Combining Abstract Interpreters'

Ashish Tiwari

Tiwari@csl.sri.com

Computer Science Laboratory
SRI International

Menlo Park CA 94025
http://www.csl.sri.com/ tiwari

Joint work with Sumit Gulwani

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 1

4 N
Outline of this TaIkI

e Abstract Interpretation

e Logical Lattices

e Combining Logical Lattices

e Combination can be hard

e Logical Product: The Correct Combination Lattice

e Combination Abstract Interpreter

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 2

/ ‘Abstract Interpretation I \

X . state space

— . binary transition relation on X
Xinit . set of initial states, subset of X
(X,—, Xinit) . Program

(2%, —, X;nit) : Dynamical system

U, =" (Xinit) = reachable states

(A, =, Qinit) : Approximate system over a lattice A

|_|i 5t (az-m-t) = approx reachable states

\ : fixpoint computation /

Ashish Tiwari, SRI Combining Abstract Interpreters: 3

‘ Abstract Interpretation: Lattice I

To build an abstract interpreter, we require

A lattice
— : transfer function
ability to compute — given (X, —, X;,;+) and A
LI : ability to compute the join in A
ability to decide the lattice pre-order

For imperative programming languages, computing — (a) often requires
computing [l and more.

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 4

/ ‘Abstract Interpretation: Example' \

X = 0; while (1) { x = x+2; }

The concrete state transition system:

X N/

— 1 — 142

Xinit . {0}

(X,—, Xinit) : Program

Lattice:

Even c {...,—2,0,2,4,...}
Odd {..,-3,-1,1,3,..)

A . {0, Even,Odd,Z}
\E . 0 C Even,Odd C Z /

Ashish Tiwari, SRI Combining Abstract Interpreters: 5

4 N

Example: Contd

In the abstract lattice,

A . {0, Even,Odd,Z}
— : a—aforallae A
ainit . Pven
Reachable states = |_| . (Ginit)

i
= Fven U Even U Fven LI ---

= Fven

Thus, we have generated the invariant “x is even.”

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 6

4 N
Logical Theory'

Components of a logical theory T'h:

> : Signature containing function symbols, predicates
T(3,V) . terms, t:=c| x| f(t,...,1)

AF(3,V) . atomic formulas, ¢ : =t =1 | p(t,...,t)

Formulas : atomic formulas combined with boolean connectives
Th : Set of sentences (valid in the theory)

Th = ¢ . ¢ is valid in the theory T'h

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 7

4 N

Logical Theory: Examples
ELAE . {Oala‘i_?_}
Thrarg : Equality Axioms of +, — (linear arithmetic with equality)
ZLA : {0717+7_7<}
Thy A : Equality and inequality axioms of 4, — (LA with inequalities)
EPol . {0717+7_7*}
Thpy : Polynomial ring axioms
YUF . Aen,ea,n fri9,00
\ThU r : No axioms (Theory of uninterpreted functions/pure equality)/

Ashish Tiwari, SRI Combining Abstract Interpreters: 8

4 N
‘ Logical Lattices'

Semi-lattice defined by

elements : conjunction ¢ of atomic formulas in T'h
preorder : oL ¢ if ThE ¢ = ¢
We have

meet 1 +— logical and A

join LI+ ¢1 U ¢ is the strongest ¢ s.t. Th = (¢1 V ¢p2) = ¢

Question: Is this semi-lattice a lattice?

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 9

4 N

Logical Lattices

Answer depends on the theory. Theories that define a logical lattice:

e Linear arithmetic with equality (Karr 1976)
Eg. {r=0,y=1}U{z=1Ly=0}=(x+y=1)

e Linear arithmetic with inequalities (Cousot and Halbwachs 1978)
Eg. {r=0}u{z=1}={0<zx,2 <1}

e Nonlinear equations (polynomials) (Rodriguez-Carbonell and Kapur 2004)
Eg. {r =0} U{zx =1} ={z(x — 1) =0}

e UFS + injectivity/acyclicity (Gulwani, T. and Necula 2004)
Bg {z =a,y = fla)} U{z =by=f(b)} ={y = f(2)}

\W hen this semilattice is a lattice, we call it a logical lattice /

Ashish Tiwari, SRI Combining Abstract Interpreters: 10

4 N

UFS does not define a logical lattice

The join of two finite sets of facts need not be finitely presented. [Gulwani, T.
and Necula 2004]

1 = a=b
oo = fa=aAN fb=bAga=gb
p1Upe = /\gfiazgfib

The formula A, gf ‘a = ¢gf*'b can not be represented by finite set of ground
equations.

