ 4y3 ≤ a2 y1 = f(y1), y2 = f(f(y1))

y1 = y2 ←

→ y1 = a1

y1 = a2 ←

Now, the linear arithmetic procedure can deduce y1 = 4y3

Works for convex, stably-infinite, disjoint theories

Ashish Tiwari, SRI Combining Abstract Interpreters: 40

'

&

$

%

Combining Join Operator

Given procedures:

JoinL1
(El, Er) : Computes El tEr in lattice L1

JoinL2
(El, Er) : Computes El tEr in lattice L2

We wish to compute El tEr in the logical product L1 ∗ L2

Example.

{z = a+ 1, y = f(a)} t {z = b− 1, y = f(b)} = {y = f(1 + z)}

Ashish Tiwari, SRI Combining Abstract Interpreters: 41

'

&

$

%

Combining Join Operators

z = a− 1, y = f(a) z = b− 1, y = f(b)

Purify+NOSat z = a− 1 y = f(a) z = b− 1 y = f(b)

LR-Exchange a = 〈a, b〉 a = 〈a, b〉 b = 〈a, b〉 b = 〈a, b〉

Base Joins JoinLA JoinUF

〈a, b〉 = 1 + z y = f(〈a, b〉)

Quant Elim QEUF∗LA

Return y = f(1 + z)

Ashish Tiwari, SRI Combining Abstract Interpreters: 42

'

&

$

%

Existential Quantification Operator

Required to compute transfer function for assignments

E = QEL(E′, V) if E is the least element in lattice L s.t.

• E′ vL E

• V ars(E) ∩ V = ∅

Examples:

• QELA({x < a, a < y}, {a}) = {x ≤ y}

• QEUF ({x = f(a), y = f(f(a))}, {a}) = {y = f(x)}

• QELA∗UF ({a < b < y, z = c+ 1, a = ffb, c = fb}, {a, b, c}) =

{f(z − 1) ≤ y}

How to construct QELA∗UF using QELA and QEUF ?

Ashish Tiwari, SRI Combining Abstract Interpreters: 43

'

&

$

%

Combining QE Operators

Problem a < b < y, z = c+ 1, a = ffb, c = fb {a, b, c}

Purify+NOSat a < b < y, z = c+ 1 a = ffb, c = fb

QSat → c 7→ z − 1

QSat a 7→ fc ←

Base QEs QELA QEUF

a ≤ y, z = c+ 1 a = fc

Substitute c 7→ z − 1, a 7→ fc

Return f(z − 1) ≤ y

Ashish Tiwari, SRI Combining Abstract Interpreters: 44

'

&

$

%

Fixpoint Computation

Termination of analysis across loops required bounding height of lattice

HL(E)=̇ no. of elements in any chain above E in lattice L

HL1∗L2
(E) ≤ HL1

(E1) +HL2
(E2) + |AlienTerms(E)|

where E1, E2 are purified and NO-saturated components of E

Ashish Tiwari, SRI Combining Abstract Interpreters: 45

'

&

$

%

Correctness and Complexity

• Algorithms QEL1∗L2
and JoinL1∗L2

are sound

• They are complete when the underlying theories T1 and T2 are convex,
stably infinite and disjoint

• Proof of correctness is technical
Heavily based on the correctness of NO procedure

• Complexity of QE and Join is worst-case quadratic in the complexity of
these operations for individual lattices

Ashish Tiwari, SRI Combining Abstract Interpreters: 46

'

&

$

%

Example of Incompleteness

QEP ({odd(x′), x = x′ − 1}, {x′}) = {even(x)}

QES({pos(x′), x = x′ − 1}, {x′}) = {}

QEP∗S({pos(x′), odd(x′), x = x′ − 1}, {x′}) = {pos(x), even(x)}

But our algorithm only outputs even(x). Why?

The theories of parity and sign are not disjoint.

Ashish Tiwari, SRI Combining Abstract Interpreters: 47

'

&

$

%

Conclusions

• Logical lattices are good candidates for thinking about and building abstract
interpreters

• Logical lattices can be combined in a new and important way
Logical Products:
◦ Logical product is more powerful than direct or reduced product
◦ Operations on logical lattices can be modularly combined to yield

operations for logical products
◦ Using ideas from the classical Nelson-Oppen combination method

Ashish Tiwari, SRI Combining Abstract Interpreters: 48

'

&

$

%

Conclusions

• The assertion checking problem:
◦ Equations in an assertion can be replaced by its complete set of
Th-unifiers for purposes of assertion checking

◦ Assertion checking over “lattices” defined by combination of two logical
lattices can be hard, even when it is in PTime for the lattices defined by
individual theories

◦ Finitary Th-unification algorithm implies decidability of assertion
checking for the logical lattices defined by Th

Ashish Tiwari, SRI Combining Abstract Interpreters: 49

'

&

$

%

References

1. S. Gulwani and A. Tiwari, “Combining abstract interpreters”. PLDI 2006.

2. S. Gulwani and A. Tiwari, “Assertion checking in the combined abstraction

of linear arithmetic and uninterpreted functions”. ESOP 2006.

Ashish Tiwari, SRI Combining Abstract Interpreters: 50