Proof. It induces infinitely many congruence classes with more than one

\signature. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 11

Example: Abstract Intprtn over acyclic UFS lattice

With additional acyclicity restriction, UFS can be used to define a logical
lattice.

u:=c;Vv:=c
lu=cAv=c]
while (*) {
u := F(u);
v ;= F(v);
H(u=Fe) Nv=F(c) U(u=cAhv=c)]
lu = v]

We generate the invariant u = v this way.

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 12

‘Examples: Logical Lattices'

Most of the standard lattices considered for Al can be described as logical

lattices over an appropriate theory T'h

Parity . X ={0,1,4, —, even,odd}, Th = axioms of even,odd (no =)
Sign . % =40,1,4+, —, pos,neg}, Th = axioms of pos,neg (no =)
Intervals : X ={0,1,+, —, <., >.}

In the above cases, atomic formulas of only special form (predicate applied on
variables) are considered as lattice elements.

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 13

4 N
Recap I

e Overview of abstract interpretation

o Abstract interpretation can be used to generate invariants

e Overview of logical theories
o Logical theories are described over a signature (a set of symbols) by

axioms for those symbols

e Interesting lattices for Al obtained by considering conjunctions of atomic
formulas 1n a given theory

e These semilattices may not be a lattice for arbitrary theories 7'h.
As they are missing V (L)

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 14

Abstract Interpreter for Logical Lattices'

Lattice Op Computing When required

Meet M VAN : computing transfer functions

Join UJ S ¢ : control-flow merge (loop, 1f-then-else)
Preorder C : =7 : fixpoint detection

77 : Quant Elim : transfer function for assignments

Join computation for logical lattices 1s not well-studied.

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 15

/Join Algorithms for Logical Lattices: Examples I\

ThLAE : {ZEIZ—l,y:1}|_|{Z:y—|—2,33:2}:{33—|—y:2’}
Karr’s 1976 algorithm

Thyp : {z=ay=fa}U{z=fay=ffa}={y= fz}
Gulwani, T., Necula 2004

Thra : {e<liy<0lu{z<Oy<li={z<ly<lz4+y<l1}

Convex Hull

Thpy : {x=0}uU{y=0}={xy=0}

Ideal Intersection

\Many interesting unexplored problems here. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 16

x :=0; y :=0;

u:=0;v:=0;

while (*) {
X:=u+1l;
y:=14+v;
u := F(x);
v .= F(y);

}

assert(X =y)

2 =XraUXyFs
Th=Thps+Thyrsg

-

X:=C;y:=C;

u:=cC;V:=cC;

while (*) {
X :=G(u, 1);
y :=G(1, v);
u := F(x);
v .= F(y);
h
assert(x =y)
Y =XyFs
Th=Thyrs

}

assert(x =y)

=214
Th=Thra

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 17

Combining Logical Lattices'

Combining abstract interpreters is not easy [Cousot76]

Given logical lattices L and Lo:

e Direct product: (L1 X Lo, =7n, X =7h,)

e Reduced product: (L1 X Lo, =7h,0Th,)

e [ogical+ product: (Infinite* conjunctions of AF' (31 U X, V), =1h,uTh,)

e Logical product:
(Conjunctions of AF'(X1 UXs, V), =7h,urh, With some restriction)

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 18

-

Different Kinds of Combinations' \

Kind Lattice elements Lattice Preorder | Can verify
Logical+ | Inf conj of atm facts in 77 U1s | =1,uT, 1,2, 3,
Logical | conjof atm facts in 77 U 15 :>%1UT2 1,2, 3
Reduced | L1 X Lo =T, UT, 1,2
Direct L1 X Lo =1, X =71, |
it ()
X 1= 1; y 1= FQ); z := G(2);
else
X = 4;y = F(8-X); z = G(5);
Assertions: x > 1,y = F(x), z=G(x+ 1),

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 19

/ Issues in Combining Logical Lattices' \

Why not use the logical+ product?

The logical+ product is undesirable for two reasons:

1. T'h1 U T hs need not define a lattice on finite conjunctions even if T'h; and
T'ho define logical lattices

Thyrpr : theory of uninterpreted functions with injectivity
Thrag : theory of linear arithmetic with only equality
Now,

(x=0Ay=1) U (zx=1Ay=0)
= z+y=1AClz]+Cly] = C|0] + C[1]

2. Combination can be hard

Qet us consider the decision version of the abstract interpretation problem /

Ashish Tiwari, SRI Combining Abstract Interpreters: 20

\Assertion Checking Problem'

Given:
P : Program
¢ . Assertion over program variables at point 7 in P

Problem: Is ¢ an invariant at 7 ?

In contrast, assertion generation problem seeks to synthesize all invariants at

point 7.

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 21

/ Program Model I \

A program is given as a flowchart with three kinds of nodes:

L-=¢ True False
E l E E, E,

(a) Join Node (b) Assignment Node (c) Conditional Node

Fixing a theory T'h:
e . term (expression) in the theory
p . atomic formula in the theory
\E : elements of the logical lattice induced by T'h /

Ashish Tiwari, SRI Combining Abstract Interpreters: 22

‘Assertion Checking over Logical Lattices'

Undecidable in general for most theories

So we consider non-deterministic conditionals in the program model
e Acyclic UFS theory: Polynomial time [Gulwani and Necula 2004]

e Linear arithmetic with equality. Polynomial time [Karr 1976]

Question. What about the combination?

Logical+ product :

elements : inf conjunction ¢ of atomic formulas in T'h; U T ho

preorder : =7Th,UTh,

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 23

4 N

‘ Example I
x :=0; y :=0; X =C;y:i=C; x :=0;y :=0;
u:=0;v:=0; u:=c,V:=cC; u:=0;v:=0;
while (*) { while (*) { while (*) {
X:=u+1l; X :=G(u, 1); X:=u+l;
y:=1+v; y :=G(1, v); y:=1+v;
u = F(x); u = F(x); u =%
v = F(y); v = F(y); V=
} h h
assert(X =y) assert(X =y) assert(X =y)
L =XraUXyFs Y =XyFs Y=XrA
Th=Thps+Thyrsg Th=Thyrsg Th=Thra

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 24

/ coNP-hardness of Assertion Checking I \
for Combination.

Key Idea: Disjunctive assertion can be encoded in the combination.

r=aVzer=b < Fa)+Fb)=F(x)+Fla+b—x)
Using this recursively, we can write an assertion (atomic formula) which
holdsiff t =0V 2z =1V---Va=m —1holds.

For e.g., encoding forx =0V x = 1 V = 2 1s obtained by encoding
Fr=F2VFr=F0+ F1—-F(1—x):

F(FO+F1—F(1—2))+FF2=FFg+F(FO+F14+F2—F(1—z)— Fz)

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 25

coNP-hardness of Assertion Checking I

1. boolean 3-SAT instance with m clauses and k variables

r;:=0,fore=1,2,....m
for: = 1to k do
if (*) then
x; = 1, Vj: variable ¢ occurs positively in clause j
else
x; = 1, Vj: variable ¢ occurs negatively in clause j
sSum :=x1+ -+ ITm

assert(sum =0V ---Vsum=m —1)

Assertion is valid IFF % is unsatisfiable

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 26

4 N

coNP-hardness of Assertion Checking

This procedure checks whether x € {0,...,m — 1}. hg := F(x);
fory=0tom — 1do

hoj == F(j);
fortr=1tom —1do

Si—1:=h;—1,0+ hi—14;

h; == F(hi—1) + F(si—1 — hi—1);

forj=0tom — 1do

hij:=F(hi—1;)+ F(si—1 — hi—14);
Assert(Ap,—1 = hym—10);

The assertion holds iff z € {0,...,m — 1}.

Assertion checking on combination lattice is coNP-hard.

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 27

4 D
Recap I

e Logical theories used to define logical lattices

e There are different ways of combining these logical lattices
e The ideal way would have been the logical+ product

e [.ogical+ product has two problems:
o In general, it 1s a lattice only if we consider infinite conjunctions

o Assertion checking for nondeterministic programs is hard on logical+
products even when it is in PTime for individual lattices

Is assertion checking for UFS+LA language even decidable?

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 28

Assertion Checking Algorithm I

Backward analysis:
e Starting with the assertion, use weakest precondition computation

e At each step, replace the formula 1) computed at any program point by

Unif (1)

This method 1s both sound and complete due to
e correctness of WP computation
e connection between unification and assertion checking

Question. What is Unif (1)) ?
Question. Does 1t terminate (reach fixpoint across loops)?

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 29

‘ Unification in Assertion Checking'

Assume that all assignments in program P are of the form

Ir = e€

An assertion e; = ey holds at point 7 in P iff
the assertion Unif (e; = e2) hold at 7 in P.
This also extends to arbitrary assertion ¢.

If {o1,...,0k} is a complete set of T h-unifiers for e; = es, then
k
Unif(e1 = eq) = \/(/\x = 20;)
=1 x

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 30

-

First, if Th = Unif(e; = e2) then Th = e; = e.

~

Why is Unification Sound in Backward Analysis?

Conversely, let #: substitution that maps x to a symbolic value of x at point 7
(along some exectution path)

(Symbolic value is in terms of input variables)

If assertion e; = e, holds at 7, then,

ThEO=e =€, ie, ThEeld=exl

Since {o1,...,0%} is a complete set of T'h-unifiers, .. § =7, 0,60’ for some j

We will show
ThE=60=x=ux0;, i.e, ThlEz0=ux0,0
But

\ Th): (x@ = ZIZO’j@l = ZCO’jO’jH’ = ZCO’j@) /

Ashish Tiwari, SRI Combining Abstract Interpreters: 31

Why backward analysis need not terminate?'

Forward analysis will not terminate since the lattice has infinite height:

x = 0;
while (*) do
r:=x+1;
Assert(r =0Vax =1V ---Vxr=m);

But due to the unifier computations, backward analysis terminates

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 32

/ Termination of Algorithm I \

At each program point, the proof obligation formula is of the form

In backward analysis across a loop, in each successive iteration, this formula
will become stronger

But this can not happen indefinitely:
Assign the following measure to the above formula

{n—H/\)|}

\This measure decreases in the well-founded ordering >". /

Ashish Tiwari, SRI Combining Abstract Interpreters: 33

‘Assertion Checking and Unification'

UFS unitary PTime

LA unitary PTime
UFS+LA finitary* coNP-hard for loop-free, decidable in general

*Skipped detail:

Unification in Abelian Groups + free function symbols follows from general

combination result
e Schmidt-Schuass 1989
e Baader-Schulz 1992

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 34

4 D
Recap I

e Logical+ product is not a good choice for defining combinations

e Digression:

o UFS+LA assertion checking problem is coNP-hard—even for loop-free
programs

o UFS+LA assertion checking problem is decidable
Both these results depend on a novel connection between unification and

assertion checking

We wish to get PTime overhead for the operations LI, [, C, fixpoint, and S P
in the combination

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 35

-

Terms(FE) =

Given two logical lattices, we define the logical product as:

elements : conjunction ¢ of atomic formulas in T'hq U T hs
ECE : FE=rpnurn EF and AlienTerms(E") C Terms(E)
AlienTerms(E) = subterms in F that belong to different theory

Eg. {r=F(a+1),y=atU{z=F0b+1),y=bt={x=Fy+1)} -

‘ Logical Product' \

all subterms in F/, plus all terms equivalent

to these subterms (in T'h1 UTho U E)

a+1)ANy=a = x=F(
(

—
Ny=a =
=

Ashish Tiwari, SRI

Combining Abstract Interpreters: 36

‘ Logical Product'

e Includes only those atomic facts in the least upper bound of £ and E’

whose alien terms occur semantically in both elements £ and E’
e Is more powerful than direct product and reduced product

e Allows us to combine the abstract interpreters modularly in some cases

We will discuss how to combine the abstract interpretation operations

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 37

/ ‘Combining the Preorder Test' \

Required for testing convergence of fixpoint

E C Eiff
1. Thy UThs IZE:>E/
2. AlienTerms(E') C Terms(F)

So, the crucial problem is (1)

(1) 1s solved by combining satisfiability testing decision procedures for Thy
and T ho

Thi UThs ’:E=>E/
IFF FE A —FE' is unsatisfiable

\ IFF E A —eis unsatisfiable for all e € E’ /

Ashish Tiwari, SRI Combining Abstract Interpreters: 38

4 Satisfiability in T, U Thzl N

Nelson-Oppen presented a general method for combining satisfiability
decision procedures of T'hy and T'hs to get one for T'hy U Tho

E: conjunction of atomic formulas in 7'/ U T ho

1. First purify £ into /77 and F»o
Eg. 4y3 < f(2y2 —y1) = {4yz < az,a1 = 2y —y1} and {az = f(a1)}

2. Each Th; generates variable equalities implied by E; and passes it on the
other theory
This step can be done by a T'h;-satisfiability procedure

3. Repeat Step (2) until no more variable equalities can be exchanged

4. Declare satisfiable if 7'/ and T ho both declare satisfiable

WOI'kS for convex, stably-infinite, disjoint theories /

Ashish Tiwari, SRI Combining Abstract Interpreters: 39

/ ‘Combining preorder test: NO Procedure'

We can modify NO procedure to also deduce facts

y1 <4ys < fQRy2 —w1),y1 = f(y),y2 = fF(f(1))= v1 = 43

a1 = 2yY2 — Y1 az = f(ai)
y1 < dyz < az y1 = f(v1),92 = f(f(y1))
Y1 = Y2 —
— Y1 =a1
Y1 = a2 —

Now, the linear arithmetic procedure can deduce y; = 4y3

\Works for convex, stably-infinite, disjoint theories /

Ashish Tiwari, SRI Combining Abstract Interpreters: 40

‘Combining Join Operator'

Given procedures:

Joing, (E;, E.) : Computes F; LI ;. in lattice L4
Joing,(E;, E,) : Computes F; LI). in lattice Lo

We wish to compute F; LI F,. in the logical product L * Lo

Example.

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 41

-

Base Joins

Quant Elim

Return

-

Purify+NOSat

LR-Exchange

~

‘Combining Join Operators'
z=a—1,y= f(a) z=b—1,y= f(b)
z=a—-1 y=fla) z=b-1 y= [
a=(a,b) a=(a,b) b=I(ab) b=/{a,b)
Joinrg a Joingy g
(a,b) =1+ 2 y = f({a,b))
QEypara
y=f(1+2)

/

Ashish Tiwari, SRI

Combining Abstract Interpreters: 42

/ Existential Quantification Operator' \

Required to compute transfer function for assignments

E =QFEL(E',V)if E is the least element in lattice L s.t.
e ' E
o Vars(E)NV =1

Examples:

o QEra({z <a,a <y} {a}) ={z <y}

o QEyr({z = f(a),y = f(f(a))}.{a}) ={y = f(2)}

o QFra.vr({a<b<y,z=c+1,a= ffb,c= fb},{a,b,c}) =
f(z=1) <y}

\How to construct QEaxypr using QFEr 4 and QEyr? /

Ashish Tiwari, SRI Combining Abstract Interpreters: 43

/ ‘Combining QE Operators' \

Problem a<b<y,z=c+1l,a= ffb,c=fb {a,b,c}

Purify+NOSat a<b<y,z=c+1 a= ffb,c= fb

QSat — c—z—1

QSat a+— fc o

Base QEs QELA QEUF
a<y,z=c+1 a= fc

Substitute c—z—1,a— fc

\Return flz—1) <y /

Ashish Tiwari, SRI Combining Abstract Interpreters: 44

Fixpoint Computation I

Termination of analysis across loops required bounding height of lattice

H (E)=no. of elements in any chain above F in lattice L

Hp .p,(E) < Hp (E1)+ Hp,(Es) + |AlienTerms(E)|

where F, Fo are purified and NO-saturated components of £

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 45

\Correctness and Complexity'

o Algorithms QF ;. and Joing, .p, are sound

e They are complete when the underlying theories 75 and 75 are convex,
stably infinite and disjoint

e Proof of correctness is technical
Heavily based on the correctness of NO procedure

e Complexity of (QF and Join 1s worst-case quadratic in the complexity of
these operations for individual lattices

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 46

‘ Example of Incompleteness'

QEp({odd(z'),z = 2’ — 1},{2'}) = {even(z)}
QEs({pos(a’),x = 2" =1}, {2'}) = {}

QEp.s({pos(z’), odd(z’), x = 2 — 1},{z'}) = {pos(x), even(x)}
But our algorithm only outputs even(x). Why?

The theories of parity and sign are not disjoint.

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 47

4 N
Conclusions'

e [ogical lattices are good candidates for thinking about and building abstract

interpreters
e Logical lattices can be combined in a new and important way
Logical Products:
o Logical product is more powerful than direct or reduced product

o Operations on logical lattices can be modularly combined to yield
operations for logical products

o Using ideas from the classical Nelson-Oppen combination method

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 48

4 N
Conclusions'

e The assertion checking problem:

o Equations in an assertion can be replaced by its complete set of
‘I'h-unifiers for purposes of assertion checking

o Assertion checking over “lattices” defined by combination of two logical
lattices can be hard, even when it 1s in PTime for the lattices defined by
individual theories

o Finitary T'h-unification algorithm implies decidability of assertion
checking for the logical lattices defined by T'h

- /

Ashish Tiwari, SRI Combining Abstract Interpreters: 49

\ References I

1. S. Gulwani and A. Tiwari, “Combining abstract interpreters’. PLDI 2006.

2. S. Gulwani and A. Tiwari, “Assertion checking in the combined abstraction
of linear arithmetic and uninterpreted functions’. ESOP 2006.

. /

Ashish Tiwari, SRI Combining Abstract Interpreters: 50

